Научная статья на тему 'Generation of artificial transverse circulation in an open channel flow by submerged vanes'

Generation of artificial transverse circulation in an open channel flow by submerged vanes Текст научной статьи по специальности «Строительство и архитектура»

CC BY
94
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Вестник МГСУ
ВАК
RSCI
Ключевые слова
ВОДОЗАБОРНЫЕ ГИДРОУЗЛЫ / РУСЛОВЫЕ НАНОСЫ / ИСКУССТВЕННАЯ ПОПЕРЕЧНАЯ ЦИРКУЛЯЦИЯ / КОСОНАПРАВЛЕННЫЙ ДОННЫЙ ЦИРКУЛЯЦИОННЫЙ ПОРОГ / РЕГРЕССИОННЫЙ АНАЛИЗ / WATER INTAKE UNITS / CHANNEL SEDIMENTS / ARTIFICIAL TRANSVERSE CIRCULATION / SUBMERGED VANE / REGRESSION ANALYSIS

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Klovsky Alexey V., Kozlov Dmitry V.

Introduction. In this article, we describe a method for sediment control in damless water intake hydraulic units consisting in artificial transverse circulation (ATC) generated by redistributing specific water flow rates in the cross-section of the supply channel. One of the simplest and most effective anti-sediment elements working according to this principle is the submerged vane (SV). The intensity of the ATC formed in the flow depends on the flow regime and the planned-geometric characteristics of the vanes. Available recommendations on the selection of the rational characteristics of SV under the conditions of river damless water intake appear to be contradictory, thus requiring clarification. This study is aimed at examining the interaction between SV and a model flow without water trapping under various planned-geometric characteristics of the vane and experimental hydraulic regimes of its work using a physical model of the errosion-resistant channel. In addition, we set out to assess the effect of essential parameters on the intensity of the ATC generated in the flow. Materials and methods. This research was based on physical modelling hydraulic studies and theoretical calculations. Five hydraulic modes of vane operation with different planned-geometric characteristics were studied using a physical model of the erosion-resistant channel. Multiple regression analysis of the obtained experimental data was carried out. Results. The results of laboratory hydraulic studies on the SV operating conditions are presented. Experimental dependencies characterising the intensity of the ATC generated in the flow are plotted. A multiple regression equation is derived for the amount of the data obtained. Conclusions. It is established that the relative height of the vane and its angle to the side of the flume (coastline) has a significant effect on the intensity of the generated ATC. It is experimentally confirmed for the first time that SV shows little efficiency in high water horizons in terms of in-flow ATC generation.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Возбуждение искусственной поперечной циркуляции в открытом русле косонаправленными донными циркуляционными порогами

Введение. Рассмотрен способ борьбы с наносами на бесплотинных водозаборных гидроузлах в виде искусственной поперечной циркуляции (ИПЦ), возбуждаемой в потоке перераспределением удельных расходов воды по ширине подводящего русла. Одним из наиболее простых и эффективных наносозащитных элементов, работающих по данному принципу, является косонаправленный донный циркуляционный порог (КДЦП). Интенсивность формируемой в потоке ИПЦ зависит от режима водотока и планово-геометрических характеристик донной преграды. Имеющиеся рекомендации по выбору рациональных характеристик КДЦП для условий бесплотинного забора воды из рек носят противоречивый характер и требуют уточнения. Цель исследования изучение характера взаимодействия КДЦП с модельным потоком без водоотделения при различных планово-геометрических характеристиках порога и экспериментальных гидравлических режимах его работы на физической модели с неразмываемым руслом, а также оценка степени влияния определяющих параметров на интенсивность возбуждаемой в потоке ИПЦ. Материалы и методы. Использованы физические модельные гидравлические исследования, теоретические расчеты. Изучены пять гидравлических режимов работы донных преград с различными планово-геометрическими характеристиками на физической модели с неразмываемым руслом. Проведен множественный регрессионный анализ полученных экспериментальных данных. Результаты. Представлены результаты лабораторных гидравлических исследований условий работы КДЦП. Разработаны экспериментальные графические зависимости, характеризующие интенсивность возбуждаемой в потоке ИПЦ. Составлено уравнение множественной регрессии в объеме полученных материалов. Выводы. Установлено определяющее влияние на интенсивность возбуждаемой ИПЦ относительной высоты порога и угла установки преграды к борту лотка (береговой линии). Экспериментально доказана неэффективность работы КДЦП в условиях высоких горизонтов воды с точки зрения возбуждения в потоке ИПЦ, что не нашло отражения в работах предшествующих исследователей.

Текст научной работы на тему «Generation of artificial transverse circulation in an open channel flow by submerged vanes»

ГИДРАВЛИКА.ГЕОТЕХНИКА. ГИДРОТЕХНИЧЕСКОЕ СТРОИТЕЛЬСТВО

УДК 627 DOI: 10.22227/1997-0935.2019.9.1158-1166

Generation of artificial transverse circulation in an open channel

flow by submerged vanes

Alexey V. Klovsky1, Dmitry V. Kozlov2

1 Russian State Agrarian University — Moscow Timiryazev Agricultural Academy (RSAU—MTAA named after K.A. Timiryazev); Moscow, Russian Federation; 2 Moscow State University of Civil Engineering (National Research University) (MGSU);

Moscow, Russian Federation

ABSTRACT

Introduction. In this article, we describe a method for sediment control in damless water intake hydraulic units consisting in artificial transverse circulation (ATC) generated by redistributing specific water flow rates in the cross-section of the supply channel. One of the simplest and most effective anti-sediment elements working according to this principle is the submerged vane (SV). The intensity of the ATC formed in the flow depends on the flow regime and the planned-geometric characteristics of the vanes. Available recommendations on the selection of the rational characteristics of SV under the conditions of river damless water intake appear to be contradictory, thus requiring clarification. This study is aimed at examining the interaction between SV and a model flow without water trapping under various planned-geometric characteristics of the vane and experimental hydraulic regimes of its work using a physical model of the errosion-resistant channel. In addition, we set out to assess the effect of essential parameters on the intensity of the ATC generated in the flow.

Materials and methods. This research was based on physical modelling hydraulic studies and theoretical calculations. Five hydraulic modes of vane operation with different planned-geometric characteristics were studied using a physical model of the erosion-resistant channel. Multiple regression analysis of the obtained experimental data was carried out. Results. The results of laboratory hydraulic studies on the SV operating conditions are presented. Experimental dependents (M cies characterising the intensity of the ATC generated in the flow are plotted. A multiple regression equation is derived for en en the amount of the data obtained.

a 0) Conclusions. It is established that the relative height of the vane and its angle to the side of the flume (coastline) has a

> in significant effect on the intensity of the generated ATC. It is experimentally confirmed for the first time that SV shows little

№ Ф

Ф ф

О ё —'

О

О u

cd <f

s =

8 «

о

о

efficiency in high water horizons in terms of in-flow ATC generation.

c m

CO ^

(U KEYWORDS: water intake units, channel sediments, artificial transverse circulation, submerged vane, regression analysis

q JE FOR CITATION: Klovsky A.V., Kozlov D.V. Generation of artificial transverse circulation in an open channel flow by

submerged vanes. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2019; 14:9:1158-1166. DOI: 10.22227/1997-0935.2019.9.1158-1166 (rus.).

Возбуждение искусственной поперечной циркуляции в открытом русле косонаправленными донными циркуляционными порогами

от ^ _

^ -й А.В. Кловский1, Д.В. Козлов2

1 Российский государственный аграрный университет — МСХА имени К.А. Тимирязева

(РГАУ—МСХА им. К.А. Тимирязева); г. Москва, Россия;

го 2 Национальный исследовательский Московский государственный строительный университет

о Е

Ё5° -

О) ^

(НИУ МГСУ); г. Москва, Россия

от от

АННОТАЦИЯ

Введение. Рассмотрен способ борьбы с наносами на бесплотинных водозаборных гидроузлах в виде искусственной поперечной циркуляции (ИПЦ), возбуждаемой в потоке перераспределением удельных расходов воды по ширине ^ Э подводящего русла. Одним из наиболее простых и эффективных наносозащитных элементов, работающих по дан-

1_ Ю ному принципу, является косонаправленный донный циркуляционный порог (КДЦП). Интенсивность формируемой

^ в потоке ИПЦ зависит от режима водотока и планово-геометрических характеристик донной преграды. Имеющиеся

^ рекомендации по выбору рациональных характеристик КДЦП для условий бесплотинного забора воды из рек носят

X с противоречивый характер и требуют уточнения. Цель исследования — изучение характера взаимодействия КДЦП с

О м модельным потоком без водоотделения при различных планово-геометрических характеристиках порога и экспери-

ва >

© А.В. Кловский, Д.В. Козлов, 2019 Распространяется на основании Creative Commons Attribution Non-Commercial (CC BY-NC)

ментальных гидравлических режимах его работы на физической модели с неразмываемым руслом, а также оценка степени влияния определяющих параметров на интенсивность возбуждаемой в потоке ИПЦ.

Материалы и методы. Использованы физические модельные гидравлические исследования, теоретические расчеты. Изучены пять гидравлических режимов работы донных преград с различными планово-геометрическими характеристиками на физической модели с неразмываемым руслом. Проведен множественный регрессионный анализ полученных экспериментальных данных.

Результаты. Представлены результаты лабораторных гидравлических исследований условий работы КДЦП. Разработаны экспериментальные графические зависимости, характеризующие интенсивность возбуждаемой в потоке ИПЦ. Составлено уравнение множественной регрессии в объеме полученных материалов.

Выводы. Установлено определяющее влияние на интенсивность возбуждаемой ИПЦ относительной высоты порога и угла установки преграды к борту лотка (береговой линии). Экспериментально доказана неэффективность работы КДЦП в условиях высоких горизонтов воды с точки зрения возбуждения в потоке ИПЦ, что не нашло отражения в работах предшествующих исследователей.

КЛЮЧЕВЫЕ СЛОВА: водозаборные гидроузлы, русловые наносы, искусственная поперечная циркуляция, косо-направленный донный циркуляционный порог, регрессионный анализ

ДЛЯ ЦИТИРОВАНИЯ: Кловский А.В., Козлов Д.В. Generation of artificial transverse circulation in an open channel flow by submerged vanes // Вестник МГСУ. 2019. Т. 14. Вып. 9. С. 1158-1166. DOI: 10.22227/1997-0935.2019.9.1158-1166

INTRODUCTION

One of the most difficult problems in ensuring a guaranteed supply of river water of the required quality to irrigation and drainage systems consists in the struggle against the sediment capture by water intake hydraulic units, primarily bottom ones [1-7]. In order to solve this problem at a design stage, during operation or reconstruction, various anti-sediment systems or their individual elements are included in the composition of the layout schemes for water intake hydraulic units. The experience gained in operating low-pressure water intakes on rivers of the mountain foothill zone transporting a large amount of sediment has shown the effectiveness of applying protective systems and elements redistributing the specific water duty along the cross-section of the supply channel due to artificial transverse circulation (ATC) generated in the water flow [8, 9].

In the domestic hydraulic engineering science, theoretical foundations of ATC generating in an open channel were laid by R.Zh. Zhulaev, who, on the basis of a set of theoretical and experimental studies, showed that any displacement of the dynamic axis of the flow, including one due to the redistribution of specific discharge along the cross-section of the supply channel, leads to its stratification and, hence, to the appearance of transverse movement of water masses in it (transverse flow circulation) [10, 11].

A critical analysis of available publications showed that the submerged vane (SV) is one of the most effective and simplest in both constructive and operational terms of a anti-sediment element [12, 13]. This element

received its name in the works of foreign researchers [14-18]. Such a submerged barrier located at a certain P angle to the coastline generates artificial transverse circulation in the flow by providing an effective redistribution of specific water flow rates along the cross-section of the supply channel. In the area of the protected water intake structure, straight after the specific consumption curve, the sediment curve is also transformed in the direction necessary for practice. The criterion for assessing the intensity of the generated ATC in the supply channel with a width of B is presented as the relative value for the displacement of the flow dynamic axis, I = f/B, where f is the difference in the position of the centres of mass of the unit discharge curves in the cross-section and in the area outside the influence zone of the vane.

G.V. Sobolin [12] found that the ATC intensity is affected by the p vane angle to the coastline, P'= P/H0 relative vane height (where P is the average vane height, H0 is the water depth of the domestic channel), i slope of the upper edge of the vane from its base (root) near the shore to the end of the vane, as well as the n = bJB= /sinp/B flow restriction (where l is the geometric length of the vane) and V0 average flow rate, when approaching the water intake.

In accordance to the recommendations of G.V. Sobolin and I.K. Rudakov, submerged vanes should be straightforward, mounted at p = 15...30° angle to the flow, with the 2B length, restricting the channel by 60...80 % (n = 0.6...0.8) and with i = 0.005...0.20 longitudinal slope of the upper edge of the vanes to the river bed. It should be noted that these recommendations are more true for the vane operation in the composition of

< 00

<D e t о

i H k l s, G Г СС

У

o n

l D y 1

J со

ei I

n

DD 3 o

=¡ ( о? n

E С/3 ; n

n 2

n g

D 6

Г œ t ( I?

CD ) ff

f

J

" £ s S

s у с о <D *

00 00

M M

о о

л -A

(О (О

№ О г г О О N N

оТсп К (V U 3 > (Л С И

to *

il

-s ф ф

dam water intake facilities under conditions of high water intake coefficients (a > 0.7). For the operating conditions of damless water intake facilities at small values of a coefficient, the installation of vanes of such a design is not always justified, which was noted by G.V. Sobolin [12, 13].

According to V.S. Bondarenko, under the conditions of damless water intake at a < 0.2, it is advisable to increase the p vane angle up to 40...50°, while the n restriction value should be determined for specific conditions of water intake using the recommendations given by A.S. Obrazovskiy [19].

Taking into account the existing contradictions in the recommendations on the design of SV geometric features regarding the conditions of damless water separation, in this study, we undertook a series of laboratory hydraulic studies under the operating conditions for the submerged vanes of this design.

MATERIALS AND METHODS

In this work, we studied SV operating under the conditions of an unmodified flow pattern. A particular focus was the intensity of the ATC generated in the flow for various planned-geometrical characteristics of the vanes and the hydraulic modes of its operation.

Our research aim was two-fold:

• a study of the interaction between a SV and a model flow without lateral intakes for various planned, geometric characteristics of the vanes and hydraulic modes of its operation using a physical fixed-bed model;

• an assessment of the effect of the P' relative vane height, the n channel constriction, the i slope of the upper edge of the vane, as well as the V relative value of

the average flow velocity (V = V0i/V0 max, where V0i is the average flow rate for the corresponding experimental mode, V is the maximum value of the average

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

' 0,max °

flow velocity under experimental conditions) on the intensity of vane-generated ATC.

To this end, the following objectives were addressed:

1) a methodology was developed for conducting laboratory hydraulic studies for the operating conditions of SV on a physical fixed-bed model at a = 0;

2) an experimental installation was designed and built; laboratory hydraulic studies were carried out across a wide range of changes in the boundary conditions of the submerged vanes;

3) experimental data were obtained, a generalisation and multiple regression analysis of which provided for the assessment of the effect of the considered parameters on the ATC generating conditions by vanes of various design types, as well as for the formulation of the main conclusions.

The studies were performed using an experimental installation described in (Fig. 1) using the facilities of the Hydraulics Laboratory of Culverts at the Department of Hydrotechnical Structures at the Russian State Agrarian University — Moscow Timiryazev Agricultural Academy.

Considering the need to compare the results with experimental data of other authors, as well as the possibilities of the experimental installation and the available data on the effective range of the relative height of the vanes (P' = 0.25...0.5) [2, 13, 19], five operating modes were studied for each type of vane (Table 1).

Vanes were manufactured of organic glass with a high degree of accuracy with their planned and ge-

O ё

о

о _

g<

о со

™ О

о

го

о

о

о

ю со

СП

о

I

СП СП

ю

* ^ Fig. 1. Schematic view of the experimental installation: 1 — drain tank; 2 — diffusion grid; 3 — transversal scale; 4 — measur-

I c ing spillway; 5 — diffusion device; 6 — hydraulic flume; 7 — moving transversal scale; 8 — miniflowmeter; 9 — submerged h ^

O tn vane; 10 — vane installation area; 11 — louvre damper; 12 — downshaft; 13 — dynamic axis of the flow before generation of (0 !> the ATC; 14 — dynamic axis of the flow after generation of the ATC (in meters)

Table 1. Experimental hydraulic threshold (vane) operation modes

Experimental mode P, m ^ m P'= P/H0 V0, m/s V'= VV 0 0,max Q, m3/s ■ 10-3

1 0.06 0.12 0.5 0.25 0.833 30

2 (P1 = 0.07, P2 = 0.05) 0.15 0.4 0.20 0.667 30

3 0.15 0.4 0.25 0.833 37.5

4 0.15 0.4 0.30 (V0 ) 1 45

5 0.15 0.3 0.25 0.833 50

ometric characteristics determined considering the intended volume of research. The model studied the hydraulic operating conditions of the SV located at P = 15...75° angles to the side of the flume (P increment step is 15°). The n = 0.2...0.8 range of flow restriction was applied (n increment step is 0.15), reflected in n = 0.2 and n = 0.35 values regarding the capabilities of the laboratory installation with P =15°. Under the experimental conditions, the i slope of the upper edge of the vane varied from 0.0125 (n = 0.8; P = 30°) to 0.0966 (n = 0.2; P = 75°). The P average height of the vane comprised 6 cm, while the P relative height of the vanes possessed values of 0.3; 0.4; 0.5.

To assess the intensity of the ATC generated in the flow, for each design case, a curve of specific discharge in the cross-section was constructed and the I = f/B relative displacement of the dynamic axis of the flow was determined. Plotting of the specific discharge curves was carried out for 11 verticals in the cross-section with a step of 10 cm across the width of the flume on the basis of flow velocities obtained by a miniflow-meter (for n = 0.35 and n = 0.65, at a distance of 35 and 65 cm from the bottom of the vane, respectively, an additional 12th measuring vertical was introduced). Depths at design points were measured using moving transversal scales.

RESULTS

Figure 2 presents dependences plotted using the results of laboratory experiments characterising the intensity of the transverse circulation generated in the flow by vanes of various structural types. An analysis and generalisation of the results of laboratory studies showed that both a decrease in the P angle and a decrease in the P' relative height of the vane lead to a decrease in the ATC intensity.

An important circumstance is the inefficiency of submerged vanes established through laboratory studies with the P = 15...60° installation angle in conditions of high water horizons from the point of view of the ATC formation in the flow. In the general case, for SV with P angles of the indicated range at values of P' < 0.35, the artificial transverse circulation of the flow changes

direction to opposite (towards the part of the channel blocked by the vane).

In order to identify the actual degree of influence for each of the essential parameters on the ATC generation conditions, a multiple regression analysis was applied.

For a reliable assessment of the degree of influence of the P' relative vane height, following parameters were required at the initial stages to exclude multicol-linear variables from the multiple regression equation: V relative value of the average flow velocity, n flow restriction, i slope of the upper edge of the vane and the P angle of its installation to the side of the flume. For this, a correlation matrix was compiled with the analysis resulted in the following:

1) the velocity mode of the main flow demonstrate no effect on the nature of the phenomena studied, since the correlation coefficient between the 1 and V values is equal to 0.006;

2) a weak correlation between 1 and i (-0.150 correlation coefficient) was noted and multicollinear-ity in pairs of i - n and i - P essential parameters was revealed; a close correlation is observed between the value of I and the P angle of the vane.

The multiple regression equation in coded factors takes on the following form:

= ßo + ßl*1 + ßA + ßX

(1)

where the xt independent variables are the relative height of the vane P', x2 is the n flow restriction and x3 is the p angle of installation of the vane to the side of the flume. The methodology for conducting multiple regression analysis is described in detail in [9].

For equation (1), the values of the P0 free term and the Pj, P2 and P3 coefficients before the independent variables are as follows:

1 = 0.0375 + 0.0369xj + 0.009x2 + 0.0181x3. (2)

Statistical estimates (multiple correlation coefficient and determination coefficient is R = 0.8411 and R2 = 0.7075, respectively) demonstrated the high quality of the multiple regression equation. The calculated adjusted determination coefficient turned out to

< n

<D O t O

i H

G I cC

o </>

§ </>

y 1

J CD

^ I

n °

d 3 o

=! (

o §

& N § 2

n g

r 6 t (

CD )

Í a '

. DO ■ £

s □ s y

C 0

<D * 9090

M 2 O O a -A

<0 <0

X=f (п), Р' = 0.5 = const, V'= 0.833 = const

8. al

g.i о X га га

a, y

v) r:

- I

с

43

о >

.2

о

У'

с2 I с

0,14

0,12

0.1

0, OS

0,06 0.052

0,04 0,02 0

0.2

0.117 —р = 75°

0-104

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0.082 ^^- 0.089 -—*Os 0.094 Ov0.07î Р - 60°

0.069т -*~Р = 45°

rtfoiu. 0.053 -"1Î055 -*-р = зо°

0.037 0.033 0.041

0.35 0.5 0.65

Flow restriction, п— / sinp/5

0.8

X =f(n), Р' = 0,4 = const, V = 0.667 = const

№ О г г О О N N

оТсп К (V U 3 > (Л С И

to *

si

-s

<D ф

о £

о

о _

g<

о со

™ О

о

го

о

о

о

ю со оз

о ■

СП СП

ю

¡1 W

Г

О tn ф ф

со >

Й

ч

II

с о

g

о о

я Я

а. О

И S

•о Л

о > С

_га м

о >

ci О

С

См

о

0.09

0.08

0.07

0.06

0.05

0.04

0.03 0,021 0.02

0.01

О

-♦—р = 75°

0 0б6|

Р = 60° = 45°

0,059 \0.048

^^5^0,043

0.035 0,029 \ Ч 0.039 -*-р = зо°

irïf026 ____^ ^""5*025 -Ж-Р = 15°

0.022 0.007 0 ____

0004 0012

0,2

0,35

0.5

0.65

0.8

Flow restriction value, п= / siiip/Ъ1

b

X =/(«), Р' = 0.4 = const, V = 0.833 - const

5? Ч

Il

G rfi tu

E «Г

u 'î?

и S

S я

â.a s

>

-тэ я j» tu £ Й о С!

0.08

0.07

0.06

0.05

0.04

0.03

0.02 O.OK 0.01

0

0.0б>^ ^ 0.073

'"V/ij.oss 0.057^-v ч 0.0544

0.044 0.046

1 0.038 0.031

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

^^^Лхоззх^

t^r ¿S

0.022 СШ6* 0.014

0.2

0.35 0.5 0.65

Flow restriction, п= /sinJ3/5

0.8

р = 75^ Р = 60^ р = 45&

р = зо& Р= 15th

a

c

X =/(«), P' = 0.4 = const, V'= 1 = const

0.051

043

0.038

ß = 75° ß = 60° ß = 45° ß = 30° ß = 15°

Flow restriction, n= / sinßAS

X=f(«),P'= 0.3 = const, V'= 0.833 = const

0.04

g ^

y '5 S «

u-s

s £

S -0.01 g P, -0.013

0.2

0.35 0.5 0.65

Flow restriction, n= / sinß/5

ß = 75° ß = 60° ß = 45° ß = 30° ß= 15°

0.Î

Fig. 2. Experimental dependences of flow restriction on the relative displacement of the flow dynamic axis, X = fn): a — mode No. 1; b — mode No. 2; c — mode No. 3; d — mode No. 4; e — mode No. 5

be = 0.6992. The significance of the equation by the Fisher test comprises F = 85.4497 > 2.6903 (p < 0.05). The coefficients for all independent variables are found to be statistically significant (p < 0.05), and the relationship is direct. The most significant coefficients for the variables were xj and x3 (p < 0.0001). Therefore, the main influence on the intensity of the generated ATC is exerted by the P' relative height of the vane and the P angle of installation of the. Moreover, with increasing values of P' and P, the value of 1 also increases, indicating the formation of a more stable transverse circulation in the flow.

DISCUSSION AND CONCLUSIONS

1. Regardless of its planned and geometric characteristics, the submerged vanes installed in the flow permit the redistribution of specific discharge in the cross-section of the supply channel, which is a necessary and sufficient condition for the generation of ATC in the flow.

2. A decrease in the P angle of the vane leads to a decrease in the intensity of the ATC. An important circumstance is the inefficiency of vanes established during laboratory studies with the P = 15... 60° installa-

< n

<D e t o

i H k"

G 1 cC

0 CO § CO

1 D

y 1

J to

^ I

n °

cd 3 o

=s ( o&

o §

E w & N

§ 2 n g

r 6 t (

CD )

ii

i . ^ *

. DO

■ T

s □

s y c o

(D * 9090

M 2 O O a -A

<0 <0

d

e

tion angle under the conditions of high water horizons in terms of the ATC formation in the flow. In the most general case, for vanes with P angles from the indicated range, at values of P' < 0.35, the artificial transverse circulation of the flow changes direction to opposite (towards the part of the channel blocked by the vane).

3. The results of the performed multiple regression analysis indicate the actual absence of the influence of the average flow rate on the ATC generation conditions. The P' relative height of the vane and the P angle of

installation are of decisive importance: increased P' and P values result in an increased 1 value, which indicates the formation of a more stable transverse circulation in the flow.

Future research should address the development and study of effective sediment protective devices as part of water intakes on rivers with sharply varying levels, as well as the study of channel processes in the upper and lower pools of water intakes, which feature submerged vanes in their design.

REFERENCES

№ О

г г

О О

tv N

men

¡É (V U 3 > (Л

с и m *

ÏÎ -S

<D ф

О ё —' "t^ О

о U со <т

8 «

<л ю

о О

ю со

СП

о

I

СП СП

ю

с W

г

О (Ó Ф Ф СО >

1. Filonchikov A.V. Water intake structures. Frunze, Kyrgyzstan Publ., 1990; 371. (rus.).

2. Abidov M.M. Regulation of the sedimentary regime at the water intake on the mountain-foothill zones of rivers : thesis of candidate of technical sciences. Moscow, 2006; 199 (rus.).

3. Nakato T., Ogden F.L. Sediment control at water intakes along sand-bed rivers. Journal of Hydraulic Engineering. 1998; 124(6):589-596. DOI: 10.1061/ (asce)0733-9429(1998)124:6(589)

4. Bettes R. Sediment transport & alluvial resistance in rivers. R&D Technical Report W5i 609. 2008; 178.

5. Wilcock P.R., Pitlick J., Cui Y. Sediment transport primer estimating bed-material transport in gravel-bed rivers. USDA Forest Service RMRS-GTR-226. 2009; 78.

6. Alomari N.K., Yusuf B., Ali T.A.M., Ghaza-li A.H. Flow in a branching open channel: a review.

Pertanika Journal of Scholarly Research Reviews. 2016; 2(2):40-56.

7. Youguo M., Suzhen Z. Sediment control for irrigation intakes. Journal of Hydrodinamics, Ser. B 1. 2001; 122-126.

8. Rumyancev I.S., Klovskiy A.V. Scientific review of the knowledge of the design and reliable operation of the damless water intake structures. The International Technical-Economic Journal. 2014; 2:101106. (rus.).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9. Moghadam M.K., Bajestan M.S., Sedghi H. Sediment entry investigation at the 30 degree water intake installed at a trapezoidal channel. World Applied Sciences Journal. 2010; 11(1):82-88.

10. Zhulaev R.Zh. Transverse circulation in open channels induced by flow redistribution. Proceedings of the Academy of Sciences of the Kazakh SSR, a series of energy. 1959; 2(16):15-29. (rus.).

11. Zhulaev R.Zh., Sobolin G.V. Excitation of transverse circulation in the open channel using a variable height threshold. Tashkent, UzINTI Publ., 1967; 19. (rus.).

12. Sobolin G.V. Sediment protection of structures on rivers and canals. Frunze, Kyrgyzstan Publ., 1968; 199. (rus.).

13. Sobolin G.V. Sediment control during water intake into the irrigation canals of the mountain-foothill zone : thesis of doctor of technical sciences. Moscow, 1987; 425. (rus.).

14. Karami H., Farzin S., Sadrabadi M.T., Moaze-ni H. Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios. Water Science and Engineering. 2017; 10(3):246-255. DOI: 10.1016/j.wse.2017.10.001

15. Ouyang H.-T. Investigation on the dimensions and shape of a submerged vane for sediment management in alluvial channels. Journal of Hydraulic Engineering. 2009; 135(3):209-217. DOI: 10.1061/ (asce)0733-9429(2009)135:3(209)

16. Kalathil S.T., Wuppukondur A., Balakrish-nan R.K., Chandra V. Control of sediment inflow into a trapezoidal intake canal using submerged vanes. Journal of Waterway, Port, Coastal, and Ocean Engineering. 2018; 144(6):04018020. DOI: 10.1061/(asce)ww.1943-5460.0000474

17. Bejestan M.S., Azizi R., Ghomeshi M. Scour depth at the edge of different submerged vanes shapes. Journal of Applied Sciences. 2012; 12(4):362-368. DOI: 10.3923/jas.2012.362.368

18. Beygipoor G., Bajestan M., Kaskuli H.A., Nazari S. The effects of submerged vane angle on sediment entry to an intake from a 90 degree converged bend. Advances in Environmental Biology. 2013; 7(9):2283-2292.

19. Bondarenko V.S. Development and research of damless water intake for rivers with heavy hydro-logical and sedimentary regimes : thesis of candidate of technical sciences. Novocherkassk, 1975; 184. (rus.).

20. Snezhko V.L. Hydrodynamic control of low-pressure water throughput hydraulic structures: thesis of doctor of technical sciences. Moscow, 2012; 365. (rus.).

Received June 29, 2019.

Adopted in a modified form on July 29, 2019.

Approved for publication August 26, 2019.

Bionotes: Alexey V. Klovskiy — Candidate of Technical Sciences, Associate Professor of the Department of Engineering Structures; Russian State Agrarian University — Moscow Timiryazev Agricultural Academy (RSAU — MTAA named after K.A. Timiryazev); 49 Timiryazevskaya st., Moscow, 127550, Russian Federation; ID RISC: 768598; [email protected];

Dmitry V. Kozlov — Doctor of Technical Sciences, Professor, Head of the Department of Hydraulics and Hydraulic Engineering; Moscow State University of Civil Engineering (National Research University) (MGSU); 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ID RISC: 613295, Scopus: 36787104800, ResearcherlD: B-4808-2016, ORCID: 0000-0002-9440-0341; [email protected].

ЛИТЕРАТУРА

1. Филончиков А.В. Водозаборные гидроузлы. Фрунзе : Кыргызстан, 1990. 371 с.

2. Абидов М.М. Регулирование наносного режима при водозаборе на горно-предгорных участках рек : дис. ... канд. техн. наук. М., 2006. 199 с.

3. Nakato T., Ogden F.L. Sediment control at water intakes along sand-bed rivers // Journal of Hydraulic Engineering. 1998. Vol. 124. Issue 6. Pp. 589-596. DOI: 10.1061/(asce)0733-9429(1998)124:6(589)

4. Bettes R. Sediment transport & alluvial resistance in rivers // R&D Technical Report W5i 609. 2008. 178 p.

5. WilcockP.R., Pitlick J., Cui Y. Sediment transport primer estimating bed-material transport in gravel-bed rivers // USDA Forest Service RMRS-GTR-226. 2009. 78 p.

6. Alomari N.K., Yusuf B., Ali T.A.M., Ghaza-li A.H. Flow in a branching open channel: a review // Pertanika Journal of Scholarly Research Reviews. 2016. Vol. 2. Issue 2. Pp. 40-56.

7. Youguo M., Suzhen Z. Sediment control for irrigation intakes // Journal of Hydrodinamics, Ser. B 1. 2001. Pp. 122-126.

8. Румянцев И.С., Кловский А.В. Научный обзор изученности вопросов проектирования и безнаносной эксплуатации бесплотинных водозаборных гидроузлов // Международный технико-экономический журнал. 2014. № 2. С. 101-106.

9. MoghadamM.K., BajestanMS., Sedghi H. Sediment entry investigation at the 30 degree water intake installed at a trapezoidal channel // World Applied Sciences Journal. 2010. Vol. 11. Issue 1. Pp. 82-88.

10. Жулаев Р.Ж. Поперечная циркуляция в открытом русле, возбуждаемая перераспределением расхода // Известия АН КазССР. Сер. : Энергетическая. 1959. Вып. 2 (16). С. 15-29.

11. Жулаев Р.Ж., Соболин Г.В. Возбуждение поперечной циркуляции в открытом русле при помощи порога переменной высоты. Ташкент : Изд-во УзИНТИ, 1967. 19 с.

12. Соболин Г.В. Защита сооружений на реках и каналах от наносов. Фрунзе : Кыргызстан, 1968. 199 с.

13. Соболин Г.В. Борьба с наносами при водозаборе в каналы оросительных систем горно-предгорной зоны : дис. ... д-ра техн. наук. М. : МГМИ, 1987. 425 с.

14. Karami H., Farzin S., SadrabadiM.T., Moaz-eni H. Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios // Water Science and Engineering. 2017. Vol. 10. Issue 3. Pp. 246-255. DOI: 10.1016/j.wse.2017.10.001

15. Ouyang H.-T. Investigation on the dimensions and shape of a submerged vane for sediment management in alluvial channels // Journal of Hydraulic Engineering. 2009. Vol. 135. Issue 3. Pp. 209-217. DOI: 10.1061/(asce)0733-9429(2009)135:3(209)

16. Kalathil S.T., Wuppukondur A., Balakrish-nan R.K., Chandra V. Control of sediment inflow into a trapezoidal intake canal using submerged vanes // Journal of Waterway, Port, Coastal, and Ocean Engineering. 2018. Vol. 144. Issue 6. P. 04018020. DOI: 10.1061/ (asce)ww.1943-5460.0000474

17. Bejestan M.S., Azizi R., Ghomeshi M. Scour depth at the edge of different submerged vanes shapes // Journal of Applied Sciences. 2012. Vol. 12. Issue 4. Pp. 362-368. DOI: 10.3923/jas.2012.362.368

18. Beygipoor G., BajestanM., Kaskuli H.A., Naz-ari S. The effects of submerged vane angle on sediment entry to an intake from a 90 degree converged bend // Advances in Environmental Biology. 2013. Vol. 7. Issue 9. Pp. 2283-2292.

19. Бондаренко В.С. Разработка и исследования бесплотинного водозабора для рек с тяжелыми гидрологическими и наносными режимами : дис. ... канд. техн. наук. Новочеркасск : НИМИ, 1975. 212 с.

20. Снежко В.Л. Гидродинамическое регулирование расхода низконапорных водопропускных гидротехнических сооружений : дис. ... д-ра техн. наук. М. : МГУП, 2012. 365 с.

< п

ф е t с

i Н

G Г сС

У

0 с/з § с/з

1 2 y 1

J со

^ I

n ° o

=! (

о §

E w & N

§ 2

n 0 2 6 r 6 t (

ф )

Í Л "

. DO

■ T s □

s у с о

<D X ® ®

О О л -A

(О (О

Поступила в редакцию 29 июня 2019 г. Принята в доработанном виде 29 июля 2019 г. Одобрена для публикации 26 августа 2019 г.

Об авторах: Алексей Викторович Кловский — кандидат технических наук, доцент кафедры инженерных конструкций; Российский государственный аграрный университет — МСХА имени К.А. Тимирязева (РГАУ — МСХА им. К.А. Тимирязева); 127550, г Москва, ул. Тимирязевская, д. 49; РИНЦ ID: 768598; alexey. [email protected];

Дмитрий Вячеславович Козлов — доктор технических наук, профессор, заведующий кафедрой гидравлики и гидротехнического строительства; Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ); 129337, г. Москва, Ярославское шоссе, д. 26; РИНЦ ID: 613295, Scopus: 36787104800, ResearcherID: B-4808-2016, ORCID: 0000-0002-9440-0341; [email protected].

№ О г г О О N N

оТсп ¡г (V U 3 > (Л

с и

СО .¡J

si ф ф

о %

---' "t^

о

о У со <

8 «

<л ю

о О

ю со

О)

о

I

О) О)

(Л (Л

¡1 W

"S

Г

О (0 ф ф

и >

i Надоели баннеры? Вы всегда можете отключить рекламу.