Ukrainian Journal of Ecology
Ukrainian Journal ofEcology, 2019, 9(3), 142-149, doi: 10.15421/2019_74
ORIGINAL ARTICLE
Estimation of the relative DNA content in species of the genus Spiraea, sections Chamaedryon and Glomerati by flow cytometry
V.A. Kostikova12, M.S. Voronkova1, E.Yu. Mitrenina2, AA Kuznetsov2, A.S. Erst1,2, T.N. Veklich3, E.V. Shabanova (Kobozeva)1,2
1 Central Siberian Botanical Garden, Siberian Branch Russian Academy of Science Zolotodolinskaya St. 101, 630090, Novosibirsk, Russia 2Tomsk State University Lenin Av. 36, 634050, Tomsk, Russia 3Amur Branch of Botanical Garden-Institute of the Far Eastern Branch Russian Academy of Science Ignatievskоe Road, 2 km, 675004, Blagoveshchensk, Russia. E-mail: [email protected]
Received: 19.05.2019. Accepted: 26.06.2019
The relative DNA content was studied in seven species of the genus Spiraea L., section Chamaedryon Ser., and in two species, section Glomerati Nakai, from 28 natural populations growing in Asian Russia. The cell nuclei were isolated from a leaf tissue. The relative intensity of fluorescence was measured using flow cytometry of propidium iodide-stained nuclei. The analysis was performed using a CyFlowSpace device (Germany, Sysmex Partec) with a laser radiation source of 532 nm. Fresh leaves of Soianum lycopersicum cv. 'Stupice' were used as an internal standard. Data on the relative DNA content are presented for the first time for S. flexuosa Fisch ex Cambess. (0.42-0.47 pg), S. ussuriensis Pojark. (0.49-0.52; 0.85 pg), S. apina-Pall. (0.49-0.51 pg), S. media Schmidt. (0.45; 0.98-1.01 pg), S. triiobata L. (0.46 pg), S. hypericifoiia L. (0.49-0.52 pg) and S. aquiiegifoiia Pall. (0.48-0.51 pg). Mesophytic species of the genus Spiraea growing in the forest zone (S. chamaedryfolia L. and S. media) exhibit a 2-fold higher relative DNA content (C-value) compared to xerophytic species (S. hypericifolia, S. crenata L., S. aquiiegifoiia and S. triiobata) and species confined only to mountain areas (S. aipina, S. triiobata and S. aquiiegifoiia). Keywords: Spiraea; sections Chamaedryon and Giomerati;the relative DNA content; flow cytometry; DNA C-value
Introduction
Studies on changes in the genome size of one species or closely related species of plants from different areas allow us to consider the evolutionary processes and their types as well as to predict next steps of evolution (Marda et al. 2008). Similar to chromosome number and morphological or anatomical characteristics, the genome size can be an informative marker in plant taxonomy at the species and subspecies level (Talluri & Murray 2009).
The genus Spiraea L. belongs to the subfamily SpiroideaeAgardh., the most primitive in the family RosaceaeJuss (Takhtadzhyan, 1966). Representatives of the subfamily are highly decorative honey plants, which come in numerous forms and varieties and exhibit biological activity and other useful characteristics (Kostikova & Shaldaeva, 2017, Bespalov et al., 2018). The number of species in the genus Spiraea is not determined due to polymorphism of its species and different interpretations of the concept of species. High level of polyploidization and hybridization plays a very important role in speciation in the genus Spiraea (Sun et al., 1997; Zhang et al., 2002). The largest number of species of the genus Spiraea is concentrated in Asia: 70 species are indicated for China (Lu & Crinan, 2003), 9 species grow in Japan (Ikeda, 1995), and 8 species are confined to Mongolia (Grubov, 1955). In Russia and neighboring states, 20-25 Spiraea species grow under natural conditions, including 15-16 species from Siberia and 9-12 species from the Russian Far East (Poyarkova, 1939; Polozhiy, 1988; Yakubov, 1996).
We adhere to the system of the genius T.T. Yu & K.C. Kuan (1963) supplemented by T.I. Slavkina (1972). According to this system, the genus Spiraea L. falls into four sections: Spiraria Ser., Caiospira C. Koch, Chamaedryon Ser. and Glomerati Nakai. Representatives of the largest section Chamaedryon Ser. differ from all other plants of the genus Spiraea in inflorescences - a short stalk is terminated by corymbose or umbellulate clusters of flowers. The section Glomerati includes species with a sessile umbel and is isolated from the section Chamaedryon. Representatives of these sections are common in Eurasia; however, they are not found in North America (Slavkina, 1972). The taxonomic rank of some species in the section Chamaedryon, such as S. flexuosa Fisch. ex Cambess., S. ussuriensis Pojark., S. eiegans Pojark., S. dahurica (Rupr.) Maxim. and S. sericeaTurcz., is often questioned and requires careful study and clarification using various methods. In Asian Russia, species of the section Chamaedryon - S. aipina Pall., S. chamaedryfolia L., S. media Schmidt., S. pubescensTurcz., S. triiobata L., S. crenata L., and
species of the section Glomerati - S. hypericifolia L. and S. aquilegifolia Pall should probably be considered the fully formed plants of the genus Spiraea. The relative DNA content of representatives of the genus Spiraea, sections Chamaedryon and Glomerati, growing in Asian Russia has not been previously studied.
The aim of the study was to compare the relative DNA content in species of the genus Spiraea, sections Chamaedryon and Glomerati.
Methods
The materials for the study were fresh leaves of ten species of the genus Spiraea, sections Chamaedryon and Glomerati, collected in 2017 - 2019 from plants introduced in the experimental plot of the Central Siberian Botanical Garden SB RAS (CSBG) and from plants growing in native populations (Table 1). Almost all studied plants were brought from the native populations; some of them were grown from seeds collected also in the native populations. For each species, 3-5 plants from each of two populations were examined. All tests were carried out in 3 replicates. Some samples were investigated after drying in silica gel. Estimation of the relative DNA content in living plants and those dried in silica gel showed no differences. The DNA content of plants was determined using flow cytometry of propidium iodide-stained nuclei. The analysis was carried out using a CyFlowSpace device (Germany, Sysmex Partec) with a laser radiation source of 532 nm. Fresh leaves of Solanum lycopersicum cv. 'Stupice' (2C DNA content = 1.96 pg) were used as an internal standard, and seeds were received from the Centre of the Plant Structural and Functional Genomics of the Institute of Experimental Botany AS CR, Olomouc, Czech Republic (Dolezel et al., 1992).
Part of the fresh leaf 0.5 cm2 in size was ground using an acute blade along with an appropriate amount of internal standard in 500 pl of chilled Nuclei Extraction Buffer (Germany, Sysmex Partec) according to the manufacturer's protocol in plastic Petri dishes with addition of polyvinylpyrrolidone (MB ~ 29,000) (USA, Sigma-Aldrich). The samples incubation was carried out at room temperature for 2 minutes. The samples were filtered through the Partec CellTrics 50 pm filter (Germany, Sysmex Partec). After that, 2 ml of staining solution containing another commercial Staining Buffer (Germany, Sysmex Partec), PI (50 pg/ml) and RNAse A (50 pg/ ml) were added. Staining was performed at room temperature in a dark place for 40 minutes. The prepared samples were stored in a refrigerator for not more than 4 hours. For each sample, 15,000 events were collected. The DNA 2C value content was calculated using a linear relationship between fluorescent signals from the stained nuclei of the internal standard and the studied samples.
The obtained data were processed using the Statistica 6.0. software (StatSoft, Inc. 1984-2001). The taxa differences in the relative DNA content were studied by nonparametric variance analysis (ANOVA) using the Kraskel-Wallis criterion.
Results and Discussion
The nuclear DNA content in plants of the genus Spiraea, sect. Calospira, growing in Asian Russia is determined for the first time by flow cytometry according to the fluorescence relative intensity (Table 1). The nuclear DNA content varies from 0.42 pg in S. flexuosa to 1.01 pg in S. media.
Figure 1 illustrates histograms of the relative DNA content generated by colored nuclei for the sample and the internal standard.
G0/G1 stage of the sample cell cycle standard or the sample.
" S. ussuriensis _ G3/G1
Standart G0/G1
L .4
0 50 100 150 200 250
FL2 PI
peak Index MeM
1 I «HUB 23 67 4.54
2 2.016 48 42 4.74
3 4.001 04 70 4.55
Figure 1. Flow cytometry histograms: S. chamaedryfolia (1); S. flexuosa (2); S. ussuriensis(3). An internal standard is Solanum lycopersicum cv. "Stupice" (2C DNA content = 1.96 pg in Dolezel et al., 1992)
Table 1. The nuclear DNA content in species of the genus Spiraea, sections Chamaedryon and Glomerati, from different populations (internal standard Solanum lycopersicum cv. "Stupice"(2C DNA content = 1.96 pg in Dolezel et al., 1992)
Flow cytometry histograms show two dominant peaks corresponding to the nuclei at the and the internal standard, and the peak corresponding to the nuclei at the G2 stage of the
Species Sampling locality 2C DNA content (mean ± SD pg ***) /j £**** (genome vaiue, Mbp)
Sect. Chamaedryon
Ser. Triiobatae Pojark. ex Yu
S. triiobata Altai Krai, Beiokurikha city environs** 0.46 ± 0.01 224.94
Aitai Repubiic, Chemai viiiage environs** Ser. Mediae Pojark. ex Yu 0.46 ± 0.00 224.94
S. aipina Repubiic of Buryatia, Moigoty viiiage environs** 0.51 ± 0.00 249.39
Repubiic of Tuva, aiong Ak-Dovurak-Abakan road, N: 51°11.434'; E: 89°58.425'** 0.49 ± 0.00 239.61
S. media Novosibirsk Obiast, Gorny settiement environs** 1.01 ± 0.01 493.89
Krasnoyarsk Krai, Boishaya Inya viiiage environs** 1.01 ± 0.01 493.89
Aitai Krai, 1.00 ± 0.02 489,00
Novokaimanka viiiage environs**
Repubiic of Yakutia, Aidan station environs** 0.98 ± 0.00 479.22
Amur Obiast, Mogot viiiage environs** Ser. Chamaedryfoiiae Pojark. 0.45 ± 0.01 220.05
S. chamaedryfoiia Aitai Krai, Beiokurikha city environs** 0.88 ± 0.01 430.32
Aitai Repubiic, Gorno-Aitaysk city environs** 0.89 ± 0.01 435.21
Aitai Repubiic, Chemai viiiage environs** 0.87 ± 0.01 425.43
Krasnoyarsk Krai, shore of iake Ingoi** 0.91 ± 0.01 444.99
S. fiexuosa Krasnoyarsk Krai, Boishaya Inya viiiage environs** 0.46 ± 0.01 224.94
Krasnoyarsk Obiast, Verkh-Miityushi viiiage environs** 0.42 ± 0.00 195.60
Irkutsk Obiast, 0.47 ± 0.04 229.83
Boishoye Goioustnoye viiiage environs**
S. ussuriensis Khabarovsk Krai, Pivan viiiage environs* 0.85 ± 0.02 415.65
Primorsk Krai, Viadivostok city environs** 0.49 ± 0.00 234.72
Amur Obiast, Sergeevka viiiage environs, Sergeevsky Utes** 0.50 ± 0.01 244.50
Amur Obiast, 0.52 ± 0.02 254.28
Zeysky Nature Reserve** Ser. GemmataeYu
S. crenata Novosibirsk Obiast, 0.45 ± 0.01 220.05
Antonovo viiiage environs **
Omsk Obiast, 0.48 ± 0.03 234.72
Zhukovka viiiage environs** Novosibirsk Obiast,
94 km of Karasuk-Ordynskoye highway (P382), N 53°56.358" E 78°32.947^** Sect. Giomerati Nakai 0.50 ± 0.01 244.50
S. hypericifolia Omsk Oblast
Kalachinsk city environs** 0.49 ± 0.01 239.61
Novosibirsk Oblast, Gorny town environs** 0.52 ± 0.01 254.28
Novosibirsk Oblast, 0.51 ± 0.00 249.39
Steklyannoye village environs**
S. aquilegifolia Republic of Buryatia, Klyuchi village environs** 0.51 ± 0.00 249.39
-//- Republic of Buryatia, 0.48 ± 0.00 234.72
Ust-Kyakhta village environs**
Notes: * - plant grown from seeds; ** - natural material; *** SD - standard deviation (Std. Dev.); **** 1 pg of DNA = 978 Mbp (Dolezel et al., 2003)
The relative DNA content (2C) in angiosperms varies from 0.06 to 254.80 pg (Leitch et al., 2005, Fleischmann et al., 2014). The variability of the C-value in the Rosaceae family is quite low: from 2C = 0.42 pg in Physocarpus opulifolius(L.) Maxim. to 2C = 3.11 pg in Malus coronaria (L.) Mill. Representatives of the subfamily Spiraeoideae exhibit the smallest genome size among angiosperms (Dickson et al., 1992). According to Leitch I.J. et al. (2005), relative DNA values in plants of the genus Spiraea can be referred to the category of "very small": S. chamaedryfolia 2C - 0.90 pg, S. chinensis - 0.40 pg; S. crenata - 0.45 pg; S. pubescens- 0.95 pg; S. wilsonii- 1.60 pg; S. nipponica - 1.75 pg; S. sargentiana - 1.85 pg; S. betulifolia - 0.91 and 1.01 pg; S. beauverdiana - 0.55 and 0.57 pg, and S. aemiliana (= S. betulifolia subsp. aemiliana) - 0.45 and 0.48 pg (Dickson et al., 1992, Siljak-Yakovlev et al., 2010, Bennett & Leitch, 2012, Kostikova et al., 2018). The values of the relative DNA content in the investigated plants of the genus Spiraea, sections Chamaedryon and Glomerati, are within the range of values previously recorded for Spiraea species (Table 1).
A conservative chromosome system is not inherent in plants of the genus Spiraea, which are capable of forming auto- and allopolyploids like other representatives of the family Rosaceae. The polyploidization in Spiraea often leads to pollen sterility (Sax, 1936). Triploids, tetraploids, hexaploids, and octoploids were found among Spiraea species (Zhukova, 1980, Oginuma et al., 2004, Polyakova & Muratova, 2015, Bennett & Leitch, 2012, Rice et al., 2015). For Sprraea species of the entire subfamily, the basic chromosomes number was found to be n = 9. Spiraea species, sect. Chamaedryon, are most often diploids with 2n = 18 (Table 2). Tetraploid forms with 2n = 36 are also encountered - S. flexuosa, S. chamaedrifolia, S. media, and S. pubescens, which were probably formed as a result of autopolyploidization (Oginuma et al., 2004). Triploid plants S. media with 2n = 27 were found. Isolated data on plants S. alpina, S. chamaedrifolia, and S. media with an atypical chromosome number 2n = 10; 20; 24; 32 (Table 2) are available. A linear relationship is often observed between the genome size and the number of chromosomes (Kechaykin et al., 2016).
S. trilobata, representative of Ser. Trilobatae, occurs in Russia - in Altai and the western part of the Western Sayan, and outside the country - in Central Asia, China and Korea (Koropachinskiy & Vstovskaya, 2002). The C-value content in species recorded from the Altai Republic and from Altai Krai is similar and equals 2C = 0.46 pg (Table 1). Diploids of S. trilobata are known from the Siberian part of the habitat only (Table 2).
S. media and S. alpina, ser. Mediae Pojark. ex Yu, have been investigated. S. media, a widespread and polymorphic species, exhibits the highest relative DNA content among Spiraea species studied, which varies from 0.45 to 1.01 pg (Table 1). Polymorphism is also characteristic of the somatic number of chromosomes in this species (Table 2). Apparently, diploidy is common in S. media (Probatova et al., 2007, Bennett & Leitch, 2012, Rice et al., 2015). One population with a genome size of 0.45 pg that grows in the Russian Far East is likely to have a diploid chromosome set. The relative DNA content in S. media, mainly from Siberian populations, is twice higher (0.98-1.01 pg). The relative DNA content in S. alpina, another less common species in this series, was 0.49-0.51 pg that indirectly indicates its diploid chromosome set. According to data available, only representatives of S. alpina are known to have 2n = 24 (Table 2).
S. chamaedryfolia, S. flexuosa and S. ussuriensis, ser. Chamaedryfoliae, are morphologically close to each other and exhibit numerous overlapping characteristics. The most evident distinguishing morphological characteristics include the shape of the shoot, inflorescence, leaf, and dentate of the leaf blade (Svyazeva, 1967). However, even these characteristics are sometimes unreliable due to intraspecific variability. Weak morphological differences, similar ecological and coenotic environment, and overlapping geographical areas confirm the previously stated idea that "these three species are isolated vicar species, and it would be more appropriate to consider them the subspecies of S. chamaedryfolia' (Svyazeva, 1967) The relative DNA content in S. chamaedryfolia recorded from different habitats ranged from 0.87 to 0.91 pg (Table 1), which is consistent with the values previously identified for this species - 2C = 0.90 pg (Siljak-Yakovlev et al., 2010). According to data available, diploids, tetraploids, and representatives with a cytotype of 2n = 32 are known for S. chamaedryfolia (Table 2). It is likely that we discovered tetraploid of this species. The genome size of S. flexuosa recorded from the Siberian region was 0.42-0.47 pg. The published data report diploids and tetraploids of S. flexuosa (Table 2). Apparently, we discovered diploids of this species. Spiraea ussuriensis (0.490.52 pg) is closer to S. flexuosa in genome size. The relative C-value content in species recorded from Khabarovsk Krai is close to that in S. chamaedryfolia and equals 0.85 pg. Only diploids of S. ussuriensis have been identified so far (Table 2). S. chamaedryfolia grows in Western and Eastern Siberia (Lower Yenisei basin), Central Asia (eastern Kazakhstan), Mongolia, and Europe. The eastern border of the species habitat can be characterized as rivalet, since the close species S. flexuosa can be found to the east. S. ussuriensis occurs in Primorsk Krai and in the south of Khabarovsk Krai. Among the studied species, S.
chamaedryfoiia exhibited the largest genome size, while the genome size of S. fiexuosa and S. ussuriensis was half as large, except for plants recorded from Khabarovsk Krai (Table 1). To confirm the assumption that polyploidization occurred in certain types of habitat, it is necessary to analyze data from a larger number of plants throughout the habitat. In Asian Russia, ser. GemmataeYu is represented by one mesoxerophytic species S. crenata. The relative DNA content in this species is 0.45-0.50 pg (Table 1), which is consistent with the DNA content previously identified for this species - 0.45 pg (Dickson et al., 1992). Only diploids of this species were found (Table 2).
The section Giomerati Nakai includes xerophytic shrubs S. hypericifoiia and S. aquiiegifoiia. S. hypericifoiia is widespread in Russia. S. aquiiegifoiia mainly grow in Mongolia and northern China; in Russia, it grows only in the steppes of Transbaikal (Koropachinskiy & Vstovskaya, 2002). S. hypericifoiia (0.49-0.52 pg) and S. aquiiegifoiia (0.48-0.51 pg) have a similar genome size (Table 1). Data available report only diploids of S. hypericifoiia(Table 2).
The genome size affects many aspects of the plant biology at the level of nuclei, cells and the entire plant, and ultimately affects the plant habitat and its survival rate under adverse environmental conditions (Greilhuber & Leitch, 2013, Suda et al., 2015). Species of sect. Chamaedryon grow in the steppe, forest-steppe and forest zones. Since the species of the genus Spiraea arose as mesophytes in Asia and in its eastern part, this area should be considered the center of origin of most and possibly all species of this genus (Svyazeva, 1967). More hygrophilous species of sect. Chamaedryon are probably older than xerophytic ones (Slavkina, 1972). The largest genome size among Spiraea species studied was revealed in S. chamaedryfoiia and S. media -mesophytes growing in the forest zone. However, all xerophytic species (S. hypericifoiia, S. crenata, S. aquiiegifoiia, and S. triiobata) have a genome size that is half as large (Table 1, Fig. 2). Spiraea aipina, S. triiobata and S. aquiiegifoiia that exhibit a small genome size are confined to mountain areas only. Other species grow both on the plain and in the mountains. A similar trend was observed for close species of the genus Spiraea, sect. Caiospira. The genome size of S. beauverdiana, which grows in the northern tundra highlands, is half the genome size of the mesophytic plain forest species S. betuiifoiia (Kostikova & Polyakova, 2014, Kostikova et al., 2018). Individual genera and families of flowering plants with their own history of development responded differently to the conditions of highlands. Polyploid speciation was not observed for species of the family Rosaceae growing in highlands. Adaptation to conditions similar to those in the mountains occurred in this family at the diploid level (Krogulevich, 1971). Phenotypic and ecological spectra are much wider in plants with small genomes, which helps them to conquer different habitats (Simonin and Roddy, 2018). Extreme drought and salinity did not affect the size and complexity of the genome of Reaumuria soongorica (Pall.) Maxim. (Wang et al., 2011). In contrast to diploid species, polyploid species need a sufficient amount of N- and P-rich available nutrients (Pellicer et al., 2018). Xerophytic steppes or mountains are inhabited by species of the genus Spiraea with a small genome size. They are most likely diploids.
Due to the lack of reliable data on chromosomal numbers in the samples studied, the detected values of the relative DNA content cannot be used to establish ploidy in Spiraea species. In the future, we plan to count the number of chromosomes in the studied plant samples and to identify their relationship with the relative DNA content.
Figure 2. The reiative nuciear DNA content (picogram) in species of the genus Spiraea, sect. Chamaedryon and sect. Giomerati (ecoiogy): 1 - S. triiobata (xerophyte; mountain species); 2 - S. aipina(mesophyte; mountain species); 3 - S. media (mesophyte; forest species); 4 - S. chamaedryfolia (mesophyte; forest species); 5 - S. fiexuosa (mesophyte); 6 - S. ussuriensis (mesophyte); 7 - S. crenata (xerophyte); 8 - S. hypericifoiia (xerophyte); 9 - S. aquiiegifoiia (xerophyte, mountain species). Tabie 2. Number of chromosomes in the genus Spiraea, sect. Chamaedryonand Giomeratiaccording to data avaiiabie
Species
Somatic number of chromosomes, 2n
Study area
Reference
Sect. Chamaedryon
Ser. Trilobatae
S. trilobata 18 Russia, Siberia Rostovtseva, 1977;
Polozhiy, 1988
S. pubescens 18 USA Sax, 1936
Dickson et al., 1992
Korea Sun et al., 1997
36 Korea Sun et al., 1997
Ser. Mediae
S. alpina 24 Russia, Siberia Polozhiy, 1988
S. media 10 Europe, Carpathians Baksay, 1957
18 USA Sax, 1936
Russia, Siberia and RFE Krogulevich, 1971; Krasnoborov et al., 1980;
Polozhiy, 1988; Probatova et al., 2007;
Probatova et al., 2009; Polyakova &
Muratova, 2015, Ctepanov, 2018
Slovakia Majovsky et al., 2000
Russia, Moscow Oginuma et al., 2004
20 Russia, Siberia Rostovtseva et al., 1981; Polozhiy, 1988
27 Russia, RFE Probatova et al., 2007, Korobkov et al.,
2014
36 Russia, Siberia Krasnoborov et al., 1980;
Polozhiy, 1988
S. sericea 18 Russia, Siberia Probatova et al., 2015
Ser. Chamaedryfoliae
S. chamaedrifolia 18 USA Sax, 1936
Delay, 1947
32 Austria Wetschnig, 1998
36 Bulgaria Ceschmedziev, 1983
Russia, Moscow Oginuma et al., 2004
S. chamaedryfolia 36 Romania Starlinger et al., 1994
subsp. ulmifolia
S. chamaedrifolia 18 Korea Sun et al., 1997
var. ulmifolia 36 USA Sax, 1936
S. flexuosa 18 Japan Hara, 1952
36 Russia, Moscow Oginuma et al., 2004
Russia, RFE Polyakova & Muratova, 2015,
S. ussuriensis 18 Russia, RFE Polyakova & Muratova, 2015,
Ser. Gemmatae
S. crenata 18 Dickson et al., 1992
Sect. Glomerati
S. hypericifolia 18 USA Sax, 1936
Kazakhstan Rusanov, 1977
Conclusion
The relative DNA content has been studied in seven species of the genus Spiraea, sect. Chamaedryon Ser, and in two species, sect. GlomeratiNakai, from 28 natural populations growing in Asian Russia. Data on the genome size are reported for the first time for S. flexuosa, S. ussuriensis, S. alpina, S. media, S. trilobata, S. hypericifolia and S. aquilegifolia. It is revealed that species of the genus Spiraea with a small genome size are confined to xerophytic conditions (S. hypericifolia, S. crenata, S. aquilegifolia, and S. trilobata) or mountain areas (S. alpina, S. trilobata and S. aquilegifolia). They are most likely diploids. In contrast, mesophytic species of the genus Spiraea growing in the forest zone (S. chamaedryfolia and S. media) exhibit a 2-fold higher relative DNA content, and they are probably polyploids.
Acknowledgements
The study was financially supported by RFBR (research project № 16-34-00106 Mo.n_a) to Kostikova.
References
Baksay L. (1957). The chromosome numbers and cytotaxonomical relations of some European plant species. Ann. Hist.-Nat. Mus. Natl. Hungarici, 8, 169-174.
Bennett M.D. & Leitch I.J. (2012). Angiosperm DNA C-values database (release 8.0, Dec. 2012). Available from: http://data.kew.org/cvalues/CvalServlet?querytype=2/
Bespalov V.G., Alexandrov V.A., Vysochina G.I, Kostikova V.A., Semenov A.L., Baranenko D. (2018). Inhibitory Effect of Filipendula
ulmariaon Mammary Carcinogenesis Induced by Local Administration of Methylnitrosourea to Target Organ in Rats. Anti-cancer
agents in medicinal chemistry, 18 (8), 1177-1183. DOI: 10.2174/1871520618666180402125913.
Ceschmedziev I.V. (1983). In: Love A. (ed.) IOPB chromosome number reports LXXX. Taxon, 32, (3), 506.
Ctepanov N.V. (2018). Chisla khromosom nekotorykh vidov c yuga Priyeniseyskoy Sibiri. Turczaninowia, 21 (1), 35-40. DOI:
10.14258/turczaninowia.21.1.5 (in Russian).
Delay C. (1947). Recherches Sur la structure des noyaux quiescents chez les Phanerogames. Rev. cytol. et Cytophysiol. Veg., 9 (1-4), 169-222.
Dickson E.E., Arumuganathan K., Kresovich S., Doyle J.J. (1992). Nuclear DNA content variation within the Rosaceae. American Journal of Botany, 79, 1081 -1086.
Dolezel J., Bartos J., Voglmayr H., Greilhuber J. (2003). Nuclear DNA content and genome size of trout and human. Cytometry, 51, 127-128.
Dolezel J., Sgorbati S., Lucretti S. (1992). Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA contrent in plants. Physiologia Plantarum, 85, 625-631.
Fleischmann A., Michael T.P., Rivadavia F., Sousa A., Wang W., Temsch E.M., Greilhuber J., Müller K.F., Heubl G. (2014). Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot., 114(8), 1651-1663. DOI: 10.1093/aob/mcu189.
Greilhuber, J.; Leitch, I.J. (2013) Genome size and the phenotype. Plant Genome Diversity, 2, Physical Structure, Behaviour and Evolution of Plant Genomes. Austria, 323-344.
Grubov V.I. (1955). Konspekt flory Mongolskoy Narodnoy Respubliki. Moscow-Leningrad (in Russian).
Hara H. (1952).Contributions to the study of variations in the Japanese plants closely related to those of Europe or North America. Pt I. J. Fac. Sci. Tokyo Imp. Univ, 6 (1-3), 29-96. Ikeda H. (1995). Spiraea. In Flora of Japan, Tokyo, 2b, 104-111.
Kechaykin A.A., Skaptsov M.V., Smirnov S.V., Kutsev M.G., Shmakov A.I. (2016). Study of genome size representatives of the genus Potentilla L. (Rosaceae Juss.). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University (Ukrainian Journal of Ecology), 6 (3), 22-233.
Korobkov A.A., Kotseruba V.V., Probatova N.S., Shatokhina A.V. (2014). In: K. Marhold (ed.) IAPT/IOPB chromosome data 18. Taxon, 63 (6), 1389. DOI: http://dx.doi.org/10.12705/636.37.
Koropachinskiy I.Yu. & Vstovskaya T.N. (2002). Drevesnyye rasteniya Aziatskoy Rossii. Novosibirsk, 707 p. (in Russian). Kostikova V.A. & Shaldaeva T.M. (2017). The Antioxidant Activity of the Russian Far East Representatives of the Genus Spiraea L. (Rosaceae Juss.). Russian Journal of Bioorganic Chemistry, 43 (7), 100-104. DOI: 10.1134/S1068162017070081. Kostikova V.A., T.A. Polyakova (2014). Eco - geographical Variability of Spiraea betulifolia Pall. and S. beauverdiana Schneid. on the Morphological and Biochemical Markers. Contemporary Problems of Ecology, 7 (3), 315-323.
Kostikova V.A., Voronkova M.S., Banaev E.V., Polyakova T.A. (2018). The estimation of relative DNA content in the genus Spiraea L., section Calospira C. Koch. Botanica Pacifica, 7(1), 93-96. DOI: 10.17581/bp.2018.07114.
Krasnoborov I.M.. Rostovtseva T.S., Ligus S.A. (1980). Chisla khromosom nekotorykh vidov rasteniy yuga Sibiri i Dalnego Vostoka. Bot. zhurn., 65 (5), 659-668 (in Russian).
Krogulevich R.E. (1971). Rol poliploidii v genezise vysokogornoy flory Stanovogo nagoria. In Ekologiya flory Zabaykalia. Irkutsk., 115-214.
Leitch I.J., Soltis D.E., Soltis P.S., Bennett M.D. (2005). Evolution of DNA Amounts Across Land Plants (Embryophyta). Annals of Botany, 95, 207-217.
Lu L. & Crinan A. 2003. Spiraea. In Flora of China. Beijing, St. Louis, 9, 47-73.
Majovsky J., Uhrikova A., Javorcikova D., Micieta K., Kralik E., Dubravcova Z., Ferakova V., Murin A., Cernusakova D., Hindakova M., Schwarzova T., Zaborsky J. (2000). Prvy doplnok karyotaxonomickeho prehl'adu flory Slovenska. - Acta Fac. Rerum Nat. Univ. Comen., Bot. Supplementum, 1, 1-127.
Marda P.S., Bures P., Horova L., Foggi B., Rossi G. (2008). Genome Size and GC Content Evolution of Festuca Ancestral Expansion and Subsequent Reduction. Annals of Botany, 101, 421 -433.
Oginuma K., Tatarenko I.V., Kondo K. (2004) Karyomorphology of eight species of Spiraea (Rosaceae) in Russia. Chromosome Science, 8 (1), 23-28.
Pellicer J., Hidalgo O., Dodsworth S., Leitch I.J. (2018). Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes, 9, 88; DOI: 10.3390/genes9020088.
Polozhiy A.V. (1988). Rod SprraeaL - Tavolga. In Flora Sibiri, 8, 10-20 (in Russian).
Polyakova T.A. & Muratova E.N. (2015). Kariologicheskoye issledovaniye nekotorykh vidov roda Spiraea (Rosaceae) flory Dalnego Vostoka i Vostochnoy Sibiri. Rastitelnyy mir Aziatskoy Rossii, 2 (18), 23-26 (in Russian). Poyarkova A.I. (1939). Rod Spirea - Sprraea L. In Flora SSSR. M.-L., 283-305 (in Russian).
Probatova N.S. Kazanovsky S.G., Barkalov V.Yu., Rudyka E.G., Shatokhina A.V. (2015). In: K. Marhold, I. Breitwieser (ed.) IAPT/IOPB chromosome data 20. Taxon, 64 (6), 1349. DOI: 10.12705/646.42.
Probatova N.S., Seledets V.P., Rudyka E.G., Gnutikov A.A., Kozhevnikova Z.V., Barkalov V.Y. (2009). In: K. Marhold (ed.) IAPT/IOPB chromosome data 8. Taxon, 58 (4), 1284-1288.
Probatova N.S.. Barkalov V.Yu.. Rudyka E.G. (2007). Kariologiya flory Sakhalina i Kurilskikh ostrovov. Chisla khromosom. taksonomicheskiye i fitogeograficheskiye kommentarii. Vladivostok, 251 p. (in Russian).
Rice A., Glick L., Abadi S., Einhorn M., Kopelman N.M., Salman-Minkov A., Mayzel J., Chay O., Mayrose I. (2015). The chromosome counts database (CCDB) - a community resource of plant chromosome numbers. New Phytologist 206:19-26. Rostovtseva T.S. (1977). Chisla khromosom nekotorykh vidov flory yuga Sibiri. II. Bot. zhurn., 62, 7, 1034-1042 (in Russian). Rostovtseva T.S., Krasnoborov I.M.. Krasnikova S.A. (1981). Chisla khromosom nekotorykh vidov flory Sibiri. Novyye dannyye o fitogeografii Sibiri, 215-220 (in Russian).
Rusanov N.F. (1977). O kariotipakh Spiraeanthus schrenkianus (Fisch. Et Mey.) Maxim. i nekotorykh drugikh kustarnikov
semeystva Rosaceae. Introduktsiya i akklimatizatsiya rasteniy, 14, 49-52 (in Russian).
Sax K. (1936). Polyploidy and Geographic Distribution in Spiraea. Jour. Arn. Arb., 17, 352-356.
Siljak-Yakovlev S., Pustahija F., Solic E.M., Bogunic F., Muratovic E., Basic N., Catrice O., Brown S.C. (2010). Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Advanced Science Letters, 3, 190-213.
Simonin. K.A.; Roddy A.B. (2018). Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol., 16: e2003706.
Slavkina T.I. (1972). Vidy roda Spiraea, introdutsirovannyye Botanicheskim sadom AN UzSSR. Dendrologiya Uzbekistana. Rozotsvetnyye. T. IV. Tashkent, 196-303. (in Russian).
Starlinger F., Vitek E., Pascher K., Kiehn M. (1994). Neue Chromosomenzählungen für die Flora Rumäniens. In Naturwissenschaftliche Forschungen uber Siebenburgen V: Beitrage zur Flora, Vegetation und Fauna von Siebenburgen. Koln, 181-194.
StatSoft, Inc. (1998). STATISTICA for Windows [Computer program manual]. Vailable from: http://www.statsoft.com/
Suda J., Meyerson L.A., Leitch I.J., Pysek P. (2015). The hidden side of plant invasions: The role of genome size. New Phytol., 205,
994-1007.
Sun B.-Y., Kim T.-J., Kim C.H. (1997). A biosystematics study on polyploidy populations of the genus Spiraea (Rosaceae) in Korea. J. Plant Biol., 40 (4), 291-297.
Svyazeva O.A. (1967). Rasprostraneniye drevesnykh rozotsvetnykh v SSSR (v osobennosti na primere roda Spiraea). Thesis of Doctoral Dissertation. Leningrad (in Russian).
Takhtadzhyan A.L. (1966). Sistema i filogeniya tsvetkovykh rasteniy. Moscow-Leningrad (in Russian).
Talluri R.S. & Murray B.G. (2009). DNA C-values and chromosome numbers in Fuchsia L. (Onagraceae) species and artificial hybrids. New Zealand Journal of Botany, 47, 33-37.
Wang X., Zhang T., Wen Z., Xiao H., Yang Z., Chen G., Zhao X. (2011). The chromosome number, karyotype and genome size of the desert plant diploid Reaumuria soongorica(Pall.) Maxim. Plant Cell Rep, 30, 955-964. DOI: 10.1007/s00299-011-1020-3. Wetschnig, W. (1988). Chromosomenzahlen Kärntner Gefässpflanzen (Teil 1). Carinthia II, 178, 39-401.
Yakubov V.V. (1996). Rod Tavolga - Spiraea L. In Sosudistyye rasteniya Sovetskogo Dalnego Vostoka. Sankt-Peterburg, 8, 130136 (in Russian).
Yü, T.T. & Kuan, K.C. (1963). Taxa nova Rosacearum Sinicarum (I), I. Spiraea L., Systema Spiraeae Sinicae. Acta Phytotax. Sinica, 8 (3), 214-215.
Zhang Z.-Y., Sun H., Gu Z.-J. (2002). Karyomorphological study of the Spiraea japonicacomplex (Rosaceae). Brittonia, 54 (3), 168174.
Zhukova P.G. (1980). Khromosomnyye chisla nekotorykh vidov rasteniy Yuzhnoy Chukotki. Bot. zhurn., 65 (1), 51 -59 (in Russian).
Citation:
Kostikova, V.A., Voronkova, M.S., Mitrenina, E.Yu.,Kuznetsov, A.A., Erst, A.S., Veklich, T.N., Shabanova (Kobozeva), E.V. (2019). Estimation of the relative DNA content in species of the genus Spiraea, sections Chamaedryon and Glomerati by flow cytometry.
Ukrainian Journal of Ecology, 9[3), 142-149.
I ("OE^^^MI This work is licensed under a Creative Commons Attribution 4.0. License