HYDROGEN STORAGE
Статья поступила в редакцию 28.10.15. Ред. рег. № 2391
The article has entered in publishing office 28.10.15. Ed. reg. No. 2391
УДК 541.67:541.142 doi: 10.15518/isjaee.2015.21.008
ЭКСТРАОРДИНАРНОЕ ПРОЯВЛЕНИЕ ЭФФЕКТОВ ТИПА ЭФФЕКТА
КУРДЮМОВА И ВОДОРОДНОГО СПИЛЛОВЕР ЭФФЕКТА В СВЯЗИ С ПРОБЛЕМОЙ ЭФФЕКТИВНОГО ХРАНЕНИЯ ВОДОРОДА
В ГРАФИТОВЫХ НАНОВОЛОКНАХ
Ю. С. Нечаев
ЦНИИчермет им. И. П. Бардина Институт металловедения и физики металлов им. Г.В. Курдюмова 105005 Москва, 2-я Бауманская ул., д. 9/23 E-mail: [email protected]
Заключение совета рецензентов: 01.11.15 Заключение совета экспертов: 05.11.15 Принято к публикации: 09.11.15
Рассматриваются термодинамические стимулы и энергетика интеркаляции нанофазы молекулярного водорода высокой плотности в углеродные наноструктуры. Обсуждается физика экстраординарного проявления эффектов типа эффекта Курдюмова и водородного спилловер эффекта в связи с проблемой эффективного хранения водорода в графитовых нановолокнах.
Ключевые слова: обработка атомным водородом, высоко ориентированный пиролитический графит, эпитаксиальные графе-ны, графитовые нановолокна, интеркаляция твердого H2, эффект Курдюмова, водородный спилловер эффект, хранение водорода на борту автомобиля.
EXTRAORDINARY MANIFESTATION OF THE KURDJUMOV-LIKE EFFECT AND THE SPILLOVER-LIKE ONE, RELEVANCE TO THE PROBLEM OF THE EFFICIENT HYDROGEN STORAGE IN GRAPHITE NANOFIBERS
Yu.S. Nechaev
I.P. Bardin Central Research Institute for Ferrous Metallurgy G.V. Kurdjumov Institute of Metals Science and Physics 9/23, 2-ya Baumanskaya str., Moscow, 105005, Russia E-mail: [email protected]
Referred: 01.11.15 Expertise: 05.11.15 Accepted: 09.11.15
Thermodynamic stimuli and energetics of intercalation of H2 nanophase of a high density into carbon-based nanostructures are considered. The physics of the extraordinary manifestation of the Kurdjumov-like effect and the hydrogen spillover-like one, relevance to the problem of the efficient hydrogen storage in graphite nanofibers are discussed.
Keywords: atomic hydrogen treatment, HOPG, epitaxial graphenes, graphite nanofibers, solid H2 intercalation, hydrogen spillover effect, the Kurdjumov effect, hydrogen on-board storage.
Юрий Сергеевич
Нечаев Yury S. Nechaev
Сведения об авторе: д-р физ.-мат. наук, профессор, главный научный сотрудник Института металловедения и физики металлов им. Г.В. Курдюмова, ЦНИИчермет им. И.П. Бардина. Образование: Московский институт стали и сплавов (МИСиС). Область научных интересов: физическое материаловедение.
Публикации: www.scopus.com.scopeesprx.elsevier.com/results (Scopus - Results: AU-ID ("Nechaev,Yu.S."7005536791).
Author data: Dr. Sc., Prof., Chief researcher of G.V. Kurdyumov Institute of Metals Science and Physics, I.P. Bardin Institute for Ferrous Metallurgy.
Education: Moscow Institute (Technical University) of Steel and Alloys. Scientific-research fields: physical materials science.
Publications: www.scopus.com.scopeesprx.elsevier.com/results (Scopus - Results: AU-ID ("Nechaev,Yu.S."7005536791).
№ 21 (185) Международный научный журнал
1. Introduction
Over the past 20 years, many scientists have reported that hydrogen spillover is a viable technique to achieve more hydrogen storage on different carbon-based materials and nanomaterials, even at ambient conditions [1-25]. However, as noted, for instance, in [1], the veracity of these results and the efficiency of such graphitic structures to store hydrogen are still questionable. In addition, the spillover mechanism and energetics of molecular hydrogen on different carbon-based materials and nanomaterials, in the presence of metallic catalysts, has not been satisfactory understood up to nowadays [1].
These open questions are considered in the present study, which is a further development of results [26] and the previous results [27] (of an open access). The present study is related to the extraordinary data on molecular gaseous hydrogen interactions with graphite nanofibers (with metallic catalysts), when, as is shown in this study, a unique manifestation of both the spillover effect [1-25] and the Kurdjumov-like [28, 29] extraordinary effect occur. The mechanism and energetics of such two effects are revealed, particularly, by comparing with data on atomic gaseous hydrogen interactions with highly oriented pyrolytic graphites (without any catalysts) and epitaxial graphenes (also without any catalysts).
2. Experimental methodology
In this study, thermodynamic analysis approach [26, 27] of the related experimental data (including some figures from [27]) have been used.
3. Results and discussion
3.1. The physics of intercalation of H2 gaseous nanophase of high density into graphene nanoblisters in HOPG and epitaxial graphenes (under atomic hydrogen treatment)
Fig. 1, 2 (Fig. 19, 20 from [27]) show the two steps ((a) and (b)) of hydrogenation (at 300 K and the atomic hydrogen flux, formally corresponding to pressure P(Hgas) = 1-10-4 Pa, without any catalyst) of surface graphene layers of a highly oriented pyrolytic graphite (HOPG) resulted in intercalation of H2 gaseous nanophase of a high density into surface graphene nanoblisters.
Approximating the nanoblister to be of a semi-ellipse form, results in the blister area of Sb ~ 2.0-10-11 cm2 and its volume Vb ~ 8.4-10-19 cm3. The amount of retained hydrogen in this sample becomes Q ~ 2.8-1014 H2/cm2, and the number of hydrogen molecules captured inside the blister becomes n ~ (QSb) = 5.5-103. Thus, within the ideal gas approximation and accuracy of one order of the magnitude, the internal pressure of molecular hydrogen in a single nanoblister at near-room temperature (T = 300 K) becomes Pm = {fe(QSb)T/Vb} = 1108 Pa. The hydrogen molecular gas density in the blisters
(at T = 300 K and Рш = 1108 Pa) can be estimated as
P « i(QMmSb)/Vb} = 0.045 g/cm3 hydrogen molecule mass.
where MH2 is the
Рис. 1 (рис. 19 из [27]). STM данные (Waqar, 2007) для исходного (не обработанного атомным водородом) образца высоко ориентированного пиролитического графита (HOPG): (а) площадь поверхности 60,8x60,8 нм; (b) площадь поверхности 10,9x10,9 нм. (с) Площадь поверхности 1x1 нм, для образца, подвергнутого обработке атомным водородом дозой D = 1,8101 Н0/см2 (d) Профиль поверхности для обработанного образца (с) Fig. 1 (Fig. 19 from [27]). STM images of the untreated HOPG sample (Waqar, 2007) taken from areas of (a) 60.8 x60.8 nm and (b) 10.9x10.9 nm. (с) AFM image (area of 1x1 nm) of the
HOPG sample subjected to atomic hydrogen dose (D) of 1.81016 H0/cm2 (d) Surface height profile obtained from the AFM image reported in (с)
Рис. 2 (рис. 20 из [27]). (а) Эффективность аккумулирования
водорода в HOpG образцах (Waqar, 2007): зависимость количества десорбированного молекулярного водорода (Q) от дозы (D) атомного водорода. (b) STM данные для площади поверхности 600x600 нм для HOPG образца, подвергнутого обработке атомным водородом дозой 1,81016 ^/см и последующему термодесорбционному нагреву
Fig. 2 (Fig. 20 from [27]). (a) Hydrogen storage efficiency of HOPG samples (Waqar, 2007): quantity of desorbed molecular hydrogen (Q) versus dose (D) of atomic hydrogen exposure. (b) STM image for 600x600 nm area of the HOPG sample subjected to atomic hydrogen dose of 1.81016 HO/cm2, followed by hydrogen thermal desorption
№ 21 (185) Международный научный журнал
The data in Fig. 1, 2 (Fig. 19-20 from [27]) can be quantitatively described, with an accuracy of one order of magnitude, and interpreted within the thermodynamic approach [26, 27], by using the condition of the thermal-elastic equilibrium of two phases (the Kurdjumov-like effect) for the process of (Hfeas) ^ / H^gasjnblister,)), as follows:
=(pJP0)2exp{is -Ph*2AV]/kBT}, (1)
where PH* is related to the blister "wall" back pressure
(caused by PH ) the so called surface pressure (PH* =
= PH = 1108 Pa), PH is the atomic hydrogen pressure
corresponding (formally) to the atomic hydrogen flux (PH = 110-4 Pa), PH02 = Ph0 =1 Pa is the standard
pressure, AHdis = 4.6 eV is the dissociation energy (enthalpy) of one molecule of gaseous hydrogen (at room temperatures), ASdis = 11.8 kB is the dissociation entropy, AV = (Sbrb/n) is the apparent volume change, rb is the radius of curvature of nanoblisters at the nanoblister edge (rb = 30 nm, Fig. 1), NA is the Avogadro number, and T is the temperature (T ~ 300 K). The quantity of (PH*2AV) is related to the work of the
nanoblister surface increasing with an intercalation of 1 molecule of hydrogen.
It is necessary to emphasize that the process (H(gas) ^ ^ / H2(gas_m_biisters)) is one directional, and the process ends when the thermo-elastic equilibrium of the two gas phases (H^) and H^jnuistero) is reached (Fig. 20 (a) in [27], Equation (1)). This is a typical situation of the Kurdjumov effect. But in the case under the consideration, there is an unusually high energetics (at the expense of the free energy of association of penetrating (in the graphene nanoblisters) hydrogen atoms to the "captured" hydrogen molecules).
The value of the tensile stresses cb (caused by PH* )
in the graphene nanoblister "walls" with a thickness of db and a radius of curvature rb can be evaluated from another condition (equation) of the thermal-elastic equilibrium of the system in question, as follows:
Gb = PH (rb/2db) = (eEb),
(2)
where eb is a degree of elastic deformation of the graphene nanoblister walls, and Eb is the Young's modulus of the graphene nanoblister walls.
Substituting in the first part of Equation (2) the quantities of PH* = 1108 Pa, rb = 30 nm and db = 0.15
nm, results in the value of cb = 1-1010 Pa.
The degree of the elastic deformation of the graphene nanoblister walls, apparently reaches eb = 0.1 (Fig. 21, 19 in [27]). Hence, with Hooke's law of approximation, using the second part of Equation (2), one can estimate, with the accuracy of one order of the magnitude, the
value of the Young's modulus of the graphene nanoblister walls: Eb = (cb/eb) = 0.1 TPa. The calculated quantity of Eb is of one order lower than that considered in [27] experimental value (Lee et al., 2008; Pinto and Leszczynski, 2014) of the Young's modulus of graphene (Egraphene = 1.0 TPa). This difference may be related to a possible higher defect level of the graphene nanoblister walls, and/or to a possible internal side hydrogenation of the walls.
Рис. 3 (рис. 14 из [27]). (a) STM данные (Balog et al., 2009) для поверхности эпитаксиального графена, подвергнутого водородной обработке. Наблюдаемые яркие наноблистеры (нановспучивания поверхностного слоя) отвечают водородным кластерам. Температура водородного пучка составляла T = 1600 K, время воздействия t = 90 с, интенсивность потока атомов водорода F = 1012-1013 ат./см2с, что отвечало давлению атомарного водорода PH » 10-4 Па [26]. (b) Наблюдаются большие области дегидрированного графена, образующиеся при нагреве (отжиге) материала до 1073 K
Fig. 3 (Fig. 14 from [27]). (a) STM image of the graphene surface after extended hydrogen exposure (Balog et al., 2009). The bright protrusions visible in the image are hydrogen clusters. Hydrogen dose at T = 1600 K, t = 90 s, F = 1012-1013 atoms/cm2s, it corresponds to PH я 10-4 Pa [26]. (b) Large graphene area recovered from hydrogenation by annealing to 1073 K
Similar STM, AFM and other data of different researchers for the epitaxial graphenes (for instance, Fig. 3 (Fig. 14 in [27]) can be analyzed and interpreted in a similar manner [26, 27], within the same physical concept (Equations 1 and 2, the Kurdjumov-like extraordinary effect). As is noted in [27], a number of researchers (Waqar, 2007; Watcharinyanon et al., 2011; Wojtaszek et al., 2011; Castellanos-Gomezet al., 2012; Bocquet et al., 2012; Hornekaer et al., 2006; Luo et al., 2009; Balog et al., 2009; Waqar et al., 2010) have not sufficiently considered the "thermodynamic forces" and/or energetics of forming (under the atomic hydrogen treatment) graphene nanoblisters in the surface HOPG layers and epitaxial graphenes. Particularly, they have not taken into account a possibility of the Kurdjumov-like effect manifestation. It is also expedient to note that the recent experimental data [30] {Geim et al. (2014)} show that a hydrogen atom can not pass through a perfect graphene network. On the other hand, the analysis [27] of a number of experimental data (including Fig. 19-21, 13, 14, 22, 24 in [27]) shows that a hydrogen atom can pass through permeable defects in graphene, for instance, through triple junctions of grain
№ 21 (185) Международный научный журнал
boundaries. In Fig. 20(6), 13(a) and 13(b) in [27], one can imagine some grain boundary network decorated (obviously, in some nanoregions at grain boundaries) by some nanoprotrusions.
3.2. The physics of intercalation of the solid H2 nanophase into hydrogenated graphite nanofibers (with metallic catalysts) The physics of intercalation of solid molecular hydrogen of high density (pH2 « 0.5 g/cm3, Fig. 4 (Fig. 22 in [27]) into closed (in the definite sense) nanoregions in hydrogenated GNFs (Fig. 5 (Fig. 24 in [27]) is related to the same concept (Equations of type 1 and 2, the Kurdjumov-like effect).
Рис. 4 (рис. 22 из [27]). Литературные данные {Trunin et al. (2010)} об изоэнтропах ((SIR) = const) и изотермах (T = 300 K) для дейтерия и протия (водорода). Плотность (р) протия (H2, H) увеличена вдвое (по масштабным соображениям). Экспериментальные и теоретические изотермы показывают, что при T = 300 K и внешнем сжимающем давлении P = 50 ГПА водород существует в твердом молекулярном
состоянии с плотностью рН2 <* 0,5 г/см3 Fig. 4 (Fig. 22 from [27]). Literary data {Trunin et al. (2010)} on isentropes ((SIR) = const) and isotherms (T = 300 K) of deuterium and protium. The density (р) of protium (H2, H) is increased by a factor of two (for the scale reasons). The experimental and theoretical isotherms show that at T = 300 K and the external compression pressure of P = 50 GPa hydrogen exists in the solid molecular state of a high density pH2 e 0.5 g/cm3
a violation of the Second Law of thermodynamics, since there should be some difference in temperatures of the surroundings and the Pd-catalyst system (due to the hydrogen spillover effect). Also, the thermal-elastic self-compression (the Kurdjumov-like effect) of the "captured" H2 in the nanopores occurs at the expense of the association energy of the penetrating hydrogen atoms (as considered in Item 3.1).
The recent related data [31, 32] can be taken into account in further studies.
Рис. 5 (рис. 24 из [27]). Микрофотография {Gupta et al. (2004)} графитовых нановолокон (ГНВ) с Pd-катализатором, гидрированных при 300 K и начальном давлении молекулярного водорода PH2 e 8 МПа, после удаления из
них (при 300 K, за 10 мин {Park et al. (1999)}) интеркалированной нанофазы твердого H2 (17 масс. %) высокой плотности ~0,5 г^м3 (анализ [26, 27]). Стрелки на рисунке указывают на щелеподобные закрытые нанопоры линзообразной формы, где находилась интеркалированная нанофаза твердого H2 (под давлением ~50 ГПа) [26, 27]. Такую же величину давления можно получить [2б, 27], рассматривая деформацию материала и напряжения, необходимые для образования закрытых нанопор линзообразной формы Fig. 5 (Fig. 24 from [27]). Micrograph {Gupta et al. (2004)} of hydrogenated graphite nanofibers (GNFs), with Pd-catalyst (hydrogenated at 300 K and initial pressure of molecular hydrogen PH2 » 8 MPa, after release from them, at 300 K, for 10 min {Park et al. (1999)}, of the intercalated solid H2 nanophase (17 mass. %) of a high density of pH2 = 0.5 g/cm3 (analysis [26, 27]). The arrows in the picture indicate some of the slit-like closed nanopores of the lens shape, where the solid H2 intercalated nanophase (under pressure of ~50 GPa) was localized [26, 27]. Such a pressure level can be also evaluated [26, 27] by the consideration of the material deformation and the necessary stresses for forming the lens shape closed nanopores
The comparison with the previous results (presented in Item 3.1) shows that there is a unique manifestation of the spillover effect (particularly, in Fig. 24 in [27]), as related to providing of the necessary one direction flux of atomic hydrogen from Pd-catalyst to the nanopores (when the material hydrogenation at initial molecular hydrogen pressure PH2 = 8 MPa).
The atomic hydrogen, obviously, forms at the expense of the energy of the surroundings, for instance, by heat conducting from it to the Pd-catalyst system, which provides the dissociative dissolving of H2 in Pd and some other related processes. It seems that this is not
4. Conclusions
1. The "thermodynamic forces" and energetics of forming of graphene nanoblisters (under atomic hydrogen treatment, without catalysts) in the surface HOPG layers (Figs. 19-21 in [27]) and epitaxial graphenes (Figs. 13, 14 in [27]) are quantitatively described, particularly, two conditions of the thermal-elastic thermodynamic equilibrium of the two gaseous phases (Equations 1 and 2, the Kurdjumov-like effect) are considered.
№ 21 (185) Международный научный журнал
2. The physics of intercalation of gaseous H2 nanophase of a high density (pH2 = 0.045 g/cm3) into graphene nanoblisters (Figs. 19-21 in [27]) is considered (Equations 1 and 2). The hydrogen self-compression effect of 12 orders (from P(Hgas) = 1-10-4 Pa to ^(H2gas) = = 1108 Pa), at the expense of the free energy of association of the penetrating hydrogen atoms to the "captured" hydrogen molecules, is shown (the Kurdjumov-like effect extraordinary manifestation).
3. The physics of intercalation of the solid H2 nanophase of a high density (pH2 = 0.5 g/cm3) into hydrogenated graphite nanofibers with Pd-catalyst (Figs. 22, 24 in [27]) is considered.
4. In the light of analysis [26, 27], both the spillover effect and the Kurjumov-like effect are obviously manifested in the extraordinary data {Gupta et al. (2001, 2004)} (Fig. 24 in [27]) and the extraordinary data {Park et al. (1999)} considered in [27].
5. These results can be used for solving of the current problem of the efficient and safe hydrogen on-board storage [33].
Acknowledgements
The author is grateful to Alp Yurum, Adem Tekin, Nilgun Karatepe Yavuz and Yuda Yurum, participants of the joint RFBR-TUBIBAK project, and especially to T. Nejat Veziroglu, for helpful and fruitful discussions.
This work has been supported by the RFBR Project #14-08-91376 CT and the TUBITAK Project # 213M523.
References
1. Juarez-Mosqueda R., Mavrandonakis A., Kuc A.B., Pettersson L.G.M., Heine T. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. // Front Chem. 2015. Vol. 3. P. 2. Published online 2015 Feb 2. | doi: 10.3389/fchem.2015.00002. PMCID: PMC4313777.
2. Han S.S., Jung H., Jung D.H., Choi S.-H., Park N. (2012). Stability of hydrogenation states of graphene and conditions for hydrogen spillover. // Phys. Rev. B. 2012. Vol. 85. P. 155408. 10.1103/PhysRevB.85.155408.
3. Tsao C.S., Liu Y., Chuang H.Y., Tseng H.H., Chen T.Y., Chen C.H., Yu M.S., Li Q., Lueking A.D., Chen S.H. Hydrogen Spillover effect of Pt-doped Activated Carbon Studied by Inelastic Neutron Scattering // J. Phys. Chem. Lett. 2011. Vol. 2. P. 23222325.
4. Li Q., Lueking A.D. Effect of Surface Oxyen Groups and Water on Hydrogen Spillover in Pt-Doped Activated Carbon // J. Phys. Chem. C. 2011. Vol. 115. P. 4273-4282.
5. Bhowmick R., Rajasekaran S., Friebel D., Beasley C., Jiao L., Ogasawara H., Dai H., et al. Hydrogen spillover in pt-single-walled carbon nanotube composites: formation of stable C-H bonds. // J. Am. Chem. Soc. 2011. Vol. 133. P. 5580-5586. doi: 10.1021/ja200403m.
6. Chen C.-H., Huang C.-C. Enhancement of hydrogen spillover onto carbon nanotubes with defect feature // Microporous Mesoporous Mater. 2008. Vol. 109. P. 549-559. 10.1016/j.micromeso.2007.06.003.
7. Chen H., Yang R.T. Catalytic effects of TiF3 on hydrogen spillover on Pt/Carbon for hydrogen storage // Langmuir. 2010. Vol. 26. P. 15394-15398. 10.1021/la100172b.
8. Chen L., Cooper A.C., Pez G.P., Cheng H. Mechanistic study on hydrogen spillover onto graphitic carbon materials // J. Phys. Chem. C. 2007. Vol. 111. P. 18995-19000. 10.1021/jp074920g.
9. Chen L., Cooper A.C., Pez G.P., Cheng H. Density functional study of sequential H2 dissociative chemisorption on a Pt6 cluster // J. Phys. Chem. C. 2007. Vol. 111. P. 5514-5519. 10.1021/jp070181s.
10. Chen L., Zhou C.-G., Wu J.-P., Cheng H.-S. Hydrogen adsorption and desorption on the Pt and Pd subnano clusters - a review // Front. Phys. China. 2009. Vol. 4. P. 356-366. 10.1007/s11467-009-0050-6.
11. Cheng H., Chen L., Cooper A.C., Sha X., Pez G.P. Hydrogen spillover in the context of hydrogen storage using solid-state materials // Energy Environ. Sci. 2008. Vol. 1. P. 338-354. 10.1039/B807618A.
12. Lachawiec A.J., Qi G., Yang R.T. Hydrogen storage in nanostructured carbons by spillover: bridgebuilding enhancement // Langmuir. 2005. Vol. 21. P. 11418-11424. 10.1021/la051659r.
13. Li Y., Yang R.T. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover // J. Am. Chem. Soc. 2006. Vol. 128. P. 8136-8137. 10.1021/ja061681m.
14. Li Y., Yang R.T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover // J. Am. Chem. Soc. 2006. Vol. 128. P. 726727. 10.1021/ja056831s.
15. Liu Y.-Y., Zeng J.-L., Zhang J., Xu F., Sun L.-X. Improved hydrogen storage in the modified metal-organic frameworks by hydrogen spillover effect // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 4005-4010. 10.1016/j.ijhydene.2007.04.029.
16. Lueking A.D., Yang R.T. Hydrogen spillover to enhance hydrogen storage study of the effect of carbon physicochemical properties // Appl. Catal. A. 2004. Vol. 265. P. 259-268. 10.1016/j.apcata.2004.01.019.
17. Mitchell P.C.H., Ramirez-Cuesta A.J., Parker S.F., Tomkinson J. Inelastic neutron scattering in spectroscopic studies of hydrogen on carbon-supported catalysts-experimental spectra and computed spectra of model systems // J. Mol. Struct. 2003. Vols. 651-653. P. 781-785. 10.1016/S0022-2860(03)00124-8.
№ 21 (185) Международный научный журнал
18. Mitchell P.C.H., Ramirez-Cuesta A.J., Parker S.F., Tomkinson J., Thompsett D. Hydrogen spillover on carbon-supported metal catalysts studied by inelastic neutron scattering. Surface vibrational states and hydrogen riding modes // J. Phys. Chem. B. 2003. Vol. 107(28). P. 6838-6845. 10.1021/jp0277356.
19. Psofogiannakis G.M., Froudakis G.E. DFT study of the hydrogen spillover mechanism on Pt-Doped graphite // J. Phys. Chem. C. 2009. Vol. 113. P. 1490814915. 10.1021/jp902987s.
20. Wu H.-Y., Fan X., Kuo J.-L., Deng W.-Q. DFT study of hydrogen storage by spillover on graphene with boron substitution // J. Phys. Chem. C. 2011. Vol. 115. P. 9241-9249. 10.1021/jp200038b.
21. Yang F.H., Lachawiec A. J., Yang R.T. Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes // J. Phys. Chem. B. 2006. Vol. 110. P. 6236-6244. 10.1021/jp056461u.
22. Yang R.T., Wang Y. Catalyzed hydrogen spillover for hydrogen storage // J. Am. Chem. Soc. 2009. Vol. 131. P. 4224-4226. 10.1021/ja808864r.
23. Zacharia R., Rather S., Hwang S.W., Nahm K.S. Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes // Chem. Phys. Lett. 2007. Vol. 434. P. 286-291. 10.1016/j.cplett.2006.12.022.
24. Zhou C., Wu J., Nie A., Forrey R.C., Tachibana A., Cheng H. On the sequential hydrogen dissociative chemisorption on small platinum clusters: a density functional theory study // J. Phys. Chem. C. 2007. Vol. 111. P. 12773-12778. 10.1021/jp073597e.
25. Zielinski M., Wojcieszak R., Monteverdi S., Mercy M., Bettahar M.M. Hydrogen storage in nickel catalysts supported on activated carbon // Int. J. Hydrogen Energy. 2007. Vol. 32. P. 1024-1032. 10.1016/j.ijhydene.2006.07.004.
26. Nechaev Yu.S. On the H2 nanophase intercalation into graphene-layers structures: Relevence to the spillover effect // Int. Scientific Journal for Alternative Energy and Ecology. 2015. # 06 (170). P. 37-40.
27. Nechaev Yu.S., Veziroglu T.N. On the hydrogenation-dehydrogenation of graphene-layer-nanostructures: Relevance to the hydrogen on-board storage problem // Int. Journal of Physical Sciences. 2015. Vol. 10, Iss. 2. P. 54-89 (an "open access" Journal).
28. Lobodjuk V.A., Estrin E.I. Martensite Transformation. Moscow: Fizmatlit, 2009, in Russian.
29. Koval Yu.N. Peculiarities of relaxation processes during martensite transformation // Usp. Fiz. Met. 2005. Vol. 6. P. 169-196.
30. Hu S., Lozada-Hidalgo M., Wang F.C., Mishchenko A., Schedin F., Nair R.R., Hill E.W., Boukhvalov D.W., Katsnelson M.I., Dryfe R.A.W., Grigorieva I.V., Wu H.A., Geim A.K. Proton transport through one atom thick crystals // Materials Science (cond-mat.mtrl-sci); Mesoscale and Nanoscale Physics (cond-mat.mes-hall), (Submitted on 31 Oct 2014), 10.1038/nature14015, arXiv:1410.8724 cond-mat.mtrl-sci. (or arXiv:1410.8724v1 cond-mat.mtrl-sci.).
31. Naumov I.I., Hemley R.J. Aromaticity, Closed-Shell Effects, and Metallization of Hydrogen // Acc. Chem. Res. 2014. Vol. 47. P. 3551-3559.
32. Ting V.P., Ramirez-Cuesta A.J., Bimbo N., Sharpe J.E., Noguera-Diaz A., Presser V., Rudic S., Mays T.J. Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures // ACS Nano, Just Accepted Manuscript (2015). DOI: 10.1021/acsnano.5b02623, www.acsnano.org.
33. Nechaev Yu.S., Yurum A., Tekin A., Yavuz N.K., Yurum Yu., Veziroglu T.N. Fundamental open questions on engineering of super hydrogen sorption in graphite nanofibers: Relevance for clean energy applications // American Journal of Analytical Chemistry. 2014. Vol. 5, # 16. P. 1151-1165 (an "open access" Journal).
- TATA — OO
№ 21 (185) Международный научный журнал