УДК 621.382.3
Suyarova M.Kh. associate acting professor department of Radioelectronics Jizzakh Polytechnic institute
FIELD TRANSISTOR (FT) CHARACTERISTICS AND DATA CHART
Annotation. Get the characteristics of the field effect transistor. Transistors are one of the most important semiconductor active radio components in electronic circuitry. To obtain tables of output descriptions, the data in the table can be plotted and divided into two areas. This field is called the resistive element of the output characteristics. The field-effect transistor acts as a resistance R, the value of which can be controlled by the gate voltage UGS.
Keywords: Field transistor, resistor, potentiometer, input characteristics, output characteristics, multimeter, oscillograph.
Transistors are one of the most important semiconductor active radio components in electronic circuitry. We distinguish bipolar transistors, in which both electrons and holes participate in current transmission, and field-effect transistors, in which current is transmitted through doped current carriers (electrons and holes). In field-effect (field) transistors, the conductivity of current-carrying channels changes with the application of an electric field, without applying a supply. The element that generates this field is called a lock. The current-carrying electrodes are called starting current and drop current in field-effect transistors. The low-current field-effect transistors used here are symmetrical, so the start-up and drop-out currents are reciprocal [1,2].
Input Descriptions Id = f(Uos). In the experiment, the characteristics of the field-effect transistor, i.e., the drop current Id as a function of the voltage Ug between the start and drop currents at a constant gate voltage Uds, are written and illustrated in a diagram [3,4]._
Equipment
1 DIN A 4-pin socket plug 576 74
1 set of 10 connecting plugs 501 48
1 STE 100 Q resistor 577 32
1 STE 1 kQ resistor 577 44
1 STE 47 kQ resistor 577 64
1 STE 220 Q potentiometer 577 90
1 ta STE 1 kQ potensiometri 577 92
1 STE BF 244 field transistor 578 77
1 1N 4007 STE Si-diode 578 51
1 DC power supply, 0...+ 15 V 21 45
1 x 6V/12V transformer 521 210
1 x 6V/12V transformer 531 120
1 dual-channel oscilloscope 575 211
2 BNC / 4 mm shielded cable 575 24
1 connecting wire, blue, 50 cm 500 422
3 pairs of cables, red and blue, 50 cm 501 45
Table 1 lists the required hardware and equipment.
Figure 1 a) Chain of experimental objects. b) electrical circuit.
To conduct the experiment, prepare and assemble the necessary apparatus and equipment shown in Table 1.
— Prepare the experiment as shown in Figure 1. Voltage divider
— Zatvor - starting current: 1 kQ resistor and 220 Q potentiometer (and in
series
zatvor - 47 kQ resistor connected to the starting current link), zatvor-starting current: 100 Q resistor and 1 kQ potentiometer [5]
— Pay attention to the range of measurements and the polarity of multimeters.
— First, connect a multimeter to measure the Ugs gate-start current voltage.
— Set the supply voltage to 15 V
— Adjust the 220 Q potentiometer so that Ugs gate - current start = 0 V
— Now connect a multimeter to measure the Uds drop current - start current
— Ube Uds drop current - start current voltage by adjusting the 1 kQ potentiometer [6]
Increase gradually starting from 0 V
— Enter UDS voltage and ID current values in Table 1
— Experiment with UGS zatvor - starting current with other voltages, i.e UGS = - 0,5 V va UGS = - 1,0 V — For dynamic scaling of output
specifications, as shown in the diagram below, conduct an experiment -Set the supply voltage to 5 V.
Note: Because the oscilloscope current is connected to the common ground, the Uds voltage is reversed. Adjust the 1kQ potentiometer and change the Ugs gate-start current. Ugs gate - the effect of starting current voltage on the output characteristics can be observed directly [7,8].
Figure 2. a) Dynamic measurement of output characteristics and b) its scheme.
Measurements are performed to dynamically measure the output characteristics (Figure 2) and the experiment is performed and the necessary actions are performed as shown in the following diagram [9,10].
\
Ucs= ov Ucs=- 0.5 V Ucs=-IV
k'DS k'DS k DS /D
V niA V niA V mA
0 0 0 0 0 0
0.05 0.25 0.05 0 12 0.05 0.02
0.10 0.45 0 10 0 25 0 10 0.04
0.25 1.00 0 25 0.50 0 25 0.06
0.50 1.80 0.50 O.BO 0.50 0.08
0.75 2.35 0 75 1.00 0 75 0.09
1.0 2.65 1.0 1.10 1.0 0.10
2.0 3.00 2.0 1.20 2.0 0.12
5.0 3.30 5.0 1.30 5.0 0.14
10.0 3.45 10.0 1.40 10.0 0.15
13.0 3.50 13.0 1.45 13.0 0.16
Table 2: Output Descriptions Id = f(Uds), Ugs: konst
Due to field effect transistors, the measured values may differ significantly from the example.Evaluating the results, plotting the data in the table on a diagram [11]. ............................
u,.v « o v
------------
f / f u«« « -0.9 v
/ — ----f--
t r
k
- r— . . ,
Figure 3. Output Descriptions.
To obtain tables of output descriptions, the data in the table can be plotted on a diagram and divided into two areas:
Id start current increases linearly in the first part of the table (Uds at lower voltages) UDS drop current - gate voltage. This field is called the resistive element of the output characteristics. The field transistor acts as an ohmic resistance, the value of which can be controlled by the gate voltage UGS
- for higher voltages Ugs (> 1...2 V)the starting current Uds is almost unchanged, and the drop current Ugs does not depend on the starting current voltage. This area is known as the abrupt disconnection area. The drop current Id is controlled by the gate voltage Ugs. In this field, a field-effect transistor can be used as a direct current source [12,13].
References:
1. Мустофокулов, Ж. А., & Чориев, C. C. (2024). ИНВЕРТОР КУРИЛМАСИНИ "PROTEUS" ДАСТУРИДА ЛОЙИДАЛАШ. Ilm-fan va ta'lim, 2(1 (16)).
2. Суярова, М. X., & Мустафакулов, А. А. (2021). ТВОРЧЕСКИЕ ЗАДАЧИ ПО ЭЛЕКТРОМЕХАНИКЕ.«. ИННОВАЦИОН ЩТИСОДИЁТ: МУАММО, ТАДЛИЛ ВА РИВОЖЛАНИШ ИСТЩБОЛЛАРИ» Халкаро илмий-амалий анжуман илмий маколалар туплами, 20-21.
3. Мулданов, Ф. Р., & Иняминов, Й. О. (2023). МАТЕМАТИЧЕСКАЯ МОДЕЛЬ УПРАВЛЕНИЯ ЯРКОСТЬЮ ИЗОБРАЖЕНИЯ ЛИЦА ЧЕЛОВЕКА НА ВИДЕОИЗОБРАЖЕНИИ. Экономика и социум, (3-2
(106)), 799-803
4. Саттаров, С. А., Халилов, О., & Бобонов, Д. Т. (2023). СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛИ, ИСПОЛЬЗУЮЩИХ PCM (МАТЕРИАЛЫ С ИЗМЕНЕНИЕМ ФАЗЫ).
5. Metinqulov, J. T., & Irisboyev, F. B. (2023). VOLATILE AND NONVOLATILE MEMORY DEVICES. Modern Science and Research, 2(10), 116119.
6. Boymirzayevich, I. F., & Husniddin o'g'li, I. M. (2023). INTERNET QURILMALARINING IOT (INTERNET OF THINGS) TEXNOLOGIYALARI.
7. Эмиль, М. (2023). ОБЛАСТИ ЗНАНИЙ ДЛЯ РОБОТОТЕХНИЧЕСКОГО ПРОЕКТИРОВАНИЯ. Mexatronika va robototexnika: muammolar va rivojlantirish istiqbollari, 1(1), 18-20.
8. Умирзаков, Б. Е., Раббимов, Э. А., & Хамзаев, А. И. (2023). ОПРЕДЕЛЕНИЕ КИНЕТИЧЕСКИХ ХАРАКТЕРИСТИК ТЕРМОДЕСОРБЦИИ И ГЕТЕРОГЕННОЙ РЕАКЦИИ ДИССОЦИАЦИИ МОЛЕКУЛ МОРФИНА НА ПОВЕРХНОСТИ ОКИСЛЕННОГО ВОЛЬФРАМА. Экономика и социум, (5-1 (108)), 748-758.
9. Mustafoyev, A. A. (2024). HETEROSTRUCTURED BIPOLAR TRANSISTOR BASED ON HIGH-VOLTAGE MULTILAYER EPTAXIAL STRUCTURE ALGAAS/GAAS. Ilm-fan va ta'lim, 2(1 (16)).
10. Омонов, С. Р., & Ирисбоев, Ф. М. (2023). АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ ДЛЯ ИСПЫТАНИЙ НА ЭМС НА ОСНОВЕ ПРОГРАММНОЙ ПЛАТФОРМЫ R&S ELEKTRA. Экономика и социум, (5-1 (108)), 670-677.
11. Каршибоев, Ш. А., Муртазин, Э. Р., & Файзуллаев, М. (2023). ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ. Экономика и социум, (4-1
(107)), 678-681.
12. Eshonqulov, A. (2024). OPTIK TOLALI ALOQA LINIYALARINING PAYDO BO'LISH TARIXI RIVOJLANISHI. Ilm-fan va ta'lim, 2(1 (16)).
13. Суярова М. Х. и др. Успешное развитие и эффективное функционирование телекоммуникационных систем республики узбекистан //наука, образование, инновации: актуальные вопросы и современные аспекты. - 2021. - С. 67-69.
14. Суярова М. X., Мустафакулов А. А. Творческие задачи по электромеханике //«инновацион ик;тисодиёт: муаммо, тахлил ва ривожланиш истик;боллари» Халкдро илмий-амалий анжуман илмий мак;олалар туплами 20-21 май 2021 й. - С. 418.
15. Суярова М. Х., Джураева Н. М. Динамическая модель по электротехнике //Передовые научно-технические и социально-гуманитарные проекты в современной науке. - 2018. - С. 53-54.
16. Мустафакулов А. А. и др. & Наримонов, БА (2018). Исследование аморфизации структуры кристаллов кварца при облучении люминесцентным методом.« //Узбекский физический журнал. - Т. 20. - №. 2. - С. 134-136.