А. Л. Москвин, А. Н. Мельниченко, О. Ю. Диченко
ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АММИАКА В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ С ХРОМАТОМЕМБРАННЫМ КОНЦЕНТРИРОВАНИЕМ*
Введение. При организации систем контроля на химических производствах всё больше внимания уделяется контролю содержания в воздухе рабочей зоны вредных веществ. Предпочтения зачастую отдаются легкоавтоматизируемым схемам, одной из которых является непрерывный проточный анализ.
Существует несколько способов перевода веществ из газовой в жидкую фазу — бар-ботирование с использованием барботёров различной конструкции, поглощение с применением диффузионного скруббера [1], а также хроматомембранная жидкостная абсорбция [2]. При хроматомембранной жидкостной абсорбции массообмен между потоками жидкости и газа происходит в бипористой среде из гидрофобного материала с открытыми порами, обычно политетрафторэтилена. При этом по макропорам перемещается поглощающая водная фаза, а по микропорам — газ, содержащий исследуемый компонент, который подается и выводится из массообменного слоя через гидрофобные непроницаемые для жидкости микропористые мембраны. Поток жидкости с поглощённым исследуемым веществом при необходимости смешивается с потоками реагентов и подаётся в проточный детектор. Эффективность процесса хроматомембранной жидкостной абсорбции в существенной степени зависит от структуры бипористого массообменного слоя, которая определяется условиями его получения [3].
Но немаловажным фактором в условиях проточных методов анализа является общее давление жидкости в системе, контроль которого необходим для обеспечения бесперебойной работы. В настоящее время существуют две схемы реализации хроматомембранного массообменного процесса: с бипористыми и поликапиллярными массообменными блоками. В обоих вариантах газовая фаза движется по микропорам массообменного блока, в то время как жидкость — по макропорам. В случае бипористого блока макропоры расположены хаотически и неоднородны по размерам. В поликапил-лярном массообменном блоке макропоры представляют собой строго ориентированные в объёме микропористого политетрафторэтилена каналы (капилляры), имеющие сечение определённой конфигурации и площади по всей длине [4].
Целью представляемой работы является обоснование возможности применения хроматомембранных матриц для выделения аммиака из воздуха с последующим его фотометрическим определением, а также сравнение эффективности определения содержания аммиака в воздухе при использовании двух видов массообменных блоков — бипо-ристого и поликапиллярного.
Экспериментальная часть. До введения в силу ГОСТ Р 52105-2003, регулирующего обращение с отходами ртути и её соединений, наиболее часто для определения ионов аммония использовали их реакцию с раствором меркурийодида калия с образованием окрашенного в жёлтый цвет раствора. В последнее время из-за токсичности входящей в реагент ртути и большого количества ограничений метода он был вытеснен индофенольным методом, основанным на реакции Бертло, который превосходит метод с реактивом Несслера по чувствительности в 10 раз. В этом случае ионы
* Работа поддержана РФФИ (проект № 09-03-00011а).
© А. Л. Москвин, А. Н. Мельниченко, О. Ю. Диченко, 2011
аммония реагируют с фенольным компонентом и хлордонорным реагентом в присутствии катализатора при высоком значении рН с образованием синего индофенольного красителя. На основании данных, полученных М. Кромом [5], для реакции были выбраны в качестве хлордонорного реагента дихлоризоцианурат натрия, а в качестве фенольного компонента — салицилат натрия. В качестве катализатора использовался нитропруссид натрия.
Определение проводилось с использованием проточного фотометрического детектора Ocean Optics USB650 RED TIDE с лампой LS-1. Длина оптического пути составляла 10 мм. Для раствора сравнения выбрана холостая проба, если не указано иначе.
В работе применялись хроматомембранные ячейки (ХМЯ) оригинальной конструкции, предоставленные ООО «Росаналит-Технология», обеспечивающие возможность замены массообменных блоков и мембран с сохранением внешних коммуникаций. В ХМЯ использовались поликапиллярные и бипористые массообменные блоки из пористого политетрафторэтилена собственного изготовления одинаковых форм и размера 50 х 10 х 14 мм3 (первой указана длина, за которую принимается протяжённость массообменного слоя по направлению движения водной фазы, второй — ширина — размер массообменного слоя перпендикулярно движению потоков водной и газовой фаз, третьей — высота — протяжённость слоя по направлению движения газовой фазы). Диаметр макропор в бипористых блоках находился в диапазоне от 0,5 до 1,5 мм, диаметр микропор — от 0,5 до 1 мкм. Для изготовления блоков того и другого типа использовались описанные ранее технологии: бипористых — в работе [3], поликапиллярных — в работе [4].
Чтобы осуществить ввод газовой фазы в микропоры массообменных блоков, последние со сторон ввода и вывода газовой фазы были ограничены гидрофобными газопроницаемыми фазоразделительными мембранами производства ООО «Росаналит-Технология», обеспечивающими эффективное разделение фаз [6]. Расходы пробы, реагентов и анализируемого газа регулировались с помощью перистальтических насосов и контролировались с помощью секундомера, мерного цилиндра и мыльно-плёночного расходомера. Водные растворы компонентов готовились по точной навеске, а градуировочные растворы ионов аммиака — объёмно-объёмным способом из ГСО ионов аммиака концентрацией 1 г/л.
Результаты и их обсуждение. Продукт реакции аммиака с салицилатом натрия и дихлоризоциануратом натрия в присутствии нитропруссида натрия имеет максимум поглощения при длине волны 690 нм. При комнатной температуре реакция кинетически замедлена и значительно ускоряется при нагревании до 40 °С. Для выбора оптимального времени термостатирования была проведена серия экспериментов, по результатам которой построены кривые, представленные на рис. 1, зависимости аналитического сигнала (оптической плотности) от времени термостатирования для разных концентраций аммиака в растворе, при этом за 1 мин смешанная с реагентами проба доставлялась в термостат. В эксперименте в качестве раствора сравнения применялась деионизованная вода.
На основании анализа графиков было выбрано время t = 6 мин, необходимое для образования окрашенного продукта реакции в термостате. При этом аналитический сигнал достиг значения больше 90 % от максимального с сохранением достаточно высокой экспрессности анализа.
На рис. 2 представлена зависимость аналитического сигнала от концентрации аммиака в водной фазе. В качестве градуировочных растворов использовались растворы, приготовленные из ГСО аммиака концентрацией 1 г/л методом разбавления.
ности от времени термостати-рования для растворов аммиака с различными концентрациями:
1 — 0 мг/л; 2 — 0,2 мг/л;
3 — 0,4 мг/л; 4 — 0,8 мг/л
г, мин
А - А„
Рис. 2. Зависимость аналитического сигнала от концентрации аммиака в градуировочных растворах:
А — сигнал пробы, Ао — сигнал холостой пробы
С, мг/л
Генерируемую газовую смесь с известной концентрацией аммиака получали, пропустив воздух через ёмкость с раствором аммиака в деионизованной воде. Содержание аммиака в генерируемой газовой смеси проверялось с помощью кислотно-основного титрования. Для этого через поглотитель Рихтера, заполненный 10 мл 0,01М серной кислоты, пропускалась генерируемая газовая смесь с заданным расходом в течение определённого времени. На выходе из первого поглотителя подключали второй с аналогичным раствором, предназначенный для проверки полноты поглощения в первом. Результаты титрования для поглотителей 1 и 2 представлены в табл. 1. Практически нулевое содержание аммиака во втором поглотительном сосуде позволяет сделать вывод о полноте поглощения аммиака и рассчитать его концентрацию в газовой фазе.
Для дальнейших экспериментов предполагали линейный характер зависимости концентрации NHз в газовой фазе от концентрации аммиака в ёмкости с раствором при постоянной температуре, а в качестве конечного метода определения вместо титрования использовали фотометрический метод по градуировочной зависимости (см. рис. 1).
Таблица 1
Результаты определения содержания аммиака в генерируемой газовой смеси
Смесь Объём воздуха (П л ' Объём титранта (0,0088М NaOH) (Vt), mji Количество поглотившегося аммиака, мг Концентрация аммиака в газовой фазе (Сг), мг/л
Поглотитель 1
1а 12,698 4,6 0,89 0,070
16 12,695 4,5 0,91 0,072
Среднее значение 0,071
Поглотитель 2
2а 12,698 10,6 0 0
26 12,695 10,55 0,0075 0,0006
Среднее значение 0,0003
A - Ao а A - Ао
Рис. 3. Зависимость аналитического сигнала от концентрации аммиака в генерирующем растворе при одинаковом расходе воздуха через ячейку (а) и от расхода генерируемой газовой смеси при постоянной концентрации аммиака в растворе (б)
Концентрация аммиака в газовой фазе определялась по формуле
1000 Ст
'9 — ;
д т
где Сд — концентрация аммиака в воздухе рабочей зоны, мг/м3; С1 — концентрация аммиака в поглотительном растворе, определяемая с использованием градуировочной зависимости, мг/л (см. рис. 2); Ю; — расход поглощающей жидкости (деионизованной воды), мл/мин.; юд — расход анализируемого воздуха через ХМЯ, мл/мин.
Для бипористых и поликапиллярных массообменных блоков были получены зависимости аналитического сигнала от концентрации аммиака в генерирующем растворе при одинаковом расходе воздуха через ячейку и от расхода генерируемой газовой смеси при постоянной концентрации аммиака в растворе. Эти зависимости представлены на рис. 3. Линейный вид зависимостей позволяет сделать вывод о прямой пропорциональности аналитического сигнала от количества аммиака, пропущенного через хроматомембранную ячейку, а также о том, что эффективность поглощения не изменяется при увеличении расхода газа для обоих видов массообменных блоков.
На выходе газовой фазы из ячейки был установлен поглотитель Рихтера с 10 мл 0,01М серной кислоты, с помощью которого контролировали полноту поглощения аммиака в ХМЯ. Контроль осуществлялся путём сравнения результатов определения содержания аммиака в газовой фазе, полученных титрованием и фотометрически с предварительным хроматомембранным концентрированием в хроматомембранных ячейках с бипористыми и поликапиллярными массообменными блоками. Данные представлены в табл. 2 и свидетельствуют о том, что эффективность поглощения в бипористых и по-ликапиллярных массообменных блоках практически не различается, но в то же время сходимость результатов в случае бипористого блока в 2 раза хуже, чем в случае полика-пиллярного, что может объясняться наличием в теле бипористого блока «застойных» зон. Кроме того, поликапиллярные блоки с равномерно расположенными прямыми каналами имеют значительно меньшее сопротивление для движения жидкой фазы, что обусловливает меньшее внутреннее давление в системе, чем в случае использования бипористого блока. В силу этих причин использование поликапиллярных блоков для решения данной задачи является более предпочтительным.
Таблица 2
Результаты определения аммиака титрованием и фотометрически с хроматомембранным концентрированием
Смесь № Относительная оптическая плотность (А — Ао) Концентрация аммиака в жидкости (Сж), мг/л Концентрация аммиака в воздухе (Сг), мг/л Относительное СКО, %
Бипористая ХМЯ
1 0,179 0,43 0,067
2 0,168 0,40 0,063
3 0,198 0,48 0,075
Среднее значение 0,068 8,4
Поликапиллярная ХМЯ
1 0,17 0,41 0,064
2 0,2 0,48 0,075
3 0,187 0,45 0,070
Среднее значение 0,070 4,3
Значение, полученное титрованием 0,071 1,4
С применением этой схемы был проведён анализ воздуха в лаборатории. В конце рабочего дня концентрация аммиака практически постоянна (рис. 4, а) и её значение колеблется около 8 мг/м3 при значении ПДК аммиака в воздухе рабочей зоны, равном 20 мг/м3 [7]. Рис. 4, б иллюстрирует изменение концентрации аммиака во времени в вытяжном шкафу при внезапном выключении активной вентиляции с последующим её включением.
Полученные результаты свидетельствуют о возможности применения хроматомембранных ячеек для извлечения аммиака из воздуха для последующего его проточного фотометрического определения. Сравнение значений аналитического сигнала при извлечении аммиака одной концентрации из воздуха с применением бипористых и поликапиллярных массообменных блоков показало одинаковую эффективность. В то же время использование поликапиллярных массообменных блоков обеспечивает гораздо меньшее давление в гидравлической схеме проточного анализа, что наряду с более
C, мг/л
г
16-|
а
C, мг/л
g
40-|
б
10-
14-
12-
2-
4
6
8-
25-
20
35-
30-
15
10
0
5
5 10 15 20 25 30
t, мин
0 10 20 30 40 50 60
t, мин
Рис. 4- Определение концентрации аммиака в воздухе лаборатории в конце рабочего дня (а); изменение концентрации аммиака со временем при остановке активной вентиляции в вытяжном шкафу с последующим её включением (б)
надёжными метрологическими характеристиками делает применение хроматомембранных ячеек на основе поликапиллярных массообменных блоков более предпочтительным при определении аммиака в воздухе.
Время единичного определения аммиака в воздухе при предложенной схеме анализа составляет 6 мин.
Литература
1- Zhang Genfa, Purnendu K. Dasgupta, Shen Dong. Measurement of atmospheric ammonia // Environ- Sci. Technol. 1989- Vol. 23- N 12- P. 1467-1474.
2. MoskvinL. N. Chromatomembrane method for the contimuous separation of substances // J. of Chromatography (A). 1994. Vol. 669. P. 81-87.
3. Родинков О. В., Москвин Л. Н., ВаськоваЕ. А. Оптимизация пористой структуры гидрофобной матрицы для осуществления хроматомембранных массообменных процессов // Журн. физ. химии. 2005. Т. 79. № 3. С. 539-542.
4. МосквинЛ. Н., Родинков О. В., Москвин А. Л. и др. Устройство для осуществления мас-сообмена между жидкой и газовой фазами. Патент РФ № 2392038 на изобретение. Решение о выдаче патента от 18.01.2010.
5. Krom M. D. Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate // The Analyst- 1980. Vol. 105. N 1249. P. 305.
6. Москвин А. Л., Мельниченко А. Н., Диченко О. Ю., МосквинЛ. Н. Влияние структуры массообменных матриц и фазоразделительных мембран на «эффект памяти» хроматомембранных ячеек в парофазном анализе // Вестн. С.-Петерб. ун-та. Сер. 4: Физика, химия. 2011. Вып. 1. C. 94-102.
7. ГН 2-2-5.686-98. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны. Гигиенические нормативы. М., 2003-
Статья поступила в редакцию 17 июня 2011 г.