Научная статья на тему 'Формирование интерференционных картин поверхностных электромагнитных волн с изменяемым периодом с помощью дифракционных решеток'

Формирование интерференционных картин поверхностных электромагнитных волн с изменяемым периодом с помощью дифракционных решеток Текст научной статьи по специальности «Физика»

CC BY
437
57
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Компьютерная оптика
Scopus
ВАК
RSCI
ESCI
Область наук
Ключевые слова
ДИФРАКЦИЯ / ДИФРАКЦИОННАЯ РЕШЕТКА / ФОТОЛИТОГРАФИЯ / ИНТЕРФЕРЕНЦИОННАЯ КАРТИНА / ПОВЕРХНОСТНАЯ ЭЛЕКТРОМАГНИТНАЯ ВОЛНА / DIFFRACTION / DIFFRACTION GRATING / PHOTOLITHOGRAPHY / INTERFERENCE PATTERN / SURFACE PLASMON

Аннотация научной статьи по физике, автор научной работы — Безус Евгений Анатольевич, Досколович Леонид Леонидович, Кадомин Иван Иванович, Казанский Николай Львович, Pierluigi Civera

Рассмотрено формирование интерференционных картин поверхностных электромагнитных волн с помощью диэлектрической дифракционной решетки с металлическим слоем. Моделирование в рамках электромагнитной теории показывает возможность получения контрастных интерференционных картин с периодом в несколько раз меньшим периода дифракционной решетки. При этом интенсивность поля в интерференционных максимумах в десятки раз превышает интенсивность падающей волны. Рассмотрены способы управления периодом интерференционной картины за счет изменения длины волны и угла падения.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Безус Евгений Анатольевич, Досколович Леонид Леонидович, Кадомин Иван Иванович, Казанский Николай Львович, Pierluigi Civera

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

GENERATING VARYING-PERIOD INTERFERENCE PATTERNS OF SURFACE PLASMONS BY DIFFRACTION GRATINGSPolytechnical Institute of Turin

Generation of surface plasmon interference patterns using a dielectric diffraction grating coated with a metal layer is studied. Modelling in the electromagnetic theory shows that high-contrast interference patterns with a period several times smaller than that of the diffraction grating can be produced. At the interference maxima, the field intensity is tens times that of the incident wave. Techniques to control the interference pattern period by varying the wavelength and the incidence angle are discussed.

Текст научной работы на тему «Формирование интерференционных картин поверхностных электромагнитных волн с изменяемым периодом с помощью дифракционных решеток»

ФОРМИРОВАНИЕ ИНТЕРФЕРЕНЦИОННЫХ КАРТИН ПОВЕРХНОСТНЫХ ЭЛЕКТРОМАГНИТНЫХ ВОЛН С ИЗМЕНЯЕМЫМ ПЕРИОДОМ С ПОМОЩЬЮ ДИФРАКЦИОННЫХ РЕШЕТОК

12 12 2 12 Е.А. Безус ' , Л.Л. Досколович ' , И.И. Кадомин , Н.Л. Казанский ' ,

Pierluigi Civera3, Marco Pizzi3 1 Институт систем обработки изображений РАН, 2 Самарский государственный аэрокосмический университет имени академика С.П. Королева

3 Polytechnical Institute of Turin

Аннотация

Рассмотрено формирование интерференционных картин поверхностных электромагнитных волн с помощью диэлектрической дифракционной решетки с металлическим слоем. Моделирование в рамках электромагнитной теории показывает возможность получения контрастных интерференционных картин с периодом в несколько раз меньшим периода дифракционной решетки. При этом интенсивность поля в интерференционных максимумах в десятки раз превышает интенсивность падающей волны. Рассмотрены способы управления периодом интерференционной картины за счет изменения длины волны и угла падения.

Ключевые слова: дифракция, дифракционная решетка, фотолитография, интерференционная картина, поверхностная электромагнитная волна.

Введение

Одним из перспективных способов формирования микро- и наноструктур является фотолитография в ближнем поле, основанная на регистрации интерференционных картин затухающих и поверхностных электромагнитных волн (ПЭВ) [1-6]. Использование затухающих волн и ПЭВ позволяет преодолеть дифракционный предел и формировать структуры с размерами деталей в несколько раз меньшими, чем длина волны используемого света.

В [1] показана возможность получения интерференционной картины затухающих волн, соответствующих -1,+1 затухающим порядкам субволновой дифракционной решетки (ДР). Интерференционная картина в [1] обладает высоким контрастом и высокой интенсивностью в 3-4 раза большей, чем интенсивность падающей волны. Период интерференционной картины в [1] в два раза меньше периода используемой ДР. В [2, 3] рассмотрен аналогичный метод, основанный на использовании интерференции ПЭВ, возникающих на поверхности перфорированной металлической пленки. В [4] предложен метод, основанный на интерференции затухающих волн, получаемых при полном внутреннем отражении. В [5, 6] для формирования интерференционной картины ПЭВ используется ДР, расположенная над металлической пленкой. В настоящей работе, как и в [6], для получения интерференционной картины ПЭВ используется диэлектрическая ДР с металлическим слоем в области подложки. В отличие от [5, 6], для возбуждения ПЭВ предлагается использовать высшие затухающие порядки дифракции. Приведенные расчеты показывают высокое качество формируемых интерференционных картин. Использование высших затухающих порядков позволяет формировать высокочастотные интерференционные картины с помощью низкочастотной ДР, имеющей на порядок

меньший период. При этом коэффициент усиления поля на порядок больше, чем в [5].

Для данной структуры рассмотрены способы управления частотой интерференционной картины за счет изменения длины волны и угла падения волны.

Формирование интерференционной картины ПЭВ

Исследуемая структура состоит из бинарной диэлектрической ДР и металлической пленки, расположенной под решеткой (рис. 1). ДР предназначена для возбуждения на нижней границе металлической пленки двух встречных ПЭВ, которые формируют интерференционную картину.

11е' 0 я W - 1 1 d

F -П /! V / / т i \К \ -1 с \\ hi X

Рис. 1. Геометрия структуры (один период) и формируемая интерференционная картина

При нормальном падении ТМ-поляризованной волны на структуру константы распространения дифракционных порядков имеют вид

^ = 2n.nl d , ^ = 0, (1)

где d - период решетки. Условие возбуждения ПЭВ дифракционными порядками с номерами ±п на нижней границе раздела металлический пленки имеет вид

+ К = Яе (Крр (Х0)), (2)

ГДе kspp (^0 )= ko4 Sm(Sm +S" ) - к0нстанта Распространения ПЭВ, k0 = 2п / Х0, Х0 - длина волны, еп - диэлектрическая проницаемость материала под пленкой, em - диэлектрическая проницаемость металлической пленки.

Согласно (2), при периоде решетки

d = 2nnj Re (kpp) (3)

происходит возбуждение ПЭВ. При этом период формируемой интерференционной картины ПЭВ

dint = d / 2n , (4)

в 2n раз меньше периода ДР. На рис. 1 схематично показана интерференционная картина при n=5.

В [5] ПЭВ возбуждались высшими незатухающими порядками, сформированными ДР в области над металлической пленкой. В этом случае диэлектрическая проницаемость материала решетки egr должна быть больше, чем диэлектрическая проницаемость материала еп под пленкой. В данной работе рассматривается случай, когда порядки дифракции, используемые для возбуждения ПЭВ, являются затухающими. При этом значение egr может

быть равным еп или меньше его.

Расчет интерференционной картины ПЭВ проводился при следующих параметрах: Х0 = 550 нм , 8/ = 1, еп = 2,56, em = -12,922 + 0,44727/. Значение еп соответствует фоторезисту, а em - диэлектрической проницаемости серебра для выбранной длины волны. Диэлектрическая проницаемость материала решетки еgr была также выбрана равной 2,56. Период решетки d = 1539,1 нм был рассчитан из (3) при n=5. В этом случае период интерференционной картины dint = 154 нм в 10 раз меньше периода ДР. Значения остальных геометрических параметров структуры w = 0,5d , hgr = 435,4 нм , hl = 0 ,

hm = 65 нм были определены с помощью оптимизационной процедуры. Целевой функцией являлась мера близости расчетной интерференционной картины к «идеальной» интерференционной картине, формируемой при интерференции двух ПЭВ. Для расчета интерференционной картины использовался модовый метод (rigorous coupled wave analysis) в формулировке работ [7-9]. График нормированной интенсивности поля, формируемого непосредственно под металлическим слоем при указанных параметрах, представлен на рис. 2. Рис. 2 показывает формирование интерференционной картины с расчетным периодом dint = 154 нм .

Отметим, что период dint не в только в 10 раз меньше периода ДР, но и в 3,57 раз меньше длины волны. Коэффициент усиления поля, показывающий значение интенсивности в максимумах интерферен-

ции относительно интенсивность падающей волны, близок к 50. Контраст полученной интерференционной картины равен 0,701. Таким образом, предложенная структура позволяет формировать интерференционную картину высокого качества.

I ЕЖ

0 200 400 600 800 1000 1200 х, пт

Рис. 2. Интерференционная картина

Управление частотой интерференционной картины

Рассмотрим возможность управления частотой интерференционной картины за счет изменения длины волны и угла падения.

Рассмотрим использование различных длин волн для формирования интерференционных картин различного периода. Пусть период d в (3) определен из условия возбуждения ПЭВ порядками с номерами ±n при длине волны X0. Константа распространения

ПЭВ & = kppp (X) зависит от длины волны. Поэто-

ърр ърр \ /

му возможно возбуждение ПЭВ при другой длине волны X Ф X0 с использованием дифракционных порядков ±m, m Ф n . Длины волн, которые будут возбуждать ПЭВ порядками ±m, могут быть найдены из уравнения

2nm / d = kspp (X) . (5)

В частности, для рассмотренного выше случая X0 = 550 нм, n = 5 , ПЭВ будут возбуждаться ±4 порядками при X=659 нм и порядками с номерами ±3 при X= 852 нм. Соответствующие интерференционные картины будут иметь периоды 192 нм и 257 нм. Геометрические параметры структуры w = 0,37d, hgr = 1000 нм, h¡ = 0 , hm = 69,8 нм , предназначенной для формирования трех различных интерференционных картин при трех указанных длинах волн, были рассчитаны с использованием оптимизационной процедуры. Как и в предыдущем случае, целевой функцией являлась мера близости расчетных интерференционных картин к «идеальным» интерференционным картинам, формируемым при интерференции двух соответствующих ПЭВ.

Расчетные графики нормированной интенсивности интерференционных картин приведены на рис.

3а-в. Значения контраста и коэффициентов усиления поля составляют (0,87;76), (0,78;37), (0,71;25), соответственно.

I ЕЖ

а) О 200 400 600 800 1000 1200

\еШ2

х, пт

б) 0 200 400 600 800 1000 1200

\еШ2

х, пт

200 400 600 800 1000 1200

х, пт

Рис. 3. Интерференционные картины, соответствующие длинам волн 852, 659 и 550 нм

Второй способ управления частотой интерференционной картины состоит в изменении угла падения при фиксированной длине волны. Рассмотрим случай конической дифракции, когда проекция волнового вектора падающей волны параллельна штрихам ДР (рис. 4). В этом случае

kxn = 2пn/d , ky = k0y[eIsin8 , (6)

где 6 - угол падения. Согласно (6), условие возбуждения ПЭВ (2) может выполняться при различных сочетаниях угла падения и номера порядка дифракции i.

,1

Рис. 4. Коническое падение Рассмотрим пример. На рис. 5 приведены графики модуля проекции волнового вектора

kn {6) = ^2Ш + (6) от угла падения для п = 3

(штрих-пунктирная линия), п = 4 (точечная линия) и п = 5 (пунктирная линия). Графики получены при е1 = 2,31, ег = 9 , значения параметров Х0, d, ет, ея совпадают с предыдущими случаями. Условия kn (6) = Яе(kspp) выполняются в точках 70,53° (п=3),

45° (п=4) и 0° (п=5). Это означает, что при указанных углах ПЭВ будут возбуждаться ±3, ±4 и ±5 порядками дифракции. Периоды соответствующих интерференционных картин составляют 257нм, 192нм и 154нм, соответственно. Геометрические параметры структуры v = 0,534d, hgr = 273 нм,

^ = 95,9 нм, ^ = 60 нм были найдены в процессе оптимизации из условия максимизации качества формируемых интерференционных картин. 28

26 24 22

20 18 16 14 12

У

е,с

0 10 20 30 40 50 60 70 80 90

Рис. 5. Зависимость + k^ от угла падения

Расчетные графики нормированной интенсивности на нижней границе металлического слоя показаны на рис. 6а-в. Значения контраста и коэффициента усиления составляют (0, 67; 25), (0, 79; 35), (0, 88; 41), соответственно.

Рис. 6. Интерференционные картины, соответствующие углам падения 0°, 45° и 70,53°

Заключение Рассмотрено формирование интерференционных картин ПЭВ с помощью диэлектрической ДР с металлическим слоем. Показана возможность формирования интерференционных картин с высоким контрастом и высокой интенсивностью при использовании высших затухающих порядков дифракции. Рассмотрены способы управления периодом интерференционной картины. Результаты исследования показывают возможность формирования интерференционных картин с высоким контрастом и интенсивностью при различных длинах волн и углах падения.

Благодарности Работа выполнена при поддержке грантов РФФИ № 07-07-97601-р_офи, 07-01-96602-р_поволжье_а, 07-07-91580-АСП_а, гранта Президента РФ № НШ-3086.2008.9, фонда «Фундаментальные исследования и высшее образование» (RUX0-014-SA-06) и Фонда содействия отечественной науке.

Литература

1. Blaikie, R.J. Evanescent interferometric lithography / R.J. Blaikie, S.J. McNab // Applied Optics, 2001. -Vol. 40(10). - p. 1692-1698.

2. Luo, X. Surface plasmon resonant interference nanolitho-graphy technique / X. Luo, T. Ishihara // Appl. Phys. Letters, 2004. - Vol. 84(23). - p. 4780-4782.

3. Luo, X. Subwavelength photolithography based on sur-face-plasmon polariton resonance / X. Luo, T. Ishihara // Opt. Expr., 2004. - Vol. 12(14). - p. 3055-3065.

4. Martinez-Anton, J.C. Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography / J.C. Martinez-Anton // J. Opt. A.: Pure Appl. Opt., 2006. - Vol. 8. - p.213-218.

5. Jiao, X. Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure / X. Jiao [and other] // Opt. Expr., 2006. - Vol. 14(11). - p. 4850-4860.

6. Doskolovich, L. L. Nanoscale photolithography by means of surface plasmons interference / L. L. Doskolovich [and other] // J. Opt. A: Pure Appl. Opt., 2007. - Vol. 9. - p. 854-857.

7. Moharam, M.G. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach / M.G. Moharam [and other] // J. Opt. Soc. Am. A., 1995. - Vol. 12(5). -p. 1077-1086.

8. Moharam, M.G. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings / M.G. Moharam [and other] // J. Opt. Soc. Am. A., 1995. - Vol. 12(5). - p. 1068-1076.

9. Li, L. Use of Fourier series in the analysis of discontinuous periodic structures / L. Li // J. Opt. Soc. Am. A., 1996. -Vol. 13(9) - p. 1870-1876.

i Надоели баннеры? Вы всегда можете отключить рекламу.