Научная статья на тему 'Features of Low-Intensity Energy Balance in the Process of Physiotherapeutic Application of Mixtures of Natural Materials'

Features of Low-Intensity Energy Balance in the Process of Physiotherapeutic Application of Mixtures of Natural Materials Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
9
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
microwave radiation / negative and positive flows / physiotherapy procedure / ozokerite-paraffin mixture / микроволновое излучение / отрицательные и положительные потоки / физиотерапевтические процедуры / озокерито-парафиновая смесь / мiкрохвильове випромiнення / вiд’ємнi та позитивнi потоки / фiзiотерапевтичнi процедури / озокерито-парафiнова сумiш

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Yanenko О.P., Peregudov S.М., Shevchenko К.L., Golovchanska О.D.

The authors investigated the features of energy balance that provide the process of using natural materials in physiotherapeutic thermal procedures. Substances such as ozokerite, paraffin, naphthalene, muds and their combinations are widely used in physiotherapy, so it is important not only to know the parameters of the heat exchange, but also the distribution of other types of energy that can affect the effectiveness of treatment. The authors theoretically substantiated and experimentally proved that microwave component is presented in the radiation spectrum of the ozokerite applicator. The level of radiation in the millimeter range of the applicator with a size of 10×10 cm is compared with the level of low-intensity signals of technical devices for millimeter therapy. The dynamic change of the radiation level of the microwave component during the cooling of the applicator from the maximum temperature of 50ºС to the temperature of the human body surface was investigated. It was revealed that the sign of the radiation of the millimeter component in relation to the human body changes. This results in the formation of positive and negative low-intensity flows of microwave radiation. The frequency ranges of these flows and their level were investigated. It has been found that changing the percentage of paraffin in ozokerite can affect the level and range of negative microwave flows. The results of previous studies by the authors, which substantiate the positive effect of negative flows, including ozokerite-paraffin therapy, in inflammatory processes with ”excess energy” and other diseases, are adduced. The microwave electromagnetic radiation studied by the authors is a concomitant factor during the relevant physiotherapeutic procedures, in particular heat treatment. However, this factor can significantly affect the functional state of the human body, so it must be taken into account during physiotherapy procedures.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Особенности низкоинтенсивного энергетического баланса в процесе физиотерапевтического применения смесей натуральных материалов

Авторами исследованы особенности энергетического баланса, возникающие в процессе использования природных материалов в физиотерапевтических тепловых процедурах. Такие вещества, как озокерит, парафин, нафталан, лечебные грязи и их сочетания широко применяются в физиотерапии, поэтому важно знать не только параметры теплообмена, а также распределение других видов энергии, которое может влиять на показатели эффективности лечебного процесса. Авторами теоретически обосновано и экспериментально доказано наличие в спектре излучения озокеритного аппликатора микроволновой компоненты. Уровень излучения в миллиметровом диапазоне аппликатора размером 10×10 см сопоставим с уровнем низкоинтенсивных сигналов технических средств для миллиметровой терапии. Исследовано динамическое изменение уровня излучения микроволновой компоненты в процессе охлаждения аппликатора от максимальной температуры 50ºС до температуры человеческого тела. Выявлено наличие изменения знака уровня миллиметровой компоненты по отношению к телу человека, что приводит к формированию положительного и отрицательного низкоинтенсивных потоков микроволнового излучения. Исследованы диапазоны этих потоков и их уровень. Установлено, что изменением процентного состава парафина в озокерите можно регулировать уровень и диапазон отрицательных микроволновых потоков. Приведены результаты предыдущих исследований авторов, обосновывающих положительное влияние отрицательных потоков, в том числе и озокерито-парафиновой терапии, при воспалительных процессах с «избытком энергии» и других заболеваниях. Исследованное авторами микроволновое электромагнитное излучение является сопутствующим фактором при соответствующих физиотерапевтических процедурах, в частности теплолечении. Однако этот фактор может существенно влиять на функциональное состояние организма человека, поэтому его необходимо учитывать при проведении физиотерапевтических процедур.

Текст научной работы на тему «Features of Low-Intensity Energy Balance in the Process of Physiotherapeutic Application of Mixtures of Natural Materials»

УДК 621.317.07.089

Features of Low-Intensity Energy Balance in the Process of Physiotherapeutic Application of Mixtures of Natural Materials

Yanenko 0. P.1, Peregudov S. M.\ Shevchenko K. L.1, Golovchanska 0. D?

1 National Technical University of Ukraine 'Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine 20. O. Bogomolets National Medical University of Ukraine, Kyiv, Ukraine

E-mail: aul.onil&rncl.a.ua

The authors investigated the features of energy balance that provide the process of using natural materials in physiotherapeutic thermal procedures. Substances such as ozokerite, paraffin, naphthalene, muds and their combinations are widely used in physiotherapy, so it is important not only to know the parameters of the heat exchange, but also the distribution of other types of energy that can affect the effectiveness of treatment. The authors theoretically substantiated and experimentally proved that microwave component is presented in the radiation spectrum of the ozokerite applicator. The level of radiation in the millimeter range of the applicator with a size of 10x10 cm is compared with the level of low-intensity signals of technical devices for millimeter therapy. The dynamic change of the radiation level of the microwave component during the cooling of the applicator from the maximum temperature of 50° С to the temperature of the human body surface was investigated. It was revealed that the sign of the radiation of the millimeter component in relation to the human body changes. This results in the formation of positive and negative low-intensity flows of microwave radiation. The frequency ranges of these Hows and their level were investigated. It has been found that changing the percentage of paraffin in ozokerite can affect the level and range of negative microwave Hows. The results of previous studies by the authors, which substantiate the positive effect of negative Hows, including ozokerite-paraffin therapy, in inflammatory processes with "excess energy" and other diseases, are adduced. The microwave electromagnetic radiation studied by the authors is a concomitant factor during the relevant physiotherapeutic procedures, in particular heat treatment. However, this factor can significantly affect the functional state of the human body, so it must be taken into account during physiotherapy-procedures.

Key words: microwave radiation: negative and positive flows: physiotherapy procedure: ozokerite-paraffin mixture

DOI: 10.20535/RADAP. 2021.85.41-47

Introduction

Heat treatment is one of the most common physiotherapy procedures. It uses a variety of natural materials, including peloids (therapeutic muds of different composition), minerals (lithotherapy). peat, sand, as well as derivatives of oil and oil fields naphthalene, ozokerite, paraffin, which are a mixture of high molecular weight hydrocarbons and are most often used in physiotherapy procedures fl 4]. Among these materials in terms of thermophysical characteristics, in particular, heat capacity, thermal conductivity and heat retention capacity, ozokerite and paraffin are most suitable for physiotherapy procedures.

For example, the heat retention capacity, which characterizes the delayed heat transfer of paraffin, is 1190 sec. and ozokerite 1975 sec. which is 2-4 times more comparing to the heat retention capacity of other

natural materials. The heat capacity of these materials is compared with the values of common natural materials, and the thermal conductivity of ozokerite, as one of the main parameters of heat treatment, is 0.17W/(m °C), which is 2 to 5 times less than the thermal conductivity of other materials and 1.5 times less than paraffin [3.5].

The applicators from both pure paraffin and its mix with other materials for increase of the plasticity are usually used in heat treatment. High heat capacity, low thermal conductivity, almost complete absence of convection component of heat exchange, as well as the ability to release large amounts of heat during hardening and create compression pressure at the application site are significant advantages of paraffin clS ct coolant (the same property is inherent in ozokerite). The positive properties of paraffin should also include its chemical neutrality. At the same time, the microwave properties

of paraffin, which occur during its heating and affect the course of energy metabolism between the objects of therapy, have not been studied.

From the group of materials for physiotherapy-ozokerite should be singled out. It is used alone or in a mixture, the proportion of which can be up to 90%. In addition to significant heat capacity, high heat retention capacity and the lowest thermal conductivity, ozokerite has a nmlti-component chemical composition, which includes ceresin up to 85%, paraffin in the range of 3-7%, petroleum oils up to 10% and other bituminous substances [1]. This composition of ozokerite, in addition to thermal and mechanical action, also causes a chemical effect on the human body. The highest heat capacity, heat retention capacity and the lowest thermal conductivity canse high efficiency of this material for physiotherapy. Therapeutic effects that occur primarily include anti-inflammatory and vasodilating effects, as well as acetylcholine-like, estrogen-like and chemical effects of ozokerite [1,3]. However, the features of low-intensity energy balance and microwave properties of the material, which occur when heated and also have an impact on the human body, need to be studied.

1 Relevance of the topic and analysis of recent achievements

In the technology of physiotherapy, the specialized medical literature identifies three main factors that arise and affect the treatment area, and through it the patient's body whole: thermal, mechanical and chemical [1,2,4,5]. The main is the thermal (heat) factor duo to the phenomenon of thermal conductivity, but in the structure of the energy balance there are significant microwave factors. Therefore, the as reason for the positive therapeutic effect in the implementation of therapeutic procedures can be considered not only the thermal process, but also related microwave radiation, which requires to be studied and investigated.

It is known from physics that the heating of any dielectric physical body is accompanied by electromagnetic radiation (EMR) in a wide range of frequencies. Moreover, its spectrum is noise-like, and the intensity for the temperatures characteristic of physiotherapy is small (up to 10-21 W/Hz cm2). At the same time, it is known that low-intensity EMR of different parts of the electromagnetic spectrum has a significant impact on biological objects, and therefore is nsed in microwave (millimeter) therapy at frequencies 30... 120 GHz, low-level light therapy (LLLT) and other technologies to influence biologically active points (or zones) and some areas of the skin surface of patients in order to normalize the human body state [5, 7]. The study of energy balance and structure of microwave radiation of some objects and the human body is reflected in the works of the authors [6,8].

Since low-intensity microwave radiation (at the level of 1 • 10-9... 1 • 10-12 W) has ct SI gniflcant impact on biological objects and the environment, it is the subject of recent research not only in Ukraine but also abroad [C, 8 11]. These studies have intensified in connection with planetary- and man-made electromagnetic pollution from the introduction of new millimeter-range telecommunications systems [12].

The aim of the article is to conduct theoretical and experimental studies of the emissivity of ozokerite, paraffin and their mixtures in the millimeter wavelength range. As mentioned above, microwave electromagnetic radiation is a concomitant factor during appropriate physiotherapy procedures, in particular heat therapy. This factor can significantly- affect the functional state of the body (see [6]). Therefore, it is advisable to determine the ratio of own EMR of the materials for physiotherapy and the patient's body, primarily in the millimeter wavelength range and take it into account when conducting physiotherapy procedures.

2 Theoretical data of the study

From the point of view of physics, the process of heat treatment should be considered clS ct violation of thermodynamic equilibrium in the system, which includes the area of each human body surface and the applied applicator. Energy- exchange in any system, parts of which have different temperatures, as it's known, can be carried out through processes of thermal conductivity, convection and radiation. In our case, convection can be ignored, and the energy- exchange between the surfaces of the applicator and the skin of the patient is carried out mainly duo to the phenomena of thermal conductivity and electromagnetic radiation.

The temperature distribution is described by the equation of thermal conductivity with certain boundary conditions, and the flow of thermal energy (thermal power, W) is represented by the well-known Fourier law

P = AgradT • oo, (1)

where A — the thermal conductivity of the applicator or biotissue (skin); gradT — temperature gradient between ozokerite-paraffin applicator and skin; a0 — the square of the surface perpendicular to the flow direction.

Figure la shows two arbitrary- objects, or the applicator and the patient's body, that are in thermal contact. In a state where the thermodynamic equilibrium is disturbed (T1 = T2) and the power of the heat flows P1,P2, is not balanced, the direction of energy-transfer depends on the temperature. For example, if the patient's temperature is higher than the applicator temperature (cooling applicator), the flow of heat energy- will be directed from the patient's skin and can be considered negative in relation to the person (Fig. lb)

Ph>Pa Ph<Pa

(a)

(b)

(c)

Fig. 1. Distribution of energy flows between arbitrary objects (a) and paraffin-ozokerite mixture in relation to the patient's body: b) negative energy flow; c) positive energy flow; ff — patient's body; A — applicator; Ph — the patient's energy flow; Pa — energy flow of the applicator

AP = PA - PH < 0,

where Pa - patient's energy flow, Ph - energy flow of the applicator.

If. on the contrary, the applicator is heating, as in the case of heat treatment, the flow will be directed to the patient, and it can be considered positive (Fig. lc)

AP = PA - PH > 0.

At the same time, it is known that, when heated, any physical body emits electromagnetic waves in a wide range of frequencies. Such thermal radiation has a noise-like character, and the distribution of its energy-density by frequency is described by Planck's law [13].

To determine the power level of the millimeter part of the microwave range, which can significantly affect the state of a live organism [5. 8]. yon can use the Rayleigh-Jeans formula for thermal radiation of an absolutely black body (ABB). In this case, the radiation power from the surface of the body a0 in the frequency range Af for three-dimensional objects is defined as

f2

P = 2np (f,T) J— kTaoAf,

c2

(2)

where k = 1, 38 • 10-23J/K - Boltzmann constant; T - radiating body temperature; f - radiation frequency (f ^ Af); P (f,T) — the coefficient of emissivity of the object (for ABB ft = 1).

If a radiometric system (RS) is used to record such radiation, its output signal will be proportional to the temperature difference between the object of study and the RS itself, ie excess power

f 2

AP =2nK1(f ) ß(f, T) J— k (T-TR) aAf =

c2

=K1(f ) ß(f,T) k (T-TR)Af,

(3)

where K\(f) — coefficient of the conversion of the receiving antenna, which also takes into account the influence of the radiation source; Tr — temperature of the radiometric receiver.

At the same time, in the field of radiological measurements, the Nyquist formula is used to estimate the receiver's own noise level and the output power of waveguide noise generators, which is converted to formula (2) for one-dimensional objects and the conformed load can be considered clS ct kind of equivalent of a absolutely black body. Tims, the waveguide RS for the analysis bands Af, provides measurement of microwave power generated by a source of thermal radiation. the level of which is determined by the formula (3).

In the case of differences in the emissivity of the applicator and human skin, ie the coefficients Pa and Ph, differ, between them there is an exchange of electromagnetic energy. The power of microwave energy flows, which are indicated in Fig. 1, can be determined by formulas:

PH = Ph (f,T) k (TH - Tr) Af,

Pa = PA(f,T) kTAAf, and accordingly, the resulting flow

AP =(pH-pA) kTAf.

Thus, depending on the ratio of temperatures Ta and Th, so as coefRcients Pa and Ph in relation to the area of the human body, both negative flow can be realized when the applicator emits less than the patient's skin (Fig. la), and positive when the opposite (Fig. lb).

At the same time, it is known that the authors [15] proposed a method of instrumental treatment using negative and positive low-intensity flows and conducted its laboratory and clinical trials. To perform such studies and provide the formation of rimlti-vector energy flows, a high-temperatnre noise generator "PorigVT" and a low-temperatnre noise generator "PorigNT" were used. Experimental laboratory studies were performed on the basis of the Kyiv Oncology Institute of the Ministry of Health of Ukraine by irradiating of snbentaneonsly inoculated sarcoma C-37 to three groups of white out bred mice (10 animals in each group) [15]. One of the groups served clS ct control.

Exposure was 3 minutes each day for 10 sessions. During the experiment, the indexes of peripheral blood of animals, the process of tumor growth. - the size and weight of the tumor - were evaluated. As a result, positive flows were found to stimulate tumor growth by 13.5%. and negative flows inhibited tumor growth by 27.4%.

As a result of clinical trials of the developed method on two groups of patients with gastrointestinal diseases the increase of efficiency and reduction of time in comparison with other methods of treatment of gastrointestinal diseases is established, with confirmation of results by endoscopic inspection [14]. The treatment method of the musculoskeletal system diseases and the equipment for it proved to be perspective. Positive effect of treatment was shown in removal of pain syndrome and permanent consolidation of this positive effect [6.15].

3 Features of microwave radiation formation of the ozokerite-paraffin applicator

The peculiarities of the formation of microwave radiation with ozokerite-paraffin applicator include the fact that its emissivity Pa is determined by the angle of dielectric loss 5 a and dielectric constant £a of the components of the mixture: ozokerite and paraffin, which depend on temperature [16]. It is also necessary to take into account the peculiarities of the frequency dependence of these values in the millimeter range, which are observed for both physical materials and biotissnos [16]. Moreover, the coefficient of emissivity of the applicator is a function of two variables Pa(I, T), and the coefficient of the emissivity of human depends only on one variable Ph(/), and their dependences on frequency differ. All this greatly complicates the theoretical analysis of the energy balance during the interaction of the studied objects.

Taking into account the specifics of physiotherapy procedures, the emissivity of the ozokerite-paraffin applicator in the microwave range for a certain temperature T, according to formula ( ), it is advisable to evaluate the excess integrated power in the frequency band Af, measured by the radiometric system

APa = Pa (f,T) (TA - TPC ) APH pH (f)(TH - TPC) :

(4)

where APa, APh - integrated power of radiation in the frequency band Af respectively the applicator and the surface of human skin in the operating frequency band of the radiometric receiver.

Given the above and the lack of literature data on the presence and level of the microwave component of the considered materials, which has a significant

impact on biological objects, the authors conducted an experimental study of the emissivity of ozokerite-paraffin mixture, taking into account the treatment protocol.

4 Equipment and methods of research

Studies of radiative ability in the millimeter range were conducted nsing materials that are most often nsod in medical institutions of Ukraine ozokerite from the Boryslav deposit of Lviv region (JSC "TD Ekoriied", date of manufacture January 2019). as well as purified paraffin pharmaceutical packaging.

Determination of microwave parameters of selected materials, taking into account the noted features of physical bodies when heated, was carried out according to the following method. The test material was placed in a metal container of cylindrical shape with a radius of the size of the horn receiving antenna. The temperature of the container with the material was maintained nsing a portable thermostat with an accuracy of ±0.25°C. The temperature was chosen in the range from 36°C to 50°C (maximum value provided by the method of treatment). Measurement of excess EMR power of samples of materials in containers was performed nsing a highly sensitive radiometric system with a sensitivity threshold of not more than 3d0-14 W

...

band Af, analyzed by this system, was approximately 0.1 GHz [8]. The appearance of the experimental setup is shown in Fig. 2a.

Fig. 2b shows the input part of the experimental setup. During the measurements, the receiving antenna A was placed in close proximity to the container with a sample of ozokerite-paraffin mixture S. Moreover, the container was installed on the plate 1 of the portable heater-thermostat 2 with the sensor 3. Using the controller 4, the temperature of the plate 1 was pro-sot the desired temperature of the experimental sample.

Fig. 2c shows a functional diagram of the experimental setup. The input 1 of the radiometric system through the precision attenuator 2 by means of a waveguide switch 4 was connected to the output of the antenna 6, which received the radiation of experimental sample 7, as well as to the reference noise generator 3 [8] and the agreed load 5.

This allowed, firstly, to control the zero deviation of the RS, and secondly, to determine the absolute valne of the excess integral power AP of the electromagnetic radiation source using a Gut generator, which can be considered "absolutely black body" in the specified

frequency range, with the possibility of setting its own

°

measurement allowed to determine the power with an error of approximately 10%.

G„

RS dB

m 7

(a)

(b)

(c)

Fig. 2. Appearance of a highly sensitive radiometric system for assessing the emissivity of materials in the

microwave range (a. b) and its functional diagram (c)

For example, the average valno of the excess integrated radiation power of the human palm was APh = (5 ± 0,5)-10-14W, which corresponded, taking into account the area of the aperture of the measuring antenna, the density of the flow of 2,5 TO-14 W/cm2.

The process of research and evaluation of microwave properties of materials was carried out taking into account the peculiarities of the technological cycle of treatment. The following parameters and characteristics were measured:

— the average level of radiation on the surface of human skin (palms of three respondents):

— changes in radiation levels, with the repeated nso of ozokerite during treatment with the addition of fresh material:

— radiation level of pure ozokerite and paraffin at the maximum therapeutic temperature of materials (+50°C);

— changes in the power level of EMR materials during their cooling:

— EMR power level of ozokerite depending on the percentage of paraffin impurities;

— comparison of the emissivity of materials with the average level of radiation of the human body and the output power of the thermal noise generator [8].

5 Evaluation of measurement results and research

1. EMR power measurements were performed at

±

of 100 MHz. For comparison, the average radiation power level of the human palm surface (limited

2

three respondents, which was Pr = (4,5 ± 0,5) x 10-13 W or, accordingly, taking into account the area of the measuring antenna aperture, density of the flow 2,2540-13 W/cm2 .

2. According to the recommendations, the course of treatment usually consists of 10 sessions, and before

each session to the previously nsod material is added 25% fresh. Studies of the electromagnetic properties of the selected samples showed that the addition of fresh portions of ozokerite at different stages of treatment did not significantly affect the parameters of EMR.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3. Fig. 3a shows the temperature dependences of the electromagnetic radiation power of the ozokerite-paraffin mixture APa, with different percentage impurities of paraffin relative to the above value APH. The dotted line shows a similar characteristic for the reference noise generator Gut (ABB). Paradoxical, at first glance, the excess of human radiation compared to ABB can be explained by the possible noneqnili-brinm radiation associated with biochemical processes in the human body, as well as to some extent the measurement error.

4. The absolute values of the EMR power level were determined nsing a certified reference noise generator, which is part of the radiometric system. The results of measurements at a maximum therapeutic temperature of 50°C (Fig. 3a) show that the level of radiation of pure ozokerite is slightly higher than in the human palm. At the same time, the level of EMR of pure paraffin at the same temperature does not exceed 20% relative to the level of radiation of human skin. This can lead to the formation of a negative EMF flow, the intensity of which increases with increasing percentage of paraffin in the mixture with ozokerite.

The graph of the temperature dependence of the power of its own radiation of pure ozokerite during its cooling, presented in Fig. 3b, shows that change in temperature can lead to a change in the redistribution of electromagnetic energy between the applicator and the skin. Tims, on the graph, in the temperature range

from 50°C to 46°C, a positive flow (AP > 0) is formed,

°°

negative flow (AP < 0) of microwave radiation.

After analyzing the graph in Fig. 3a, it can be concluded that basically all percentage mixtures of ozokerite and paraffin contribute to the formation of negative flow of electromagnetic radiation in the millimeter range. In this case, the physiological effects characteristic of heat treatment will also be accompanied by effects caused by negative flow [5,16], in particular, anti-inflammatory action.

3

(a)

(b)

Fig. 3. Dependence of relative power of radiating ozokerite-paraffin mixture on temperature (a) and distribution of electromagnetic energy flow for ozokerite applicator (b)

Conclusions from the results of the study

1. Experimental studies have shown that ozokerite. paraffin and its mixtures form low-intensity electromagnetic radiation in the millimeter range. This factor, together with the thermal effect, affects the patient's body, creating and enhancing the therapeutic effect.

2. Depending on the temperature, the pure ozokerite applicator, at the maximum temperature, forms a low-intensity positive flow of EMR. Decreasing the applicator temperature to less than 45 °C results in a negative EMF flow, the intensity of which increases

with further cooling. The total power of the ozokeri-

2

may be about 340-11W, which coincides in magni-

tude with the low-intensity levels used in millimeter therapy [6,8,15].

3. The use of ozokerite-paraffin mixture with a paraffin content of more than 10% in the range of recommended therapeutic temperatures leads to the formation of a negative flow of EMR, which increases with increasing percentage of paraffin in the mixture.

4. Experimental studies of EMR of the materials for ozokerite-paraffin therapy have shown the complexity of electromagnetic microwave processes that affect and interact with the electromagnetic field of the human body and require their consideration in physiotherapy.

References

[1] Vladymyrov O. A., oris. Fizioterapiia: pidruchnyk [Physiotherapy: a textbook]. Kyiv, Format, "2013. 432 p. [In U krainian].

[2] Ponomarenko G. N.. ods. Fizioterapija: Nacional'noe rukovodstvo [Physiotherapy: a national guide]. Moskow, GEOTAR Media, 2009. 864 p. [In Russian],

[3] Ulashchik V. S. Fizioterapiya. Universal'naya meditsi-nskaya entsiklopediya [Physiotherapy: a universal medical encyclopedia]. Minsk.: Knizhnyy Dom, 2008. 640 p. [In Russian].

[4] Weiss L. D. (Ed.), Weiss .1. M, Pobre T. Oxford American Handbook of Physical Medicine and Rehabilitation. Oxford University Press, 2010. 450 p.

[5] Syvolap V. D., Kalens:kiy V. Kh. Fizioterapiya: pidruchnyk dlya studentiv Vyshchykh medychnyy Navchal 'nykh Zakladiv [PHYSIOTHERAPY Textbook for students of higher medical educational institutions]. Z .: ZDMU, 2014. 196 p.

[6] Yanonko A. F., Peregudov S. N.. Fedotova 1. V., Golovchanska O. D. (2014). Equipment and technologies of low intensity millimeter therapy. Visnyk NTUU KP1 Seriia - Radiotekhnika Radioaparatobuduvannia, Vol. 59, pp. 103-110. doi: 10.20535/RADAP.2014.59.103-110.

[7] Rojas .1. C., Gonzalez-Lima F. (2011). Low-level light therapy of the eye and brain. Eye Brain, Iss. 3, pp. 49-67. doi: 10".2147/EB.S21391.

[8] Yanonko O., Shovchonko K., Malanchuk V., Golovchanska O. (2019). Microwave Evaluation of Electromagnetic Compatibility of Dielectric Remedial and Therapeutic Materials with Human Body. International .Journal of Biomedical Materials Research, Vol. 7, Iss. 1, pp. 37 43. DOLlO.11648/j.ijbmr.20190701.15.

[9] Bandara P., Carpenter D. O. (2018). Planetary electromagnetic pollution: it is time to assess its impact. The Lancet Planeary Health, Vol. 2, Iss. 12, pp. 512-514. doi:10.1016/82542-5196(18)30221-3.

[10] Russell C. L. (2018). 5G wireless telecommunications expansion: Public health and environmental implications. Environmental Research, Vol. 165, pp. 484 495. doi:10.1016/j.envres.2018.01.016.

[11] Bhatt, C. R., Redmayne, M, Abramson, M. 1. et al. (2016). Instruments to assess and measure personal and environmental radiofrequency-electromagnetic hold exposures. Australasian Physical & Engineering Sciences in Medicine, Iss. 39, pp. 29 42. DOI: 10.1007/sl3246-015-0412-z.

f 1"2] GajSek, P., Ravazzani, P., Wiart, .1., Grellier, .1., Samaras, T., Thuróczy, G. ("2015). Electromagnetic Field Exposure Assessment in Europe Radiofrequency ii-elds (10 MHz 6 GHz). .Journal of Exposure Science & Environmental Epidemiology, Iss. 25(1), pp. 37-44. DOl: 10.1038/jos.2013.40

[13] Mezhotraslevaya Internet-sistema poiska i sinteza Jizi-cheskikh princzipov dejstuiya preobrazouatelej e 'nergii [Interindustry Internet-based system for searching and synthesizing the physical principles of operation of energy converters]. [In Russian].

[14] Stepanov B. 1. Osnouy spektroskopii otritsatel'nykh suetouykh potokou [Fundamentals of Negative Light Flux Spectroscopy]. Minsk.: Iz-vo Beluniversit, 1961. 124 p. [In Russian].

[15] Yanenko O. P., Bundyuk L. S., Ponezha H. V. et al. Sposib mikrokhvyl:ovoyi terapiyi [METHOD OF MICROWAVE THERAPY], Patent Ukrayiny.. No. 59399, Byul. № 9, 2003.

[16] Koriczkij Yu. V., eds. Sprauochnik po elektrotekhnicheskim. materialam: v 3 tomakh, Tom 1 [Reference book on electrical materials. In three volumes. Volume 1]. Moskow, Energoatomizdat, 1986. 368 p. [In Russian].

Особливост! низькоштенсивного енер-гетичного балансу в процес! ф!зютера-певтичного застосування сумипей при-родних матер!ал!в

Яненко О. П., Перегудов С. М., Шевченко К. Л., Головчанська О. Д.

Авторами досшджеш особливоста епергетичиого балансу. що випикають в процео використаш1я природпих матер!ал!в в ф1зютерапевтичпих теплових процедурах. Так! речовипи, як озокерит, парафш. нафталан. л!ку-вальш гряз! та 1х поедпаппя широко застосовуються в ф1зютераш1. тому важливо знати не тальки параме-три теплообмшу. а також розподш шших вид!в епергп. який може впливати па показпики ефективпоста лйсу-валыюго процесу. Авторами теоретично обгруптовапо 1 експеримепталыю доказано паявшсть в спектр! ви-промшюваппя озокеритпого аплшатора м1крохвильово1 комиопеити. Р1вепь випромпповаппя в м!л!метровому д!апазон1 ашнкатора розм!ром 10x10 см сшвставлений з р!впем низькоштепсивних сигпал!в техшчних засоб!в для м!л1метрово1 терапп. Досл1джепо дипам1чпу зм1-пу р1вия випромпповаппя мшрохвильово! комиопеити в процео охолоджеппя ашнкатора в!д максимально! тем-ператури 50° С до температуря людського ила. Виявле-по паявшсть змши знаку р!впя м1л1метрово! комиопеити по в1д1Юшешпо до тала людипи. що призводить до фор-муваппя позитивного 1 в1д'емпого иизькоштепсивиих по-тошв мшрохвильового випромшюваппя. Досл1джепо д1-апазопи паявпоста цих поток!в та !х р!вепь. Встаповлепо. що змшою в!дсотковим складом парафшу в озокерит! можпа регулювати р!вепь 1 д!апазоп в1д!емпих м!кро-хвильових потошв. Наведеш результати попередшх до-сл!джепь автор!в. як! обгруптовують позитивпий вплив в!д!емпих потошв в тому чпсл! 1 озокерито-парафшово! терапп при запалышх процесах з «падлишком епергп»

та шших захворювашшх. Досл1джепе авторами м!кро-хвильове електромагштпе випромшюваппя е супутшм фактором шд час в!дпов1дпих ф!зютерапевтичпих процедур, зокрема теплолшуваппя. Одиак цей фактор може суттево вплнватп па фупкцюпалышй стап оргашзму лю-дипи, тому його пеобх1дпо враховуватп при проведепш ф1зютерапевтнчпих процедур.

Клюноаг слова: мшрохвильове випромшеппя: в!д'емш та позитивш потоки: ф!зютерапевтичш про-цедури: озокерито-парафпюва сум!ш

Особенности низкоинтенсивного энергетического баланса в процесе физиотерапевтического применения смесей натуральных материалов

Яненко А. Ф., Перегудов С. П., Шевченко К. Л., Головчанская А. Д.

Авторами исследованы особенности энергетического баланса, возникающие в процессе использования природных материалов в физиотерапевтических тепловых процедурах. Такие вещества, как озокерит, парафин, нафталан, лечебные грязи и их сочетания широко применяются в физиотерапии, поэтому важно знать по только параметры теплообмена, а также распределение других видов энергии, которое может влиять па показатели эффективности лечебного процесса. Авторами теоретически обосновано и экспериментально доказано наличие в спектре излучения озокеритпого аппликатора микроволновой компоненты. Уровень излучения в миллиметровом диапазоне аппликатора размером 10x10 см сопоставим с уровнем пизкоиптепсивпых сигналов технических средств для миллиметровой терапии. Исследовано динамическое изменение уровня излучения микроволновой компоненты в процессе охлаждения аппли-

°

туры человеческого тела. Выявлено наличие изменения знака уровня миллиметровой компоненты по отношению к телу человека, что приводит к формированию положительного и отрицательного пизкоиптепсивпых потоков микроволнового излучения. Исследованы диапазоны этих потоков и их уровень. Установлено, что изменением процентного состава парафина в озокерите можно регулировать уровень и диапазон отрицательных микроволновых потоков. Приведены результаты предыдущих исследований авторов, обосновывающих положительное влияние отрицательных потоков, в том числе и озокерито-парафиповой терапии, при воспалительных процессах с «избытком энергии» и других заболеваниях. Исследованное авторами микроволновое электромагнитное излучение является сопутствующим фактором при соответствующих физиотерапевтических процедурах, в частности теплолечении. Однако этот фактор может существенно влиять па функциональное состояние организма человека, поэтому его необходимо учитывать при проведении физиотерапевтических процедур.

Ключевые слова: микроволновое излучение: отрицательные и положительные потоки: физиотерапевтические процедуры: озокерито-парафиповая смесь

i Надоели баннеры? Вы всегда можете отключить рекламу.