Научная статья на тему 'GEOLOGICAL AND TECTONIC SETTING OF ANDESITIC ROCK IN CENTRAL EASTERN DESERT, EGYPT'

GEOLOGICAL AND TECTONIC SETTING OF ANDESITIC ROCK IN CENTRAL EASTERN DESERT, EGYPT Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
82
29
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
TECTONIC SETTING / ANDESITE / EASTERN DESERT / EGYPT

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Awad Hamdy Ahmed Mohamed, Ali Ibrahim Abu El-Leil, Nastavkin Aleksey Valer'Evich, Tolba Abdellah Sadek, Abdel Ghani Mostafa Kamel

Objective. e current study aims to detect the geologic features, geochemical characteristics and tectonic setting of the investigated rock using eld observations and geochemical analyses. Research methods. is work contains both eld work (Collection samples and drawing of a new geological map) and laboratory work (preparation of thin sections for petrographic studies by polarizing microscope), X-ray Fluorescence analysis (XRF) in Institute of Biology, Southern Federal University and Mass-Spectrometer with Inductively Coupled Plasma (ICPMS) at the central Laboratory of Russian Geological Institute. Result. Investigated andesitic rock belongs to Dokhan volcanic that located in the Central Eastern Desert of Egypt a long Qena-Safaga Road. It is considered as one of the most important shear zones in Eastern Desert that includes distinctive rocks and economic mineral deposits. e investigated rock belongs to late to post tectonic magmatism of the East African Orogeny (EAO). Petrographically: Dokhan volcanic is represented by andesite according to petrographical studies. It consists of plagioclase, quartz, in addition to ma c minerals. Geochemically, the investigated andesite samples plotted in calk-alkaline nature. Conclusion. Tectonically, andesite samples fall in arc lava and continental elds. ey are enriched in Ba, Sr, Rb, K, Nb and Ce with marked depletion in the most HFSEs like those of island arc calc-alkaline series.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «GEOLOGICAL AND TECTONIC SETTING OF ANDESITIC ROCK IN CENTRAL EASTERN DESERT, EGYPT»

Науки о Земле _Earth sciences_

УДК 25.00.04 https://doi.org/10.21440/2307-2091-2021-2-7-15

Geological and Tectonic Setting of Andesitic Rock in Central Eastern Desert, Egypt

Hamdy Ahmed Mohamed AWAD12' Ibrahim Abu El-Leil ALI 2 Aleksey Valer'evich NASTAVKIN1 Abdellah Sadek TOLBA2 Mostafa Kamel ABDEL GHANI 2 Musab Awad Ahmed HASSAN 3 Mohamed Mahmoud Fathy GHONEIM 14 Ahmed El Sayed Abdel GAWAD 4

1Southern Federal University, Rostov-on-Don, Russia 2Al-Azhar University, Cairo, Egypt

3Peoples' Friendship University of Russia (RUDN University), Moscow, Russia "Nuclear Materials Authority, Cairo, Egypt

Abstract

Objective. The current study aims to detect the geologic features, geochemical characteristics and tectonic setting of the investigated rock using field observations and geochemical analyses.

Research methods. This work contains both field work (Collection samples and drawing of a new geological map) and laboratory work (preparation of thin sections for petrographic studies by polarizing microscope), X-ray Fluorescence analysis (XRF) in Institute of Biology, Southern Federal University and Mass-Spectrometer with Inductively Coupled Plasma (ICPMS) at the central Laboratory of Russian Geological Institute.

Result. Investigated andesitic rock belongs to Dokhan volcanic that located in the Central Eastern Desert of Egypt a long Qena-Safaga Road. It is considered as one of the most important shear zones in Eastern Desert that includes distinctive rocks and economic mineral deposits. The investigated rock belongs to late to post tectonic magmatism of the East African Orogeny (EAO). Petrographically: Dokhan volcanic is represented by andesite according to petrographical studies. It consists of plagioclase, quartz, in addition to mafic minerals. Geochemically, the investigated andesite samples plotted in calk-alkaline nature.

Conclusion. Tectonically, andesite samples fall in arc lava and continental fields. They are enriched in Ba, Sr, Rb, K, Nb and Ce with marked depletion in the most HFSEs like those of island arc calc-alkaline series.

Keywords: Tectonic setting, Andesite, Eastern Desert, Egypt.

Introduction

The investigated rock is restricted in Qena-Safaga road in the Central Eastern Desert (CED) of Egypt as shown in (fig. 1). It occurs in the Arabian Nubian Shield (ANS) and is made up of arc-inter-arc rock associations, which are represented by dismembered ophiolitic slabs thrusted over the deformed arc terrane. Generally, volcanic rocks belong to the (EAO) of Neoproterozoic rocks that related to the (ANS), are divided into three groups. First and second groups are considered as the oldest rocks that are classified into metavolcanics and younger metavolcanics, occasionally they represent in the central and southern Eastern Desert. They are characterized by mafic to intermediate with subordinate felsic rocks. Older metavolcanic rocks have low-K tholeiitic, while younger metavolcanics rocks contain low- to medium-K calc-alkaline accompanied with subduction-related processes (back-arc basins and island arcs) [1]. Otherwise, the third type includes

Hhamdiawaad@gmail.com

Dokhan volcanics and occur mainly in the northeastern desert and southern Sinai [2, 3] stated that the Hammamate sediments are younger than Dokhan volcanic, while other authors mentioned that the Hammamate sediments were associated with eruption of the Dokhan volcanic as reported by [4]. According to Rb-Sr ages; Dokhan volcanics have 610560 Ma, 600-585 Ma for the Hammamate sediments, and younger granites have 610-550 Ma [5]. Dokhan volcanics recognize varicolored and thick sequence of lava flows with their pyroclastics and represented by basalt, basaltic andesite, andesite, rhyolite, rhyodacite and dacite related to their mineral composition (Basta et al., 1980; Stern, Gottfried 1986). Numerous workers have been studied area along Qena-Safaga road [6-12]. The examined rock units are represented by Island Arc/back-arc assemblage (Oceanic crust terrain), late to post orogenic (Continental crust terrain) [13].

32

33

35

28

26

24

22

Mediterranean S

\ %

► Cairo! , W

Suezf Smai \ е

О

w L

\

Study area

Nasser Lake

0 1«0 200

1 - ■-1 Kill

\

Quseir

\

&

Ц

\

\

Xll

AJ

Figure 1. Image shows the location map of the study area Рисунок 1. На рисунке показано местоположение изучаемой области

Materials and methods

Elements were determined using ICP-MS technique, after digestion of the fused beads with HF + HNO3. Pure solution external standers were used for calibration. Elements were determined by ELAN-DRC-6100 ICP-MS at the central Laboratory of Russian Geological Institute. Also, the major oxides and some trace elements were measured by X-ray Fluorescence analysis (XRF) in (Institute of Biology, Southern Federal University). Thin sections were investigated under microscope and the modal analyses have been calculated at Faculty of Sciences, Al-Azhar University.

Geological seating

It represents about 6% of exposed rock units and restricted in the southeastern part of the mapped area (fig. 2), it is located along the asphaltic road of Qena-Saf-aga near of Safaga city. Andesite is recognized by imperial porphyry (fig. 3, a), medium to coarse-grained massive rock, reddish in color and highly jointed in NNE-SSW directions. It has high peaks, jointed with predominant trending NNE-SSW, casing the columnar like huge plugs. It is intruded directly by granitic porphyry at the asphal-tic road found in (fig. 3, b).

Petrographical studies

According to QAP classification diagram of volcanic rocks of [14], it has been andesite in composition (fig. 4, a). It occurs as fine to medium grained rocks of gray to black color. Andesite is composed essentially of plagioclase, hornblende and biotite, with few amounts of quartz and alkali felspar. Iron oxides are the accessory

minerals. Sometimes it is characterized by porphyritic texture (fig. 4, b). Plagioclase: It occurs as andesine composition (An30-A40), covering an area up to 59% of main rock constituents. It is represented by euhedral to subhedral crystals, up to 1.6 mm in length and 0.8 mm in width, often showing albite-Carlsbad twins (figs. 4, b, c) and zonation. Sometimes, it is partly altered to sericite. Quartz: It covers an area up to 11% of rock constituents, occurs as fine-grained anhedral subordinate crystals and distributed among other mineral constituents. Hornblende: It is represented by sub-hedral to anhedral crystals, covers an area ranging from 11% to 16% of mineral compositions of rock. It is green in color pleochroic from green (=X) to pale brown (=Y) and brown (=Z) (fig. 4, c), it is partly or completely altered to chlorite. Biotite: It occurs as flaky crystals, up to 0.4 mm in length and 0.2 mm in width. Biotite covers an area ranging from 10% to 14% ofrock compositions (fig. 4, b), sometimes, it is altered to chlorite. Alkali felspar: It occurs as fine to medium grained, up to 0.04 mm in length and 0.02 mm in width. It covers an area up to 3% of rock compositions (fig. 4, b), sometimes; it is represented by microcline and orthoclase crystals associated with other minerals of rock. Iron oxides: They are represented by deep black grains scattering over the rock mineral constituents and disseminated within the different minerals (fig. 4, b). They cover an area up to 3.6 % of the rock composition.

Geochemistry of the investigated andesitic rock

The results of the complete analyses of the major oxides, trace and rare earth elements of andesite samples are given in (table. 1).

ззШЕ

t,* GAaMimt .. JL

+-+ -г Т Г1- +4+ W-OE

S S

Legend

Sedlmtntf

A*desite

grl^Gabbrd

g; Vlkuli feldspar ^^Ciranwlinnfe

lirunn F • _

+++^Mojiyni;raHiiti Bfel Ibralite Schist

MelagabbfO

II 1 ! J A„

мш шш km

— RlMdS

— Шк«

— Addle (¡¡ь** • IlaAdihq

Figure 2. Geological map of Um Taghir area formed from integrated remotely sensed data processing and field observation Рисунок 2. Геологическая карта района Ум Тагир, сформирована на основе интегрированной обработки данных дистанционного зондирования и полевых наблюдений

Figure 3. Field photographs: a - showing andesite rock (D. V) directly is intruded by granitic porphyry (Gr. d) at asphaltic road; b - imperial porphyry of Andesite

Рисунок 3. Полевые фотографии: a — андезитовая порода (D. V), непосредственно прорванная гранитным порфиром (гр. d) у асфальтированной дороги; б — "императорский порфир" андезит

Basalt

Figure 4. Photomicrographs showing: a - modal composition of the investigated andesitic rocks on QAP diagram of Streckeisen classification (1976); b - euhedral phenocryst of plagioclase surrounded by fine grains of alkali felspar (Ak), quartz (Qz) and iron oxide (In) showing porphyritic texture; c - Plagioclase phenocryst (P) associated with hornblende (Hb)

Рисунок 4. Микрофотографии, показывающие: a - модальный состав исследованных андезитовых пород на диаграмме QAP по классификации Штрекейзен (1976); б - идиоморфный вкрапленник плагиоклаза, окруженный мелкими зернами щелочного полевого шпата (Ak), кварца (Qz) и оксида железа (In), показывающий порфировую структуру; в - вкрапленник плагиоклаза (P), в ассоциации с роговой обманкой (Hb)

Geochemical classification ofthe investigated andesitic rock

A lot of parameters are used here to classify and follow up the chemical affinity of the investigated rocks. According to the classification of Na2O + K2O versus SiO2 binary diagram of [15], the plots of analyzed andesite samples fall in andesite field (fig. 5, a). Therefore, to verify this classification binary plot of [16] using a portion of immobile elements SiO2 versus Zr/TiO2 have been used, all samples plotted in the field of andesite (fig. 5, b), as well as geochemical classification of andesitic rock is coinciding with petrographic classifications as shown in (fig. 4, a).

Magma type of the investigated rock unit The magma type of the studied rock unit is discussed on the base of the following proposed diagrams. The discrimination binary diagrams of K2O-SiO2 according to [17, 18] (fig. 5, c) shows the investigated andesite samples plotted in calk-alkaline nature. The calc-alkaline nature has been confirmed by Zr versus Y binary diagram (fig. 5, d) proposed by [19].

Tectonic setting of the investigated rock unit Immobile incompatible elements were plotting in tectonic discrimination diagrams to determine the tectonic setting of andesitic lava. According to Ti versus Zr binary diagram of [20], the studied andesite has been plotted in volcanic arc setting (fig. 5, e). On the TiO2-K2O-P2O5 ternary diagram (after [21] which can be used to distinguish between oceanic and continental basalts. All the analyzed andesite samples plot in continental field (fig. 5, f).

Trace and Rare earth elements ofthe studied rock Andesite samples on the N-MORB normalized spider diagram [22] (fig. 5, g) show enrichment in Ba, Sr, Rb, K2O and Zr in addition to depletion in the most HFSEs similar to the island arc calc-alkaline affinity. The distribution of the rare earth elements in andesite show slightly depletion of REE pattern (La to Lu), and significant little or no sign of Eu-anomaly as shown in chondrite-nor-malized REE diagrams of [23] (fig. 5, h).

Table 1. Major oxides, Trace and Rare Earth Elements (REE) of andesitic rock

Таблица 1. Основные оксиды, редкие и редкоземельные элементы (РЗЭ) андезитовой породы

Andesite

Major oxides Sample number

57a 61a 63a 57b 63b 63c

SiO2 62 61.6 61.4 61 61.2 63

Al2O3 15.2 14.7 14.78 16.1 16.0 15.5

Fe2O3 8.5 6.03 7.59 9.0 8.0 7.7

FeO 1.2 1.6 1.4 1.0 1.3 1.6

CaO 3.26 4.97 4.51 3.4 3.6 2.9

MgO 2.57 2.77 2.43 2.6 2.4 2.3

P2O5 0.23 0.33 0.35 0.2 0.3 0.4

TiO2 1.06 0.93 1.3 1.0 1.1 1.2

Na2O 3.4 3.6 3.1 3.5 3.4 3.7

K22O 1.88 1.54 1.41 1.7 1.8 1.4

L.O.I. 0.4 1.22 1.09 0.5 0.9 0.16

Av 99.7

Trace Elements

Cr 34 42 61 51 46 47

Ni 96.4 107 55.8 96.0 56 54

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Cu 87 90.3 44 85 87 91

Zn 92 88.3 122.2 95 121 118

Zr 145 154 132 142 137 141

Rb 19.2 18 18.45 20 19 18.4

Y 14.5 13.6 13.8 15 14 15.6

Ba 285 278 281 291 286 287

Pb 28.7 28.3 36.8 29 38 39

Sr 753 921.8 601.7 762 612 618

Ga 14 15 10 13 12 11

V 109.8 105 138.4 110 128 132

Nb 16 22 17 15 16 18

Co 45.8 54.7 69.3 47 64 61

U 0.77 0.55 0.63 0.8 0.7 0.6

Th 2.75 2.33 1.86 2.6 2.0 2.1

Rare Earth Elements (REE)

La 16.2 18 17.7 17 18 16

Ce 40 38.4 39.2 42 41 43

Pr 5 6 5.2 7 6 5

Nd 23 24.5 22.6 25 23 22

Sm 4.5 5 4.6 4.4 5.0 4.9

Eu 1.5 1.3 1.4 1.4 1.6 1.7

Gd 4.6 4.8 4.2 5.0 4.9 5.2

Tb 0.4 0.7 0 .5 0.5 0.8 0.9

Dy 3 3.2 2.9 2.5 3.1 3.2

Ho 0.8 0.4 0 .6 0.7 0.5 0.65

Er 1.5 1.7 1.4 1.5 1.6 1.8

Tm 0.3 0.4 0.2 0.3 0.4 0.35

Yb 1.6 1.8 1.4 1.5 1.7 1.54

Lu 0.1 0.4 0.2 0.3 0.2 0.18

XREE 102.5 106.6 101 109.1 108 106.4

Eu/Sm 0.33 0.26 0.3 0.31 0.32 0.34

Av(Eu/Sm) 0.31

W • Within-РГант

. Lavas

' MORB/'

V

Island Arc Lavas

IQ 20

100 Zr

40

0.001 0.01

0.1 1 Zr/TiO j-0.0001

300

200

N

100

d

/Transition

Calc-alkaline

«s-TTI....... Tholeiitie .. r .... 1 .... I

0 10 20 30 40 50 611 Y

K20

_si_i!_Si_я_v_n_a_a_a.

£fi fl£ С

=

я

сл

20 10

0.1

1 g

:

*

г -ц

100

Sr К Kb fin Nb Се P Zr Sm Ti Y Cr

I.в Pr tin Tb Hn Lm Lu

Cc Nd Km Gd Dy Er Vb

e

Figure 5. Binary diagrams showing: a - Classification of the studied andesite using total alkalis vs silica (TAS) diagram [15]; b - Chemical classification of the andesitic rock of the study area based on SiO2-Zr/TiO2 [16]; c - SiO2-KO2 diagram with fields after [17, 18] distinguishing the different melt series for andesite; d - Zr vs Y diagram proposed for the studied andesite after [19]; e - Plots the investigated andesite on Ti-Zr diagram of [20]; f - TiO2-K2O-P2O5 ternary diagram for andesitic rock after [21]; g - MORB-normalizing diagram of investigated andesitic rock [22]; h - Chondrite-normalized REE diagram [23] of investigated andesitic rock

Рисунок 5. Бинарные диаграммы: a - классификация изученного андезита по диаграмме общего содержания щелочей и кремнезема (TAS) [15]; б - химическая классификация андезитовых пород района исследований на основе SiO2-Zr/TiO2 [16]; в - SiO2-KO2 диаграмма с полями по [17,18], выделяющими разные серии расплавов для андезита; г - Zr vs Y - диаграмма, предложенная для исследуемого андезита по [19]; д - положение исследуемого андезита на диаграмме Ti-Zr [20]; е - TiO2-K2O-P2O5 тройная диаграмма для андезитовой породы по [21]; ж - диаграмма MORB-нормализации исследуемой андезитовой породы [22]; з - хондрит-нормированная диаграмма REE [23] исследуемой андезитовой породы

Conclusion

Dokhan volcanics are restricted in the Central Eastern Desert of Egypt on the Qena-Safaga road. The Qena-Safaga shear zone one of the most important structural occurrences in Central Eastern Desert of Egypt. Andesitic rock belongs to Neoproterozoic rocks that related to the Arabian Nubian Shield (ANS). According to petrographical studies Dokhan volcanics are represented by andesite, it consists of plagioclase, quartz, alkali feldspar and hornblende in addition to iron oxides.

Geochemically, the investigated andesitic rock has calc-alkaline affinity, as well as andesite has been erupted in volcanic arc setting. On the N-MORB normalized spider diagram, they show enrichment in Ba, Sr, Rb, K, Nb and Ce in addition to depletion in most HFSEs similar to the island arc calc-alkaline series. The distribution of the rare earth elements in andesite show slightly depletion of REE pattern (La to Lu), and significant little or no sign of Eu-anomaly.

REFERENCES

1. Stern R. J. 1981, Pedogenesis and tectonic setting of Late Precambrian ensimatic volcanic rocks, Central Eastern Desert of Egypt. Precambrian Res., vol. 16, no. 3, pp. 195-230. https://doi.org/10.1016/0301-9268(81)90013-9

2. El-Sayed M. M., Obeid M. A., Furnes H., Moghazi A. M. 2004, Late Neoproterozoic volcanism in the Southern Eastern Desert, Egypt: petrological, structural and geochemical constraints on the tectonic-magmatic evolution of the Allaqi Dokhan volcanic suite. Neues Jahrbuch fur Mineralogie. Abhandlungen, vol. 180, no. 3, pp. 261-286.

3. El-Shazly E. M. 1977, The geology of the Egyptian region. In: The ocean basins and margins (eds Nairn A. E. M., Kanes W. H., Stehli F. G.). N. Y.; London: Plenum Press, vol. 4A, pp. 379-444.

4. Ries A. C., Shackleton R. M., Graham R. H., Fitches W. R. 1983, Pan-African structures, ophiolites and mélange in the Eastern Desert of Egypt: a traverse at 26o N. Journal of the Geological Society, vol. 140, no. 1, pp. 75-95. https://doi.org/10.1144/gsjgs.140.1.0075

5. Willis K. M., Stern R. J., Clauer N. 1988, Age and geochemistry of Late Precambrian sediments of the Hammamat Series from the Northeastern Desert of Egypt. Precambrian Research, vol. 42, issues 1-2, pp. 173-187. https://doi.org/10.1016/0301-9268(88)90016-2

6. Hume W. F., Lyons H. G. 1935, Geology of Egypt: The Fundamental Precambrian Rocks of Egypt and the Sudan; Their Distribution, Age and Character. The Later Plutonic and Minor Intrusive Rocks, with a Special Chapter Dealing with Dynamical Geology (cataract Structure and Contact Metamor). Government Press.

7. Akaad M. K., El-Gaby S., Habib M. E. 1973, The Barud gneisses and the origin of grey granite. Bulletin of the Faculty of Science. Assiut University, vol. 2, pp. 55-69.

8. El-Gaby S., List F. K., Tehrani R. 1988, Geology, evolution and metallogenesis of the pan-African belt in Egypt. In: The pan-African belt of Northeast Africa and adjacent areas: tectonic evolution and economic aspects of a Late Proterozoic Orogen. Wiesbaden: Viewing and Sohn., pp. 17-68.

9. Fowler A.-R., Ali K. G., Omar S. M., Eliwa H. A. 2006, The significance of gneissic rocks and synmagmatic extensional ductile shear zones of the Barud area for the tectonics of the North Eastern Desert, Egypt. Journal of African Earth Sciences, vol. 46, issue 3, pp. 201-220. https://doi.org/10.1016/jjafrearsci.2006.04.011

10. Hassan S. M., Ramadan T. M. 2015, Mapping of the late Neoproterozoic Basement rocks and detection of the gold-bearing alteration zones at Abu Marawat-Semna area, Eastern Desert, Egypt using remote sensing data. Arabian Journal of Geosciences, vol. 8, no. 7, pp. 4641-4656. https://doi.org/10.1007/s12517-014-1562-0

11. El-Bialy M. Z., Omar M. M. 2015, Spatial association of Neoproterozoic continental arc I-type and post-collision A-type granitoids in the Arabian-Nubian Shield: the Wadi Al-Baroud older and younger granites, North Eastern Desert, Egypt. Journal of African Earth Sciences, vol. 103, pp. 1-29.

12. Awad H. A. M., Zakaly H. M. H., Nastavkin A. V., El-Taher A. 2020, Radioactive content and radiological implication in granitic rocks by geochemical data and radiophysical factors, Central Eastern Desert, Egypt. International Journal of Environmental Analytical Chemistry, pp. 1-14. https://doi.org/10.1080/03067319.2020.1830987

13. Johnson W. J. 2011, System and method for anonymous location based services. Google Patents, Nov. 15.

14. Streckeisen A. 1974, Classification and nomenclature of plutonic rocks. Geologische Rundschau, vol. 63, issue 2, pp. 773-786. https://doi. org/10.1007/BF01820841

15. Cox K. G., Bell J. D., Pankhurst R. J. 1979, The Interpretation of Igneous Rocks. London: George Allen & Unwin, 450 p.

16. Winchester J. A., Floyd P. A. 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, vol. 20, pp. 325-343. https://doi.org/10.1016/0009-2541(77)90057-2

17. Le Maitre R. W. 1989, A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd Edition. Blackwell Science Inc, 206 p.

18. Rickwood P. C. 1989, Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, vol. 22, issue 4, pp. 247-263. https://doi.org/10.1016/0024-4937(89)90028-5

19. Barrett T. J., MacLean W. H. 1999, Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. Reviews in economic geology, vol. 8, pp. 101-131.

20. Pearce J. A. 1980, Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites. Proceedings of the International Ophiolite Symposium, Cyprus, 1979, pp. 261-272.

21. Pearce T. H., Gorman B. E., Birkett T. C. 1975, The TO-K.O-P.p,. diagram: a method of discriminating between oceanic and non-oceanic basalts. Earth and Planetary Science Letters, vol. 24, issue 3, pp. 419-426. https://doi.org/10.1016/0012-821X(75)90149-1

22. White W. M. 1985, Sources of oceanic basalts: Radiogenic isotopic evidence. Geology, vol. 13, issue 2, pp. 115-118.

23. Boynton W. V. 1984, Cosmochemistry of the rare earth elements: meteorite studies. In: Developments in geochemistry. Elsevier, vol. 2, chapter 3, pp. 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

The article was received on March 31, 2021

УДК 25.00.04 https://doi.org/10.21440/2307-2091-2021-2-7-15

Геологическое и тектоническое положение андезитов в Центрально-Восточной пустыне, Египет

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Хамди Ахмед Мохамед АВАД1,2* Ибрагим Абу Эль-Лейл АЛИ2 Алексей Валерьевич НАСТАВКИН1 Абделлах Садек ТОЛБА2 Мостафа Камель АБДЕЛЬ ГАНИ2 Мусаб Авад Ахмед ХАССАН3 Мухамед Махмуд Фатхи ГХОНЕЙМ4 Ахмед Эль Саид Абдель ГАВАД4

1 Южный федеральный университет, Ростов-на-Дону, Россия 2Университет аль-Азхар, Каир, Египет

3Российский университет дружбы народов (РУДН), Москва, Россия "Агентство по атомной энергетике, Каир, Египет

Аннотация

Цель. Настоящее исследование направлено на выявление геологических особенностей, геохимических характеристик и тектонических условий исследуемой породы с помощью полевых наблюдений и геохимического анализа.

Методы исследования включают в себя как полевые (сбор образцов и составление новой геологической карты), так и лабораторные работы (подготовка тонких разрезов для петрографических исследований с помощью поляризационного микроскопа), атомную абсорбцию, рентгеновский флуоресцентный анализ (ХРЕ) Геологическое и тектоническое положение андезитов и масс-спектрометрия с индуктивно связанной плазмой (1СР-М8) в лаборатории Геологического института РАН.

Результат. Исследуемая андезитовая порода относится к вулкану Дохан, который расположен в Центрально-Восточной пустыне Египта, по дороге Кения-Сафага. Он считается одной из важнейших зон сдвига в Восточной пустыне, которая включает в себя отличительные породы и экономические месторождения полезных ископаемых. Исследуемая порода относится к позднему посттектоническому магматизму восточноафриканской орогении (ЕАО). Вулкан Дохан сложен андезитом по петрографическим исследованиям. Он состоит из плагиоклаза, кварца в дополнение к мафическим минералам. Геохимически исследованные образцы андезита имеют известково-щелочную природу.

Заключение. Тектонически, андезит попадает в поля островодужных и континентальных базальтов. Они обогащены Ва, 8г, М>, К2О и 7г с заметным обеднением большинства ИБ8Е, таких как известково-щелочные островодужные серии.

Ключевые слова: тектоническая обстановка, андезит, Восточная пустыня, Египет.

ЛИТЕРАТУРА

1. Stern R. J. 1981, Petrogenesis and tectonic setting of Late Precambrian ensimatic volcanic rocks, Central Eastern Desert of Egypt // Precambrian Research. 1981. Vol. 16. No. 3. P. 195-230. https://doi.org/10.1016/0301-9268(81)90013-9

2. El-Sayed M. M., Obeid M. A., Furnes H., Moghazi A. M. Late Neoproterozoic volcanism in the Southern Eastern Desert, Egypt: petrological, structural and geochemical constraints on the tectonic-magmatic evolution of the Allaqi Dokhan volcanic suite // Neues Jahrbuch für Mineralogie. Abhandlungen. 2004. Vol. 180. No. 3. P. 261-286.

3. El-Shazly E. M. The geology of the Egyptian region / The ocean basins and margins (eds Nairn A. E. M., Kanes W. H., Stehli F. G.). N. Y.; London: Plenum Press, 1977. Vol. 4A. P. 379-444.

4. Ries A. C., Shackleton R. M., Graham R. H., Fitches W. R. Pan-African structures, ophiolites and mélange in the Eastern Desert of Egypt: a traverse at 26o N // Journal of the Geological Society. 1983. Vol. 140. No. 1. P. 75-95. https://doi.org/10.1144/gsjgs.140.1.0075

5. Willis K. M., Stern R. J., Clauer N. Age and geochemistry of Late Precambrian sediments of the Hammamat Series from the Northeastern Desert of Egypt // Precambrian Research. 1988. Vol. 42. Issues 1-2. P. 173-187. https://doi.org/10.1016/0301-9268(88)90016-2

6. Hume W. F., Lyons H. G. Geology of Egypt: The Fundamental Precambrian Rocks of Egypt and the Sudan; Their Distribution, Age and Character. The Later Plutonic and Minor Intrusive Rocks, with a Special Chapter Dealing with Dynamical Geology (cataract Structure and Contact Metamor). Government Press.1935.

7. Akaad M. K., El-Gaby S., Habib M. E. The Barud gneisses and the origin of grey granite // Bulletin of the Faculty of Science. Assiut University. 1973. Vol. 2. P. 55-69.

8. El-Gaby S., List F. K., Tehrani R. Geology, evolution and metallogenesis of the pan-African belt in Egypt / The pan-African belt of Northeast Africa and adjacent areas: tectonic evolution and economic aspects of a Late Proterozoic Orogen. Wiesbaden: Viewing and Sohn., 1988. P. 17-68.

9. Fowler A.-R., Ali K. G., Omar S. M., Eliwa H. A. The significance of gneissic rocks and synmagmatic extensional ductile shear zones of the Barud area for the tectonics of the North Eastern Desert, Egypt // Journal of African Earth Sciences. 2006. Vol. 46. Issue 3. P. 201-220. https://doi.org/10.1016/jjafrearsci.2006.04.011

Shamdiawaad@gmail.com

10. Hassan S. M., Ramadan T. M. Mapping of the late Neoproterozoic Basement rocks and detection of the gold-bearing alteration zones at Abu Marawat-Semna area, Eastern Desert, Egypt using remote sensing data // Arabian Journal of Geosciences. 2015. Vol. 8. No. 7. P. 4641-4656. https://doi.org/10.1007/s12517-014-1562-0

11. El-Bialy M. Z., Omar M. M. Spatial association of Neoproterozoic continental arc I-type and post-collision A-type granitoids in the Arabian-Nubian Shield: the Wadi Al-Baroud older and younger granites, North Eastern Desert, Egypt // Journal of African Earth Sciences. 2015. Vol. 103. P. 1-29.

12. Awad H. A. M., Zakaly H. M. H., Nastavkin A. V., El-Taher A. Radioactive content and radiological implication in granitic rocks by geochemical data and radiophysical factors, Central Eastern Desert, Egypt // International Journal of Environmental Analytical Chemistry. 2020. P. 1-14. https:// doi.org/10.1080/03067319.2020.1830987

13. Johnson W. J. System and method for anonymous location based services. Google Patents. 2011. Nov. 15.

14. Streckeisen A. Classification and nomenclature of plutonic rocks // Geologische Rundschau. 1974. Vol. 63. Issue 2. P. 773-786. https://doi. org/10.1007/BF01820841

15. Cox K. G., Bell J. D., Pankhurst R. J. The Interpretation of Igneous Rocks. London: George Allen & Unwin, 1979. 450 p.

16. Winchester J. A., Floyd P. A. Geochemical discrimination of different magma series and their differentiation products using immobile elements // Chemical Geology. 1977. Vol. 20. P. 325-343. https://doi.org/10.1016/0009-2541(77)90057-2

17. Le Maitre R. W. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd Edition. Blackwell Science Inc, 1989. 206 p.

18. Rickwood P. C. Boundary lines within petrologic diagrams which use oxides of major and minor elements // Lithos. 1989. Vol. 22. Issue 4. P. 247-263. https://doi.org/10.1016/0024-4937(89)90028-5

19. Barrett T. J., MacLean W. H. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems // Reviews in economic geology. 1999. Vol. 8. P. 101-131.

20. Pearce J. A. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites. Proc. of the Intern. Ophiolite Symp., Cyprus. 1979. P. 261-272.

21. Pearce T. H., Gorman B. E., Birkett T. C. The TiO2-K2O-P2O5 diagram: a method of discriminating between oceanic and non-oceanic basalts // Earth and Planetary Science Letters. 1975. Vol. 24. Issue 3. P. 419-426. https://doi.org/10.1016/0012-821X(75)90149-1

22. White W. M. Sources of oceanic basalts: Radiogenic isotopic evidence // Geology. 1985. Vol. 13. Issue 2. P. 115-118.

23. Boynton W. V. 1984, Cosmochemistry of the rare earth elements: meteorite studies / Developments in geochemistry. Elsevier, vol. 2. Chapter 3. P. 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

Статья поступила в редакцию 31 марта 2021 года

i Надоели баннеры? Вы всегда можете отключить рекламу.