Научная статья на тему 'Эжекция и инжекция реагентов в технологиях водоподготовки'

Эжекция и инжекция реагентов в технологиях водоподготовки Текст научной статьи по специальности «Строительство и архитектура»

CC BY
477
38
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭЖЕКТОР / EJECTOR / ДИФФУЗОР / DIFFUSER / КАМЕРА СМЕШЕНИЯ / MIXING CHAMBER / КОЭФФИЦИЕНТ ЭЖЕКЦИИ / EJECTION COEFFICIENT / АЭРАЦИЯ / AERATION / ХЛОРИРОВАНИЕ / CHLORINATION

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Петросян О. П., Горбунов А. К., Рябченков Д. В., Кулюкина А. О.

Система водоподготовки предусматривает введение в нее различных реагентов. Основными технологическими способами внедрения реагентов в обеззараживаемую воду являются эжекция и инжекция. В данной статье проведен анализ этих методов. Разработана методика расчета высокопроизводительных эжекторов. Проведенными авторами лабораторные и производственные испытаниями установлены оптимальные соотношения продольных размеров внутреннего сечения, обеспечивающие максимально эффективное значение коэффициента эжекции.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Петросян О. П., Горбунов А. К., Рябченков Д. В., Кулюкина А. О.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

EJECTION AND INJECTION OF REAGENTS IN WATER TREATMENT TECHNOLOGIES

A water treatment system provides for the introduction of various reagents into it. The main technological methods for introducing reagents into disinfected water are ejection and injection. This article analyzes both of these methods. A technique for calculating high-efficiency ejectors is developed. The laboratory and production tests carried out by the authors established the best proportions of the internal section longitudinal dimensions they ensure the maximum effective value of the ejection coefficient.

Текст научной работы на тему «Эжекция и инжекция реагентов в технологиях водоподготовки»

DOI: https://doi.org/10.23670/IRJ.2017.62.084 Петросян О.П.1, Горбунов А.К.2, Рябченков Д.В.3, Кулюкина А.О. 4

1 Кандидат физико-математических наук, доцент, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана) 2Доктор физико-математических наук, профессор, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана) 3Аспирант, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана) 4Аспирант, Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана) ЭЖЕКЦИЯ И ИНЖЕКЦИЯ РЕАГЕНТОВ В ТЕХНОЛОГИЯХ ВОДОПОДГОТОВКИ

Аннотация

Система водоподготовки предусматривает введение в нее различных реагентов. Основными технологическими способами внедрения реагентов в обеззараживаемую воду являются эжекция и инжекция. В данной статье проведен анализ этих методов. Разработана методика расчета высокопроизводительных эжекторов. Проведенными авторами лабораторные и производственные испытаниями установлены оптимальные соотношения продольных размеров внутреннего сечения, обеспечивающие максимально эффективное значение коэффициента эжекции. Ключевые слова: эжектор, диффузор, камера смешения, коэффициент эжекции, аэрация, хлорирование.

Petrosyan O.P.1, Gorbunov A.K.2, Ryabchenkov D.V.3, Kuliukina A.O. 4

:РШ in Physics and Mathematics, Associate Professor, 2PhD in Physics and Mathematics, Professor, 3Postgraduate Student, 4Postgraduate Student,

Kaluga Branch of the Federal State Budget Educational Institution of Higher Professional Education "Bauman Moscow State Technical University (National Research University" (Kaluga Branch of Moscow State Technical University named after

N.E. Bauman)

EJECTION AND INJECTION OF REAGENTS IN WATER TREATMENT TECHNOLOGIES

Abstract

A water treatment system provides for the introduction of various reagents into it. The main technological methods for introducing reagents into disinfected water are ejection and injection. This article analyzes both of these methods. A technique for calculating high-efficiency ejectors is developed. The laboratory and production tests carried out by the authors established the best proportions of the internal section longitudinal dimensions - they ensure the maximum effective value of the ejection coefficient.

Keywords: ejector, diffuser, mixing chamber, ejection coefficient, aeration, chlorination.

Питьевая вода, централизовано подаваемая населению, должна соответствовать СанПин 2.1.4.559-96. Такое качество воды достигается, как правило, использованием классической двухступенчатой схемы, представленной на рисунке 1. На первой ступни в очищаемую воду вводят коогулянты и флокулянты и затем, производится осветление в горизонтальных отстойниках и скорых фильтрах, на второй ступени перед подачей в РЧВ производится обеззараживание [1, С. 36-38], [2, С. 56-62].

Технологии водоподготовки

С

С12,

коагулянт, флокулянт

Насосная станция I подъема

I

От водоисточника

Смеситель

С12

Резервуар Насосная

1 Фильтры 1 чистой воды 1 станция II подъема

К потребителю

>

Рис. 1 - Технологическая схема системы водоподготовки

Таким образом, в схеме предусмотрено введение в воду различных реагентов в виде газов (хлор, озон, аммиак, диоксид хлора), растворов гипохлорита, коагулянтов (сернокислый алюминий и/или гидроксохлорид алюминия), флокулянтов (ПАА, прайстол и феннопол). Чаще всего дозирование и подача этих реагентов производится методом инжекции или эжекции.

Инжекция - это ввод и распыление через форсунку (инжектор) растворов хлорной воды, гипохлорита, коагулянта

(флокулянта) насосами под давлением.

Эжектор - «эжекционный насос» приводит в движение раствор реагента или газа путем разряжения среды. Разряжение создается движущимся с большей скоростью, рабочим (активным) потоком. Этот активный поток назавем эжектирующим, а приводимую в движение смесь эжектируемой (пассивной смесью). В камере смешения эжектора пассивная смесь передает энергию активному потоку, вследствие чего все их показатели, в том числе и скорости.

Широкое применение процесса эжектирования обосновывается следующими факторами: простотой устройства и его технического обслуживания; малым износом вследствии отсутствия трущихся деталей, что обусловливает длительный срок службы. Именно поэтому эжектирование применяется во многих сложных технических устройствах, таких как: химические реакторы; системы дегазации и аэрации; газотранспортных установках, сушки и вакуумировании; системах передачи теплоты; и, конечно, как сказано выше в ситемах водоподготовки и водоснабжения.

Ограничение в применении инжекторов в тех же системах связано с их малой производительностью, так как большая производительность требует мощных насосов-инжекторов, что приводит к существенному удорожанию системы, в то время как увеличение производительности эжекторами менее затратно. Так автоматические модульные станции водоподготовки, рассчитанные на снабжение питьевой водой небольших поселков, в подавляющем большинстве используют инжекцию. Типовая конструкция такой станции универсального типа представлена в [3], где на всех точках ввода реагентов в воду используется инжекция. Часто принимают и компромиссное решение (рис.2). На первом этапе эжекцией газообразного хлора в воду с использованием хлораторов в эжекторе 4 получают так называемую хлорную воду, которую затем (на втором этапе) инжектируют насосом 1 в водовод 2, где движется поток обрабатываемой воды.

Рис. 2 - Эжекция и инжекция газообразного хлора в воду

водовод

Рис. 3 - Схема ввода хлорной воды в процессе инжекции ее в водовод

Типовой инжекционный узел ввода хлорной воды в водовод 2 в таких случаях представлен на рис.3. Достоинством такой схемы является рациональное совмещение эжекции и инжекции, что позволяет благодаря насосу 1, необходимому для реализации инжекции, обеспечить высокую эжекционную производительность эжектора. Диаграммы выбора насоса 1 в таких схемах для эжектора с производительностью до 20 кг С1/час представлены на рис. 4.

На рис. 5 представлена типовая конструкция эжектора, наиболее характерная для дозирования газового реагента (чаще всего хлора) в водовод. Эжектор состоит из линии подачи эжектирующего потока (воды) представляющей собой конусообразное сопло 1, которое соединяется с камерой смешения (рабочая камера) 2 и камерой смешения 4. В рабочую камеру 2 Подается эжектируемый газообразный хлор через устройство 3. Диффузор 5 подает хлорную воду в водовод [4, С. 15 - 18].

29

90.5 аз 1.1 1.4 1.7 2 23 26 29 12 3.5

8 ----------

12----------

^ ОЙ----------

V аз 1.1 1.4 1.7 2 23 26 29 Ъ2 Дат пенке потока годы I г си он од к I точи* пола хлорной голы, кГС/ХЕ.СИ

Рис. 4 - Диаграмма выбора насоса к эжектору 20кг в!/час

Параметры такого эжектора являются исходными величинами, определяющими все основные рабочие параметры узлов ввода реагентов. Авторами разработана методика [5, С. 56-62] расчета высокопроизводительных хлораторов на основе, которой разработан и запатентован модельный ряд эжекторов различной производительности [6, С. 142].

Производительность и другие характеристики инжектора, который фактически является дозирующим насосом, зависят от общих технических характеристик собственно насоса и системы импульсного дозирования. Основные же характеристики эжектора определяют конструктивные особенности его сечения, причем эти особенности настолько принципиальны, что без технических расчетов и экспериментальных проработок обеспечить эффективность работы эжектора практически невозможно. Поэтому целесообразно рассмотреть эти вопросы на примере эжекторов для дозирования газообразного хлора в воду.

Таким образом, действие эжектора основано на передаче кинетической энергии эжектируещего потока (активного потока) жидкости, обладающего большим запасом энергии, эжектируемому (пассивному) потоку, обладающему малым запасом энергии [7,], [8, С. 184]. Запишем уравнение Бернулли для идеальной жидкости в соответствии, с которым сумма удельной потенциальной энергии (статического напора) и удельной кинетической энергии (скоростного напора) постоянна и равна полному напору:

Рис. 5 - Эжектор для дозирования газообразного хлора в воду

Истекающая из сопла вода обладает большей скоростью (у2>у1), т. е. большим скоростным напором, поэтому пьезометрический напор потока воды в рабочей камере 2 и в камере смешения уменьшается (р2<р1), это и приводит к подсосу газа (в нашем случае хлора) в камеру смешения. В камере происходит перемешивание рабочей и эжектируемой сред. В диффузоре 5 скорость смеси сред уменьшается, а статический напор увеличивается, благодаря которому жидкость подается в водовод по нагнетательному трубопроводу.

Отношение расхода эжектируемой жидкости (0Э) к расходу рабочей жидкости (0Р) называется коэффициентом подмешивания или эжекции - а.

Коэффициент эжекции, зависящий от параметров эжектора, лежит в довольно широких пределах от 0.5 до 2.0. Наиболее устойчивая работа водоструйного насоса наблюдается при а=1.

Коэффициентом напора эжекционного насоса В назавем отношение полной геометрической высоты подъема (Н) эжектируемого потока жидкости в метрах - это давление на входе в эжектор к напору рабочего потока (И) в м -противодалению.

Важным параметром характерезующий эффективность работы эжектора и также зависящий от конструктивных параметров устройства является коэффициент полезного действия насоса. Как известно этот коэффициент равен отношению полезно затраченной мощности (Н СЬ'У кГм/сек) к затраченной мощности (Ь• Ои• V кГм/сек), то есть

а

&-Яр-Г ^ ЯР

Таким образом, эффективность работы эжекционного насоса определяется произведением коэффициентов напора и эжекции. Лабораторные эксперименты на стенде проводились для определения коэффициента напора эжекторов различной производительности. Полученная экспериментальная диаграмма эжектора изображена на рис.3. По данной диаграмме определяются параметры - давление на входе в эжектор, противодавление и расход эжектрующей жидкости, которые обеспечивают расход эжектируемого газа 20 кг/ч.

В соответствии с полученной методикой расчетов параметров эжектора определены основополагающие типоразмеры эжекторов модельного ряда хлораторов с производительностью по хлору от 0,01кг/час до 200 кг/час обеспечивающие максимальную эжекционную способность. Установлено, конфигурация внутреннего продольного сечения эжектора, необходимо учитывать следующие размеры сечения (рис.5): диаметр сопла Б, длина рабочей камеры Ь, диаметр камеры смешения Б1, длина камеры смешения Ь1, выходной диаметр диффузора Б2, длина диффузора Ь2.

Получено экспериментальное подтверждение зависимости расхода хлора 0 от расхода воды Я. Кривая 0 = ДЯ) аппроксимируется двумя прямыми пересечение которых, отделяет зону эффективной эжекции с высоким коэффициентом эжекции от зоны неэффективной. Очевидно, что дальнейший интерес представляет область эффективной эжекции, а конструкция внутреннего сечения эжектора должна быть такова, чтобы коэффициент эжекции в этой области был максимально возможным.

Область, в которой изменяется коэффициент эжекции, определяется геометрическим параметром эжектора т, равным отношению площади сечения камеры смешения Б к площади сечения сопла Б1:

т = ^1,

Таким образом, этот параметр является основным, по которому рассчитывают все остальные основные размеры эжекционного насоса.

Анализ результатов, полученных из сопоставления экспериментальных результатыов с существующими аналитическими данными [5, С. 56 - 62] позволяет сделать следующие выводы. Наиболее эффективная эжекция насоса

соответствует параметру m лежащему в диапазоне значений 1,5 - 2,0. В этом случае, определяемый по формуле

диаметр камеры смешения D1 = D * , при D = 7мм лежит в диапазоне 8,6 -10 мм.

Экспериментально установлена пропорция, связывающая все параметры, обозначенные на рис.5 L = 1,75D, L1 = 1,75D, L2= 7,75D. Эти соотношения обеспечивают максимальный коэффициент эжекции, который лежит в области максимально эффективной эжекции.

Таким образом, можем сделать вывод, что для достижения максимальной эжекции конструкция внутреннего продольного сечения и соотношения размеров должны соответствовать найденным соотношениям D1=1,25D, D2 =

2,5D, L = 1,75D, L1 = 1,75D, L2 =7,75D Сконструированный по данным соотношениям эжекционный насос создает оптимальные условия для передачи кинетической энергии эжектируещей жидкости поступающей на вход насоса под большим давлением, определяемым по диаграмме, эжектируемому газу подаваемому в камеру смешения с меньшим скоростным напором и меньшим запасом энергии и обеспечивает максимальное подсасывание газа.

Список литературы / References

1. А. Б. Кожевников. Современная автоматизация реагентных технологий водоподготовки / А. Б. Кожевников,

0. П. Петросян // Стройпрофиль. - 2007. - № 2. - С. 36 - 38.

2. Бахир В. М. К проблеме поиска путей повышения промышленной и экологической безопасности объектов водоподготовки и водоотведения ЖКХ / Бахир В. М. // Водоснабжение и канализация. - 2009. - № 1. - С. 56 - 62.

3. Пат. 139649 Российская Федерация, МПК C02F9. Автоматическая модульная станция водоподготовки с системой розлива и продажи питьевой воды улучшенного вкусового качества / Кожевников А. Б. Петросян А. О., Парамонов С. С.; опубл. 20.04.2014.

4. А. Б. Кожевников. Современное оборудование хлораторных станций водоподготовки / А. Б. Кожевников, О. П. Петросян // ЖКХ. - 2006. - № 9. - С. 15 - 18.

5. Бахир В. М. К проблеме поиска путей повышения промышленной и экологической безопасности объектов водоподготовки и водоотведения ЖКХ / Бахир В. М. // Водоснабжение и канализация. - 2009. - № 1. - С. 56 - 62.

6. А. Б. Кожевников, О. П. Петросян. Эжекция и сушка материалов в режиме пневмотранспорта. - М: Изд-во МГТУ им. Н. Э. Баумана. - 2010. - C. 142.

7. Пат. 2367508 Российская Федерация, МПК C02F9. Эжектор для дозирования газообразного хлора в воду / А. Б. Кожевников, О. П. Петросян.; опубл. 20.09.2009.

8. А. С. Волков, А. А. Волокитенков. Бурение скважин с обратной циркуляцией промывочной жидкости. - М: Изд-во Недра. - 1970. - С. 184.

Список литературы на английском языке / References in English

1. А. B. Kozhevnikov. Sovremennaja avtomatizacija reagentnyh tehnologij vodopodgotovki [Modern automation of reagent technologies of water treatment] / A. B. Kozhevnikov, O. P. Petrosjan // Strojprofil' [Stroyprofile]. - 2007. - № 2. - P. 36 - 38. [in Russian]

2. Bahir V. M. K probleme poiska putej povyshenija promyshlennoj i jekologicheskoj bezopasnosti ob#ektov vodopodgotovki i vodootvedenija ZhKH [To the problem of finding ways to improve the industrial and environmental safety of water treatment and disposal facilities] / Bahir V. M. // Vodosnabzhenie i kanalizacija [Water supply and sewerage]. - №

1. - Р. 56 - 62. [in Russian]

3. Pat. 139649 Russian Federation, MPK C02F9. Avtomaticheskaja modul'naja stancija vodopodgotovki s sistemoj rozliva i prodazhi pit'evoj vody uluchshennogo vkusovogo kachestva [Automatic modular water treatment station with a system for bottling and selling drinking water of improved taste] / A. B. Kozhevnikov, A. O. Petrosjan, S. S. Paramonov.; Publ. 20.04.2014.

4. A.B. Kozhevnikov. Sovremennoe oborudovanie hloratornyh stancij vodopodgotovki [Modern equipment of chlorination stations of water treatment] / A. B. Kozhevnikov. // ZhKH [Housing and communal services]. - 2006. - № 9. - P. 15 - 18. [in Russian]

5. Bahir V. M. K probleme poiska putej povyshenija promyshlennoj i jekologicheskoj bezopasnosti ob#ektov vodopodgotovki i vodootvedenija ZhKH [To the problem of finding ways to improve the industrial and environmental safety of water treatment and disposal facilities]. / Bahir V. M. // Vodosnabzhenie i kanalizacija [Water supply and sewerage]. -2009. - № 1. - P. 56 - 62. [in Russian]

6. B. Kozhevnikov, O. P. Petrosjan. Jezhekcija i sushka materialov v rezhime pnevmotransporta [Ejection and drying of materials in pneumatic transport mode]. M: Izd-vo MGTU im. N. Je. Baumana [Publishing house Moscow State Technical University named after N. Bauman Kaluga Branch]. - 2010. - P. 142. [in Russian]

7. Pat. 2367508 Russian Federation, MPK C02F9. Jezhektor dlja dozirovanija gazoobraznogo hlora v vodu [Ejector for dosing chlorine gas into water] / A. B. Kozhevnikov, A. O. Petrosjan; Publ. 20.09.2009.

8. S. Volkov, A. A. Volokitenkov. Burenie skvazhin s obratnoj cirkuljaciej promyvochnoj zhidkosti [Drilling of wells with back circulation of washing liquid]. M: Izd-vo Nedra [Publishing house Bosom]. - 1970. - P. 184. [in Russian]

i Надоели баннеры? Вы всегда можете отключить рекламу.