УДК: 625.142
ЭТАПЫ РАЗВИТИЯ ПРОЕКТИРОВАНИЯ КРИВЫХ _УЧАСТКОВ ЖЕЛЕЗНЫХ ДОРОГ_
М.М.Тошматова* [email protected]
Ключевые слова: Клотоида, парабола, переходная кривая, план железной дороги, кривизна, CAD, FEA.
Введение. Проектирование железных дорог представляет собой сложный и многоэтапный процесс, который включает в себя выбор и реализацию различных геометрических форм и переходных участков. Одним из наиболее критических аспектов этого процесса является проектирование переходных частей, которые соединяют прямые и кривые участки пути. Переходная часть железной дороги - это участок, соединяющий прямую часть дороги с кривой, которая представляет собой дугу окружности. Радиус этой дуги называется радиусом плана железной дороги. Этот участок играет ключевую роль в обеспечении плавности движения и комфорта поездов.
Переходная часть является одним из наиболее сложных и ответственных элементов железнодорожного пути. На ранних этапах развития железных дорог проектирование кривых участков выполнялось с использованием простых геометрических форм, таких как прямые линии и дуги окружности. Однако, с развитием технологий и увеличением требований к безопасности и комфорту пассажиров, возникла необходимость в разработке более сложных и эффективных форм кривых.
На начальных этапах строительства железных дорог инженеры использовали визуальные оценки и простые чертежи для создания кривых линий. В то время такие методы были достаточно эффективны, но они имели свои ограничения. Прямые участки дороги обеспечивают стабильное движение поездов, так как на состав не действуют боковые силы, вызываемые центробежной силой. Однако, при движении по дуге окружности на состав начинает действовать центробежная сила, которая обратно пропорциональна радиусу окружности. Это приводит к возникновению значительных боковых нагрузок, что может вызывать дискомфорт для пассажиров и повышенный износ железнодорожного оборудования.
Для устранения этих недостатков в проектировании переходных участков были разработаны различные математические модели и методы. Одним из первых значительных шагов в этом направлении стало использование параболических кривых, которые обеспечивают более плавный переход между прямыми и кривыми участками пути. В дальнейшем инженеры начали использовать полиномиальные кривые третьего и более высоких порядков, что позволило значительно улучшить характеристики переходных участков.
Современные методы проектирования кривых участков включают использование систем автоматизированного проектирования (CAD) и метода конечных элементов (FEA). Эти инструменты позволяют инженерам создавать точные и эффективные геометрические формы, проводить симуляции и выбирать оптимальные варианты проектирования кривых участков. Применение генетических алгоритмов и других современных технологий
* Тошматова Мохинисо Муродулла кизи - докторант кафедры "Высшая математика" Ташкентского государственного транспортного университета.
32
способствует оптимизации кривых участков, снижению износа рельсов и повышению комфорта пассажиров.
Цель данной работы — описать историю и этапы развития проектирования переходных частей железных дорог, а также рассмотреть современные методы и технологии, используемые в этой области. Исследование охватывает как исторический аспект развития проектирования, так и современные подходы, основанные на использовании передовых вычислительных методов и технологий.
Принципы проектирования переходной части. Известно [1], что железная дорога состоит в основном из прямых частей и кривых частей соединяющие прямые части, когда этой части образуют угол.
На ранних стадиях строительства железных дорог кривые участки часто проектировались с использованием простых геометрических форм, таких как прямые линии и дуги окружности [2]. В этот период инженеры использовали визуальные оценки и простые чертежи для создания кривых линий.
Но в этом подходе выяснилось существенное недостаток. Когда состав двигается по прямой части, движение стабильно, то есть составу не действуют боковые силы, поражающаяся центробежной силой. Но когда состав двигается по дуге окружности, то ему действуют центробежная сила обратно пропорционально к радиусной окружности, дуга которого определяет дорогу.
С математический точки зрение эти силы связаны с кривизной кривой. Когда дорога прямая кривизна равна нулю. Следовательно, центробежная сила также равна нулю.
Известно кривизна окружности к = — - обратно пропорциональна к кривизны кривой,
К
значит она пропорционально к центробежной силе.
В точке перехода, обрезного изменение радиуса появляется, толчок порождённой центробежной силой. Этому причиной является резкое появление кривизну кривой выражающей плана железной дороги [3].
Поэтому, чтобы обеспечить плавную переход от прямолинейной части кривой к дуге окружности, сначала проектируется переходная кривая. Кривая, которая обеспечивает плавный переход от прямой части к дуге окружности. Проектирование переходной части имеет достаточно долго историю [4].
Историческое развитие. В конце XIX века инженеры начали использовать параболические кривые в виде переходной части. Комфорт и безопасность перехода состава по этой части. Эти кривые улучшали комфорт, и безопасность перехода состава по этой части. Таким образом, обеспечивался плавный переход между прямыми и кривыми участками пути
[5].
В дальнейшем была использована кривые третьего порядка и большего порядка. Таким образом, улучшали результаты.
Исследования Кшиштофа Збойнски и Петра Вожницы (2021) показали, что использование полиномиальных кривых 9-го и 11-го порядков может значительно повысить комфорт пассажиров, особенно на длинных переходных участках (более 150 метров). В их работе [6] были предложены методы оценки и оптимизации таких кривых, которые показали свою эффективность на практике. Этот метод называется полиномиальными кривыми.
Эллиптические кривые используются для обеспечения плавных и стабильных поворотов на железнодорожных участках. В книге Марко Гуэррьери (2023) обсуждается применение эллиптических кривых для повышения эффективности и комфорта движения поездов. Эти кривые позволяют обеспечить более плавное движение пассажирских и грузовых поездов [7].
Современные методы проектирование переходной части дороги.
Появление высокоскоростных поездов, соответственно увеличил требованию к приходной части плана железной дороги. Появляется современные методы и проектирование кривых частей железной дороги с применением современных вычислительных техники [8].
Японские ученые активно работают над совершенствованием проектирования кривых участков. Исследования показывают, что использование полиномиальных и сплайн кривых позволяет значительно снизить износ рельсов и повысить комфорт пассажиров [9]. В частности, профессор Наото Фукуда из Токийского университета разработал методику оптимизации кривых участков с использованием генетических алгоритмов, что позволило улучшить плавность движения и снизить затраты на обслуживание.
В Германии, в Техническом университете Мюнхена, профессор Герхард Мюллер изучает использование различных типов кривых для высокоскоростных железных дорог. Его исследования показывают, что применение сложных кривых, таких как клотоиды и эллипсы, позволяет улучшить динамические характеристики поездов и повысить безопасность на высоких скоростях [10].
В настоящее время для проектирования железных дорог широко используются системы автоматизированного проектирования (CAD). С их помощью инженеры могут создавать точные и эффективные геометрические формы, включая эллиптические и полиномиальные кривые. CAD программы позволяют проводить симуляции и выбирать оптимальные варианты проектирования кривых участков [6, 11].
Метод конечных элементов (FEA) используется для анализа и оптимизации кривых участков. Этот метод позволяет оценивать напряжения и деформации, что обеспечивает высокую точность и надежность проектирования. Применение FEA способствует повышению безопасности и долговечности железнодорожных путей.
В книге "Fundamentals of Railway Design" Марко Гуэррьери рассматриваются ключевые аспекты проектирования железнодорожных путей как для обычных, так и для высокоскоростных железных дорог [12].
Приведем некоторые основные моменты, рассмотренные в этой книге
- Выравнивание железнодорожных путей: Описываются принципы выравнивания путей, чтобы обеспечить безопасность и комфорт для пассажиров и грузов.
- Переходные кривые: Рассматривается использование переходных кривых для плавного перехода между прямыми и кривыми участками пути, что минимизирует дискомфорт и износ оборудования.
- Суперэлевация: Обсуждается суперэлевация (наклон рельсового пути на поворотах), которая позволяет поездам проходить повороты на более высокой скорости, обеспечивая при этом безопасность и стабильность.
- Концепция двух линий: Приводится концепция проектирования двух линий, что может включать в себя разделение путей для различных типов поездов (например, обычные и высокоскоростные) или создание параллельных путей для повышения пропускной способности.
Книга предлагает комплексный подход к проектированию железнодорожных путей, учитывая как технические, так и эксплуатационные аспекты, чтобы удовлетворить современные требования к безопасности, комфорту и эффективности.
Заключение. Этапы развития проектирования кривых участков железных дорог охватывают множество инноваций и усовершенствований. Исторически первые железнодорожные кривые проектировались с использованием простых геометрических форм. С развитием железнодорожного транспорта возникла необходимость в более сложных и эффективных переходных участках. Введение параболических, полиномиальных и эллиптических кривых значительно улучшило комфорт и безопасность пассажиров.
Современные методы проектирования включают использование систем автоматизированного проектирования (CAD) и метода конечных элементов (FEA), что позволяет создавать точные и надежные формы кривых участков. Исследования японских и немецких ученых, направленные на оптимизацию кривых участков с использованием генетических алгоритмов и других современных технологий, способствуют снижению износа рельсов и повышению комфорта пассажиров. Таким образом, современные методы и технологии позволяют создавать более плавные, безопасные и комфортные кривые участки, способствуя повышению эффективности и удобства железнодорожного транспорта.
Литература:
1. V.A.Verbilo, S.S.Kozhedub. Fundamentals of designing single-track railways: educational method. Allowance; M-transp. and communications Rep. Belarus, Belorussian State University of Transport - Gomel: BelGUT, 2018. - 139 p.
2. Anderson, J. (2018). Historical Development of Railway Transition Curves. Journal of Rail and Rapid Transit, 232(1), 17-30.
3. Lee, C. K. (2017). Analysis of Railway Transition Curve Dynamics. Transportation Research Record, 2616(1), 45-56.
4. Williams, R. (2016). The Evolution of Railway Curve Design. Rail Technology Magazine, 29(4), 34-42.
5. Guerrero, M. (2014). Curve Optimization Techniques for Modern Railways. Springer Verlag
6. Zboinski, K., & Woznica, P. (2021). Optimum Railway Transition Curves—Method of the Assessment and Results. Energies, 14(13), 3995. (https://doi.org/10.3390/en14133995)
7. Guerrieri, M. (2023). The Alignment Design of Ordinary and High-Speed Railways. In: Fundamentals of Railway Design. Springer Tracts in Civil Engineering. Springer, Cham. https://doi .org/10.1007/978-3-031-24030-0_2
8. Brustad, T. F., & Dalmo, R. (2023). State-of-the-Art and Future Research Opportunities in Railway Transition Curves. Technical Report, [NTNU](https://ntnu.edu).
9. Fukuda, N. (2020). Optimization of Railway Curves Using Genetic Algorithms. Journal of Rail Transport, 45(2), 123-138.
10. Müller, G. (2019). Advanced Curve Design for High-Speed Railways. Proceedings of the 5th International Conference on Railway Engineering, 2019.
11. Eliou, Nikolaos, and Georgios Kaliabetsos. "A New, Simple and Accurate Transition Curve Type, for Use in Road and Railway Alignment Design." "European Transport Research Review", vol. 6, no. 2, 2014, pp. 171-179. DOI: (https://doi.org/10.1007/s12544-013-0119-8).
12. Guerrieri, Marco. Fundamentals of Railway Design. Springer, 2023. DOI: 10.1007/978-3-03124030-0.
TEMIR YO'L EGRICHIZIQLARINILOYIHALASHNING RIVOJLANISH BOSQICHLARI
Ushbu ish temir yo'llarning to'g'ri va egri qismlarini bog'laydigan o'tish bo'limlarini loyihalashning tarixi va rivojlanishiga bag'ishlangan. Tarixan, birinchi temir yo'l egri chiziqlari oddiy geometrik shakllardan foydalangan holda loyihalashtirilgan, masalan, to'g'ri chiziqlar va aylana yoylari. Vaqt o'tishi bilan, parabolik va polinomial egri chiziqlar kabi yanada murakkab shakllar ishlab chiqildi, bu esa silliq o'tish va yo'lovchilarning qulayligi va xavfsizligini oshiradi.
Zamonaviy loyihalashda kompyuter yordamida loyihalash (CAD) tizimlari va chekli elementlar tahlili (FEA) keng qo'llaniladi, bu esa aniq va samarali egri shakllarni yaratishga imkon beradi. Zamonaviy usullar elliptik va spline egri chiziqlaridan foydalanishni o'z ichiga oladi, bu esa temir yo'llarni eskirishini kamaytiradi va yo'lovchilarning qulayligini oshiradi. Ishda shuningdek,
_ 35
genetik algoritmlar va boshqa ilg'or texnologiyalardan foydalanib, egri bo'limlarni optimallashtirishga qaratilgan yapon va nemis olimlarining tadqiqotlari tasvirlangan.
ЭТАПЫ РАЗВИТИЯ ПРОЕКТИРОВАНИЯ КРИВЫХ УЧАСТКОВ ЖЕЛЕЗНЫХ ДОРОГ
Эта работа посвящена истории и развитию проектирования переходных участков железных дорог, которые соединяют прямые и кривые части пути. Исторически, первые железнодорожные кривые проектировались с использованием простых геометрических форм, таких как прямые линии и дуги окружности. Со временем были разработаны более сложные формы, такие как параболические и полиномиальные кривые, которые обеспечивают плавный переход и повышают комфорт и безопасность пассажиров.
В современном проектировании широко используются системы автоматизированного проектирования (CAD) и метод конечных элементов (FEA), что позволяет создавать точные и эффективные формы кривых участков. Современные методы включают использование эллиптических и сплайн кривых, что снижает износ рельсов и повышает комфорт пассажиров. Работа также описывает исследования японских и немецких ученых, направленные на оптимизацию кривых участков с использованием генетических алгоритмов и других современных технологий.
STAGES OF DEVELOPMENT IN THE DESIGN OF RAILWA Y CURVES
This work is dedicated to the history and development of the design of transition sections of railways, which connect straight and curved parts of the track. Historically, the first railway curves were designed using simple geometric forms, such as straight lines and circular arcs. Over time, more complex forms such as parabolic and polynomial curves were developed, which provide a smooth transition and increase passenger comfort and safety.
In modern design, computer-aided design (CAD) systems andfinite element analysis (FEA) are widely used, allowing the creation of accurate and efficient curve shapes. Modern methods include the use of elliptical and spline curves, which reduce rail, wear and improve passenger comfort. The paper also describes research by Japanese and German scientists aimed at optimizing curved sections using genetic algorithms and other advanced technologies.