Научная статья на тему 'ENZYME-AIDED TREATMENT OF FRUIT JUICE: A REVIEW'

ENZYME-AIDED TREATMENT OF FRUIT JUICE: A REVIEW Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»

CC BY
264
62
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ENZYME / FRUIT JUICE / INCUBATION TIME / INCUBATION TEMPERATURE / VISCOSITY / COLOR

Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Pui Liew Phing, Saleena Lejaniya Abdul Kalam

Enzymatic treatment is a common method of fruit juice production that facilitates juice extraction from plant cells. The choice of enzyme depends on the fruit composition. Pectinase and cellulase are the most popular enzymes while amylase remains less wide-spread. For some raw materials, enzymatic procedures are more efficient than mechanical comminution or thermal processing. The fruit juice industry uses enzymes for streamlining. Enzymes maximize juice extraction from raw materials and improve such processes as pressing, solid settling, and solid removal. Juices that underwent enzymatic treatment are clear and, as a result, more aesthetically appealing to consumers. The review covered the most recent and influential publications on the enzyme treatment of fruit juices (2000-2021). The list of enzymes included pectinase, cellulase, and amylase. The research included the factors that affect the juice fermentation process, i.e., hydromodule, enzyme concentration, incubation time, temperature, and enzyme combination. The methods included data extraction, data analysis, and data compilation, as well as literature search and screening. The review focuses on the effects that individual parameters have on specific responses, e.g., yield, viscosity, total soluble solids, acidity, turbidity, clarity, pigment concentration, phenolic content, color, and solids. A greater enzyme concentration, incubation time, and temperature decrease the viscosity of juice and turbidity but cause color changes. If used in different combinations and at different concentrations, enzymes boost the production of bael pulp, banana, sapodilla, durian, pawpaw, grape, white pitaya, and water melon juices. A longer incubation period improves the production of bael pulp, citron, date, and pawpaw juices. However, higher incubation temperatures seem to have no positive effect on the juice yield. Cellulases, pectinases, amylases, and their combinations are able to produce more fruit juice of higher quality with a more favorable time-temperature combination of incubation. The optimal enzyme concentration, incubation time, and temperature can increase the juice yield. Therefore, enzymatic treatment is an effective method that ensures favorable properties of the finished product.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ENZYME-AIDED TREATMENT OF FRUIT JUICE: A REVIEW»

2023 Т. 53 № 1 / Техника и технология пищевых производств / Food Processing: Techniques and. Technology

ISSN 2074-9414 (Print) ISSN 2313-1748 (Online)

https://doi.org/10.21603/2074-9414-2023-1-2413 https://elibrary.ru/BZUHJJ

Review article Available online at https://fptt.ru/en

Enzyme-Aided Treatment of Fruit Juice: A Review

®

Liew Phing Pui* , Lejaniya Abdul Kalam Saleena

UCSI University*^, Kuala Lumpur, Malaysia

Received: 10.06.2022 Revised: 08.09.2022 Accepted: 04.10.2022

Liew Phing Pui: puüp@ucsiuniversity.edu.my, https://orcid.org/0000-0001-5305-4334 Lejaniya Abdul Kalam Saleena: https://orcid.org/0000-0001-7852-8073

© L.P. Pui, L.A.K. Saleena, 2023

Abstract.

Enzymatic treatment is a common method of fruit juice production that facilitates juice extraction from plant cells. The choice of enzyme depends on the fruit composition. Pectinase and cellulase are the most popular enzymes while amylase remains less wide-spread. For some raw materials, enzymatic procedures are more efficient than mechanical comminution or thermal processing. The fruit juice industry uses enzymes for streamlining. Enzymes maximize juice extraction from raw materials and improve such processes as pressing, solid settling, and solid removal. Juices that underwent enzymatic treatment are clear and, as a result, more aesthetically appealing to consumers.

The review covered the most recent and influential publications on the enzyme treatment of fruit juices (2000-2021). The list of enzymes included pectinase, cellulase, and amylase. The research included the factors that affect the juice fermentation process, i.e., hydromodule, enzyme concentration, incubation time, temperature, and enzyme combination. The methods included data extraction, data analysis, and data compilation, as well as literature search and screening. The review focuses on the effects that individual parameters have on specific responses, e.g., yield, viscosity, total soluble solids, acidity, turbidity, clarity, pigment concentration, phenolic content, color, and solids. A greater enzyme concentration, incubation time, and temperature decrease the viscosity of juice and turbidity but cause color changes. If used in different combinations and at different concentrations, enzymes boost the production of bael pulp, banana, sapodilla, durian, pawpaw, grape, white pitaya, and water melon juices. A longer incubation period improves the production of bael pulp, citron, date, and pawpaw juices. However, higher incubation temperatures seem to have no positive effect on the juice yield. Cellulases, pectinases, amylases, and their combinations are able to produce more fruit juice of higher quality with a more favorable time-temperature combination of incubation.

The optimal enzyme concentration, incubation time, and temperature can increase the juice yield. Therefore, enzymatic treatment is an effective method that ensures favorable properties of the finished product.

Keywords. Enzyme, fruit juice, incubation time, incubation temperature, viscosity, color

For citation: Pui LP, Saleena LAK. Enzyme-Aided Treatment of Fruit Juice: A Review. Food Processing: Techniques and Technology. 2023;53(1):38-48. https://doi.org/10.21603/2074-9414-2023-1-2413

https://doi.org/10.21603/2074-9414-2023-l-2413 https://elibrary.ru/BZUHJJ

Применение ферментов при выработке фруктового сока: обзор

(!) Л. П. Пуи* , Л. А. К. Салена

Университет иСБ/*0*, Куала-Лампур, Малайзия

Поступила в редакцию: 10.06.2022 Л. П. Пуи: puilp@ucsiuniversity.edu.my,

Принята после рецензирования: 08.09.2022 https://orcid.org/0000-0001-5305-4334

Принята к публикации: 04.10.2022 Л. А. К. Салена: https://orcid.org/00 00-0001-7852-8 0 73

© Л. П. Пуи, Л. А. К. Салена, 2023

Аннотация.

Обработка сырья ферментами - распространенный метод производства фруктовых соков, способствующий наиболее полному извлечению сока из растительных клеток. Для некоторых видов сырья ферментативные процессы оказываются более эффективными, чем механическое измельчение или термическая обработка. Выбор конкретного фермента зависит от состава фруктов. Чаще всего в пищевой промышленности используются пектиназа и целлюлаза, реже - амилаза. Использование ферментов в технологическом процессе способствует рационализации производства фруктовых напитков. Ферменты способствуют максимальному извлечению сока из сырья и позволяют оптимизировать такие процессы, как отжим, отстаивание и удаление твердых частиц. Соки, прошедшие ферментативную обработку, более прозрачны и обладают большей потребительской привлекательностью.

В обзор включены актуальные и авторитетные научные публикации по ферментативной обработке фруктовых соков (2000-2021 гг.). В список ферментов для поиска вошли пектиназа, целлюлаза и амилаза. Настоящий обзор суммирует такие факторы, влияющие на процесс производства фруктового сока, как гидромодуль, концентрация фермента, время инкубации, температура и комбинация ферментов. В качестве научных методов были использованы поиск и скрининг научной литературы, извлечение данных, их анализ и компиляция.

Основное внимание в обзоре уделяется тому, как отдельные технологические параметры влияют на результат производственного процесса: выход сока, вязкость, общее количество растворимых твердых веществ, кислотность, примеси, прозрачность, концентрацию пигмента, содержание фенолов, цвет и т. д. Более высокая концентрация фермента и температура, а также более длительный период инкубации способны уменьшить вязкость сока и сделать его более прозрачным, но они вызывают изменение цвета. Оптимальная комбинация и концентрация ферментов способны повысить выработку сока из мякоти баиля, банана, саподиллы, дуриана, папайи, винограда, белой питайи и арбуза. Более длительная продолжительность инкубации улучшает производство сока из мякоти баиля, цитрона, фиников и папайи. Более высокие температуры инкубации не оказывают положительного влияния на выход сока. Целлюлазы, пектиназы, амилазы и их комбинации приводят к выработке большего объема фруктового сока и способствуют повышению его качества, если технологический процесс предусматривает оптимальное сочетание температурного режима и продолжительности инкубации.

Оптимальная концентрация фермента, продолжительность инкубации и температурный режим увеличивают объем производства сока. Этот факт доказывает, что ферментативная обработка - эффективный метод производства сока, обеспечивающий готовый продукт максимально высокого качества.

Ключевые слова. Фермент, фруктовый сок, время инкубации, температура инкубации, вязкость, цвет

Для цитирования: Пуи Л. П., Салена Л. А. К. Применение ферментов при выработке фруктового сока: обзор // Техника и технология пищевых производств. 2023. Т. 53. № 1. С. 38-48. (На англ.). https://doi.org/10.21603/2074-9414-2023-1-2413

Обзорная статья https://fptt.ru

Introduction

Enzymes have been widely applied in the food industry, where they facilitate the process of juice extraction from plant cells [1, 2]. Modern science offers novel enzymes with a wide range of uses, specificity, and new application areas [3]. When enzymes first became

part of the fruit juice industry, they boosted the yield and quality [4]. Enzymes are biological catalysts that are widely used in fruit juice production, winemaking, and brewing. Pectinases, cellulases, amylases, proteases, etc., allow juice producers to achieve the high production volume required by the market [5]. Recent studies

focus on optimizing the enzyme-assisted juice extraction process based on the quality factors of the final product [6].

Fruit juices contain colloids, e.g., pectin, cellulose, hemicellulose, lignin, and starch. Pectinase treatment is a common practice aimed at degrading pectin [7]. Table 1 summarizes the application of enzymes in the fruit juice industry. Enzymic treatment increases the juice yield and results in more transparent final products, especially in grape, apple, pear, and orange juices. Enzymes degrade the cell walls of fruit mash, resulting in a lower juice viscosity and a higher juice yield. Enzymes are known to facilitate the release of flavors, enzymes, polysaccharides and proteins from fruit juices [8]. Enzyme treatments provide a better filtration rate and a clearer finished product, which is regarded as a better quality indicator. In addition,

enzymes improve cloud stability and texture in fruit pulp. In some cases, cellulase improves the juice yield and color properties.

Table 1 demonstrates that pectinase have been the most popular research object so far. Less popular enzymes include cytolase and cellulase [9]. Pectinase and cellulase improve the general fruit juice quality by yielding more soluble solids and juice particulates. Chen et al. stated that enzyme concentration and incubation condition, i.e., temperature and time, affect the pectic hydrolysis [10].

Study objects and methods

This review concentrated on such enzymes as pectinase, cellulase, and amylase in fruit juice production. The list of factors included hydromodule, enzyme concentration, incubation time, temperature, and enzyme combination that affect the fermentation process of

Table 1. Variables used in the enzymatic treatment of fruit juices Таблица 1. Переменные, используемые при ферментативной обработке фруктовых соков

Sample Part/ Condition Enzyme/ Enzyme trade name Variables Responses References

Enzyme concentration/ Dose Temperature, °C Time

Acai Juice Citrozyme-Ultra L 0.01-0.2% 45 15-60 min Clarity, color, pH, titratable acidity, total soluble solids, reducing sugar, vitamin C [11]

Apple Juice Pectinex® Clear 10 U 40-50 60 min Clarification, turbidity, viscosity, total phenols, antioxidant activity [12]

Apricot Pulp Pectinase 0-1.2% 30-50 5 Juice yield [2]

Bael Pulp Pectinase 0.64-7.36 mg/ 5 g pulp 28.1861.82 97.5-652.5 min Juice yield, viscosity, clarity [13]

Banana Juice Pectinase 5-10% 25-40 50-80 h Polygalacturonase activity, clarity, acidity, reducing sugar [14]

Blueberry Juice Pectinex® BE Colour 10 U 4-50 60 min Viscosity, turbidity, degree of clarification, antioxidant and total phenolic content [12]

Carambola Juice Pectinex® Ultra SP-L 0.10% 30-50 0.3-1.7 Turbidity, clarity, viscosity, color [15]

Plum Juice Pectin methyl esterase and polygalacturonase 0.05 g/kg 50 120 min Yield (96.8%) [16]

Cherry Juice Pectinase 0-0.5% v/v 50 1 h Turbidity [17]

Date Pulp Pectinase, Cellulase 50 U, 5 U 50 120 min Total soluble solids, polysaccharide, pH, total nitrogen, ash, total phenolic content, turbidity, sensory, color [18]

Continuation of table 1

Sample Part/ Enzyme/ Variables Responses References

Condition Enzyme trade name Enzyme concentration/ Dose Temperature, °C Time

Durian Juice Pectinex® Ultra SP-L 0.10% 38.5 3 Juice yield, total soluble solids, pH, viscosity, color, sensory [19]

Grape Juice Pectinase 1.5-3 mL 100/kg 50 and 60 1 h pH, total soluble solids, titratable acidity, turbidity, color intensity, juice yield, organic acid [20]

Grapefruit Peel Pectinex® Ultra SPL, Cellulase 1.5L 1-15 and 1-10 mg/g 45 Yield of sugar, dry matter [21]

Guava Mash Cellulase 0.0480.132% (w/w) 50 11.7-68.3 min Extraction yield, total sugar, ascorbic acid, total phenolic, antioxidant activity [22]

Lemon Juice Pectinase 0-1200 U/L 25-50 0-90 min Dry matter, protein, ash, total phenolic content, turbidity, viscosity, color, clarity, pH, sugar [23]

Litchi Pulp Pectinase 100-500 ppm 40 2 Total soluble solids, titratable acidity, color, sugars, ascorbic acid [24]

Mosambi Juice Pectinase 0.0004% w/v Color, clarity, total soluble solids, acidity, pH, density [25]

Passion Juice Pectinex® 3X L 1 mL/L 50 90 min Turbidity, color, [26]

fruit total soluble solids, viscosity

Peach Juice Pectinex® AFPL3, Ultra SP WOP 240-1200 ppm 18-45 30-150 min Viscosity, pulp decrease [7]

Pineapple Juice Cellulase, pectinase, hemicellulase 25-150 mg/100 mL 35-55 210-540 min Juice yield, clarity, viscosity, [27]

Pineapple Juice Xylanase, pectinase, cellulase 0-3% 37 270 min Yield, clarity [28]

Pome- Juice Pectolytic enzyme 0-15 ^L/L 25 120 min Antioxidant, juice [29]

granate yield, color, total soluble solids, betacyanin content

Red Juice Pectinex® Ultra 0.01-0.1% 30-50 20-100 min Proximate, vitamin C, [30]

pittaya SP-L, Pectinex® CLEAR total phenolic content

Sapodilla Juice Pectinex® 3X L 0.03-0.10% 30-50 30-120 min Turbidity, clarity, viscosity, color [31]

Water- Juice Masazyme 0.01-0.1% 30-50 20-120 min Juice yield, total [32]

melon (w/w) dissolved salts, viscosity, turbidity, cloud stability, lightness

White Juice Pectinex® Ultra 0.01-0.1% 30-50 20-100 min Yield, viscosity, [33]

pittaya SP-L clarity, color

fruit juice. The processing approach made it possible to compile the most recent reviews and research papers on the enzyme treatment of fruit juices (2000-2021). The methods included data extraction, data analysis, and data compilation, as well as literature search and screening.

Results and discussion

Enzymes in juice production. Pectinase. Pectolytic enzymes, or pectinases, hydrolyze pectic substances. Fungi used to be the main source for commercial production of pectinases [34]. Pectinolytic enzymes are classified into two main groups: esterase and depolymerases. Esterase affects pectic substances by hydrolysis. Depolymerase happens via two mechanisms, namely hydrolysis and trans-elimination lysis [34].

Pectinex® Ultra SP-L enzyme (Novozymes, Denmark) was described as early as in 1996 as a means of mash enzyme preparation [35]. It had both pectolytic activities, including polygalacturonase, pectinlyase, pectinesterase, etc., as well as hemicellulose, cellulase, protease and amylase galactosidase, chitinase, transgalactosidase, etc. [15]. Pectinex® Ultra SP-L was reported to have a polygalacturonase activity of 26 000 U/mL at < 50°C and pH 3.5-6.0 [36]. On the other hand, Wilkins et al. reported that Pectinex® Ultra SP-L exhibited a pectinase activity of 233 IU/mg [21].

The major industrial application of pectinases is fruit juice extraction and clarification (Table 1) [34]. Girijesh et al. employed pectinase enzyme to extract kendu (Diospyros melanoxylon Roxb.) juice, an underused seasonal fruit that grows in India and possesses various medicinal and nutritional qualities [6]. Pectinases have been used to clarify apple, kiwi, tangerine, pineapple, sapodilla, and carambola [15]. Several other purposes of pectolytic enzymes involve liquefaction, maceration, and cloud stabilization [35]. Pectolytic liquefaction caused qualitative and quantitative changes in tropical fruit compounds and increased the volume of carotenoids released into juice [37].

Cellulase. Cellulases are a group of enzymes that catalyzes the bioconversion of cellulose into soluble sugars and glucose. These enzymes are produced by bacteria, fungi, insects, and mollusks. Cellulase components, such as endo-1,4-#-D-glucanase, exo-1-,4-jff-D-glucanase, and jff-glucosidase, are generally produced by fungi, bacteria, and actinomycetes, either separately or as a complex. Cellulase is produced by Trichoderma reesei. It can be used to break down cellulosic materials, increase yield, and reduce the viscosity of soluble cellulosic substrates. Wilkins et al. stated that Celluclast® 1.5 L had a cellulase activity of 0.126 FPU/mg protein [21]. Cellulases are used in a variety of industries, including food industry, catering, food supply, and food preservation. Cellulases tenderize fruits, clarify fruit juices, decrease roughage in

dough, hydrolyze roasted coffee, extract tea polyphenols and essential oils from olives, and improve food flavor and taste [38].

Food industry uses cellulases to extract or clarify fruit juices. Cellulases also remove cell walls, thus facilitating the release of flavors, enzymes, polysaccharides, and proteins. According to Abdullah et al., cellulase outperformed tannase in cashew apple juice extraction by 4.69% [39]. In the enzymatic extraction of sugar from date fruit, the optimal conditions for the cellulolytic enzyme included 58°C, pH 5.5, and 0.015% concentration [40].

Amylase. Amylases are one of the oldest and most important commercial biocatalysts, accounting for over 30% of the worldwide enzyme market. They find widespread commercial use in the starch processing sector, where they facilitate starch liquefaction and saccharification. Other spheres of application include baking, pulp production, paper industry, fruit juice clarification, detergents, textile desizing, and distilling [41]. Amylases have been used to process fruits that contain starch: they hydrolyze the raw material into glucose forms. This method prevents retrogradation and post-bottling haze formation, which results in a better clarification and filterability of some fruits, e.g., unripe apple [35].

Lee et al. treated banana juice with amylase to obtain starch hydrolysis before treating it with Pectinex® Ultra SP-L [42]. Will et al. added Fructamyl HT amylase (80 mL/t) into apple juice to avoid gray and foggy shade, a color defect that resulted from starch retrogradation [43].

Combinations of enzymes. Previously, scientists focused on single enzymes. Recently, scientific attention has shifted into the direction of more effective enzymic combinations. For instance, Padma et al. used multiple enzymes (pectinases, amylases, and cellulases) to clarify apple juice [44]. Borchani et al. reported the optimal treatment for prickly pear syrup using 5 U cellulase and 20 U pectinase [45].

Handique et al. found that 0.34% cellulase and 0.35% pectinase served as optimal conditions for banana juice extraction [46]. On the other hand, Heffels et al. used four commercial pectinolytic and two cellulolytic enzymes for bilberry juice extraction [47]. For palm juice extraction, the optimal ratio of pectinase:cellulase enzyme was 1:0.75 (w/w) while for blueberry juice it was 1:1 [48, 49]. In addition, Navarrete-Solis et al. applied response surface methodology to jackfruit juice hydrolysis, which was at its best at 1% cellzyme and pectinex enzyme treatment [50].

The results may differ from fruit to fruit. For example, when Chang et al. applied Pectinex® Ultra SP-L, Celluclast® 1.5L, and Fungamyl® 800 L to soursop in single or combination, Pectinex® Ultra SP-L proved to be the primary liquefaction enzyme to yield the best puree samples [51]. Bora et al. found out that pectinase improved banana juice yield, compared to cellulase and their combinations [52].

Effect of hydromodule on fruit juice fermentation.

Table 2 shows different applications of enzymes in liquefaction or clarification of fruits. Clarification may need numerous prior extraction stages, including hot, cold, and enzymatic extraction, to maximize the fruit juice yield. The enzymatic stage proved to be the one with the highest juice recovery yield when compared to the previous two preparatory processes [53]. Water is commonly added to aid in the extraction of fruit juice from pulp. A water to pulp ratio of 1:1 facilitated the enzyme maceration of soursop and yielded more juice from the pulp. Al-Hooti et al. used a higher pulp to water ratio of 1:2-1:4 to homogenize date pulp and facilitate juice extraction [9]. Norjana and Noor Aziah utilized a ratio of 1:2 (w/v) to facilitate juice extraction from durian pulp [19].

Factors that affect the properties of enzyme-treated fruit juice. Enzyme concentration. Pectinase can hydrolyze plant cell walls, causing carotenoid release from plant cells [37]. Pectinase increased the yield, soluble solids content, and clarity of asparagus juice [10]. Chauhan et al. also reported an increase in the total soluble solids in juices compared with pulp [2].

Table 3 illustrates the effects of enzyme concentrations on the properties of fruit juices. Sin et al. concluded that the enzyme concentration was the most crucial factor for sapodilla juice [31]. The yield of durian juice treated

Table 2. Extraction of fruit juices with different water percentage

Таблица 2. Экстракция фруктовых соков с разным процентным содержанием воды

Sample Sample:water References

ratio/percentage

Banana pulp 1:2 [14]

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ajai juice 30% (w/v) [11]

Apricot, plum, 100 mL/kg [2]

mango mL

Citron waste 2:3 [54]

Date pulp 1:3 [18]

Grape pomace 1:5 [55]

Pitaya pulp 1:1 [56]

with 0.05% Pectinex® Ultra SP-L increased by 35%. Mango showed a 70-80% reduction in viscosity after pectinase liquefaction, which increased juice recovery and soluble solids.

A greater enzyme concentration resulted in a larger amount of positively charged protein. This effect reduced the electrostatic repulsion between cloud particles, and, in turn, caused aggregation of larger particles. However, these particles eventually settled down [58]. According to Nur Aliaa et al., it is polysaccharides, e.g., pectin or starch, that are responsible for cloudy juice [33].

Table 3. Effect of enzyme concentrations on fruit juice properties Таблица 3. Влияние концентрации фермента на свойства фруктового сока

Sample Enzyme concentrations Yield Viscosity Total soluble solids Д a Titratable acidity Ascorbic acid Turbidity Clarity Pigment concentration Phenolic content Color Dry matter/Alcohol insoluble solids References

Bael pulp 0.64-7.36 mg/25 g pulp +ve -ve - - - - - +ve - - - - [13]

Banana juice 0-0.2% +ve - +ve - - - - +ve - - - - [57]

Carambola juice 0.01-0.1% v/v - -ve - - - - -ve -ve - - L*+ve - [15]

Durian juice 0-0.1% +ve -ve +ve -ve L*-ve a*-ve b*-ve [19]

Grape juice 1.5-3.0 mL100/kg +ve - NS NS NS - -ve - - - NS - [20]

Guava juice 0.16-0.84 mg/g - -ve - - - +ve - +ve - - L*+ve - [58]

Pawpaw juice 0-40 mg +ve -ve [59]

Pineapple juice 25-150 mg/100 mL - -ve - - - - - +ve - - - - [27]

Pomegranate juice 0.5-5 ^L/mL - - - - - - - -ve - +ve - - [60]

Sapodilla juice 0.03-0.1% -ve - - - - -ve -ve - - L*+ve - [31]

Watermelon juice 0.01-0.15% (w/w) +ve -ve L*+ve +ve [32]

White pittaya juice 0.01-0.1% +ve -ve - - - - - +ve - - +ve - [33]

*+ve - positive effect/increases; -ve - negative effect/decreases; NS - no significant effect;--not reported; L* - brightness; a* - +red

to -green component; b* - +yellow to -blue component.

*+ve - положительный эффект/увеличение; -ve - отрицательный эффект/уменьшение; NS - без значимого эффекта;--данные

отсутствуют; L* - яркость; a* - +красный, -зеленый; b* -+желтый, -синий.

Incubation time. Table 4 summarizes the effects of incubation time on the properties of fruit juices. Tadakittisarn et al. optimized incubation time to increase the yield during banana juice liquefaction [57]. They treated banana juice with 0.15% pectinase enzyme at 50°C for 120 min and obtained a yield of 59.44-65.29%, which exceeded that in the control sample (43.2%).

Noijana & Noor Aziah increased the yield of durian juice by 35% by treating the durian pulp with 0.05% pectinase for 3 h [19]. Bhat treated fruit pulp with enzymes and obtained a greater yield and a better performance [1]. Not only did this method increase the yield but it also reduced the processing time and improved the extraction of fruit compounds.

Viscosity is usually considered as an important physical characteristic related to the quality of liquid foods. Enzymes decreased viscosity due to their hydraulic action on cellulose and pectin present in the juice [31]. Domingues et al. found that a shorter treatment time did not reduce viscosity in passion fruit juice after 30 min of incubation [26]. In the production of banana juice, a longer treatment time was associated with an increase in filterability and clarity [42]. A longer maceration time also decreased the absorbance [33].

The highest yield of carotenoids was reported after the enzymatic maceration of orange peel. The extraction time was 12, 18, and 24 h. The experiment involved 5-,

10-, and 10-mL pectinase, respectively, per 100 g of wet peel and 0.5 g of cellulase per 100 g of cellulose [63]. Enzymes are known to disrupt cell wall, thus releasing carotenoids that bind with protein. This process prevents pigment oxidation and affects color stability, while solvent extraction causes its dissociation and affects water solubility.

The change in incubation time from 30 to 90 min was the variable that significantly affected turbidity, clarity, viscosity, color, and yield [64]. The L* value of carambola juice decreased with time and started to increase after 80 min [15]. The increase of incubation time triggered the development of protein-tannin complex. Sin et al. tested sapodilla juice and managed to increase its L* value by raising the enzyme concentration and incubation time [31].

Incubation temperature. Table 5 summarizes the different effects of incubation temperature on the properties of fruit juices. Enzymic incubation can be performed at different temperatures, but the main range is 40-50°C. The incubation temperature fell below 50°C because the high temperature deactivated the enzyme [19].

Chauhan et al. increased the yield of apricot, plum, and mango juice by increasing the incubation time, the optimum being 5, 5, and 6 h of incubation, respectively [2]. In terms of clarity, a longer incubation time had a positive effect on the clarity of banana juice [61].

Table 4. Effects of incubation time on fruit juice properties Таблица 4. Влияние продолжительности инкубации на свойства фруктового сока

Sample Incubation time Yield Viscosity Total soluble solids Ascorbic acid Turbidity Clarity Pigment concentration Phenolic/ Antioxidant Color Dry matter/ Alcohol insoluble solids References

Bael pulp 97.5-652.5 min +ve +ve - - - +ve - - - - [131

Banana juice 20-120 min - -ve - - - +ve - +ve +ve [611

Blackberry juice 120 min - -ve - - - - +ve - - - [181

Carambola juice 20-100 min - -ve - - +ve - - L*-ve - [151

Citron waste 20-S0 min +ve NS L*-ve a*+ve b*+ve [621

Date pulp 120 min +ve - +ve - - - - - - [181

Guava juice 0.95-11.05 h - -ve - -ve - +ve - - L*+ve - [581

Pawpaw juice 0-360 min +ve -ve - - - - - - - - [591

Pineapple juice 210-540 h - -ve - - - +ve - - - - [271

Pomegranate juice 30-300 min - - - - - -ve - +ve - - [601

Sapodilla juice 30-120 - -ve - - -ve -ve - - L*+ve [311

Watermelon juice 20-120 min NS NS - - -ve - - - L*+ve +ve [321

White pittaya juice 20-100 min -ve +ve - - -ve - - -ve - [331

+ve - positive effect/increases; -ve - negative effect/decreases; NS - no significant effect;--not reported; L* - brightness; a* - +red

to -green component; b* - +yellow to -blue component.

*+ve - положительный эффект/увеличение; -ve - отрицательный эффект/уменьшение; NS - без значимого эффекта;--данные

отсутствуют; L* - яркость; a* - +красный, -зеленый; b* -+желтый, -синий.

Table 5. Effects of incubation temperature on fruit juice properties Таблица 5. Влияние температуры инкубации на свойства фруктового сока

Sample Incubation temperature Yield Viscosity Total soluble solids £ ft Titratable acidity Ascorbic acid Turbidity Clarity Filterability Pigment concentration Phenolic/ Antioxidant Color Dry matter/ Alcohol insoluble solids References

Bael pulp 28.18-61.82 NS +ve - - - - - -ve - - - - - [13]

Banana juice 30-50 - -ve - - - - -ve -ve +ve - - - - [42]

Carambola juice 30-50 - NS - - - - - NS - - - TC+ve - [15]

Grape juice 50, 60 NS - NS NS NS - -ve - - - - - - [20]

Guava juice 36.6-53.4 - -ve - - - -ve +ve L*+ve [58]

Pineapple juice 35-55 - -ve - - - - - +ve - - - - - [27]

Pomegranate juice 20-50 - - - - - - - NS - - +ve - - [60]

Watermelon juice 30-50 NS -ve - - - - -ve - - - - L*+ve +ve [32]

*+ve - positive effect/increases; -ve - negative effect/decreases; NS - no significant effect; — not reported; L* - brightness; TC - total color.

*+ve - положительный эффект/увеличение; -ve - отрицательный эффект/уменьшение; NS - без значимого эффекта;--данные

отсутствуют; L* - яркость; TC - полный цвет.

Color is an important sensory criterion for fruit juices. Sin et al. also stated that the enzyme clarification should be conducted under moderate temperatures because the temperature of 40-60°C facilitated enzymatic clarification in their experiment with sapodilla juice [34]. A higher temperature increased the enzymatic treatment rate in the clarification process when it stayed within the range of 40-60°C, which was below denaturation temperature.

Conclusion

Enzymes improve the sensory profile of fruit juice. The optimization parameters of enzyme treatment include enzyme concentration, incubation time, and temperature. According to this review, different enzymes applied at different concentrations increased the yield of the bael, banana, sapodilla, durian, pawpaw, grape, white pitaya, and water melon juices. A longer incubation time increased the yield of bael, citron, date, and pawpaw juices. However, a higher incubation temperature had no positive effect on any of the abovementioned raw materials. Cellulases, pectinases, and amylases, when applied individually or in combinations, increased the amount of fruit juice produced and improved its quality throughout the incubation process. A correct adjustment of the enzyme concentration, incubation time, and temperature improved the juice yield. The effect differed for each fruit, which means that juice producers

have to define the optimal conditions in each particular case. Proper enzyme concentrations, incubation times, and temperatures decreased juice viscosity, reduced turbidity, improved color, and increased yield and total soluble solids. Incubation time had a positive effect on pigment concentration, while a greater enzyme concentration increased the clarity.

Contribution

L.P. Pui reviewed scientific publications, designed the research, and wrote the manuscript. L.A.K. Saleena processed and analyzed the data, reviewed scientific publications, and edited the manuscript.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Критерии авторства

Л. П. Пуи - обзор научных публикаций, план исследования, текст статьи. Л. А. К. Салена - обработка и анализ данных, обзор научных публикаций, редактирование текста статьи.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

References

1. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnology Advances. 2000;18(5):355-383. https:// doi.org/10.1016/S0734-9750(00)00041-0

2. Chauhan SK, Tyagi SM, Singh D. Pectinolytic liquefaction of apricot, plum, and mango pulps for juice extraction. International Journal of Food Properties. 2001;4(1):103-109. https://doi.org/10.1081/JFP-100002190

3. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, et al. Applications of microbial enzymes in food industry. Food Technology and Biotechnology. 2018;56(1):16-30. https://doi.org/10.17113/ ftb.56.01.18.5491

4. Ramadan MF. Enzymes in fruit juice processing. In: Kuddus M, editor. Enzymes in food biotechnology. Production, applications, and future prospects. Academic Press; 2029. pp. 45-59. https://doi.org/10.1016/B978-0-12-813280-7.00004-9

5. Michele V. Enzymes in the production of juices and beverages. World Journal of Pharmacy and Pharmaceutical Sciences. 2020;9(3):504-517.

6. Panda G, Vivek K, Mishra S, Pradhan RC. Characterization and optimization of process parameters for enzyme assisted extraction of kendu (DiospyrosMelanoxylon Roxb.) fruit juice. International Journal of Fruit Science. 2021;21(1):299-311. https://doi.org/10.1080/15538362.2021.1873220

7. Santin MM, Treichel H, Valduga E, Cabral LMC, Di Luccio M. Evaluation of enzymatic treatment of peach juice using response surface methodology. Journal of the Science of Food and Agriculture. 2008;88(3):507-512. https://doi. org/10.1002/jsfa.3114

8. Schweiggert U, Hofmann S, Reichel M, Schiever A, Carle R. Enzyme-assisted liquefaction of ginger rhizome (Zingiber officinale Rosc.) for the production of spray-dried and paste-like ginger condiments. Journal of Food Engineering. 2008;84(1):28-38. https://doi.org/10.1016/jjfoodeng.2007.04.013

9. Al-Hooti SN, Sidhu JS, Al-Saqer JM, Al-Othman A. Chemical composition and quality of date syrup as affected by pectinase/cellulase enzyme treatment. Food Chemistry. 2002;79(2):215-220. https://doi.org/10.1016/S0308-8146(02)00134-6

10. Chen X, Xu F, Qin W, Ma L, Zheng Y. Optimization of enzymatic clarification of green asparagus juice using response surface methodology. Journal of Food Science. 2012;77(6):C665-C670. https://doi.org/10.1111/j.1750-3841.2012.02738.x

11. Cesar LT, de Freitas Cabral M, Maia GA, de Figueiredo RW, de Miranda MRA, de Sousa PHM, et al. Effects of clarification on physicochemical characteristics, antioxidant capacity and quality attributes of açai (Euterpe oleracea Mart.) juice. Journal of Food Science and Technology. 2014;51(11):3293-3300. https://doi.org/10.1007/s13197-012-0809-6

12. Sandri IG, Lorenzoni CMT, Fontana RC, da Silveira MM. Use of pectinases produced by a new strain of Aspergillus niger for the enzymatic treatment of apple and blueberry juice. LWT. 2013;51(2):469-475. https://doi.org/10.1016/j.lwt.2012.10.015

13. Singh A, Kumar S, Sharma HK. Effect of enzymatic hydrolysis on the juice yield from bael fruit (Aegle marmelos Correa) pulp. American Journal of Food Technology. 2012;7(2):62-72. https://doi.org/10.3923/ajft.2012.62.72

14. Barman S, Sit N, Badwaik LS, Deka SC. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. Journal of Food Science and Technology. 2015;52(6):3579-3589. https://doi.org/10.1007/s13197-014-1413-8

15. Abdullah AGL, Sulaiman NM, Aroua MK, Megat Mohd Noor MJ. Response surface optimization of condition for clarification of carambola fruit juice using a commercial enzyme. Journal of Food Engineering. 2007;81(1):65-71. https:// doi.org/10.1016/j.jfoodeng.2006.10.013

16. Mieszczakowska-Frac M, Markowski J, Zbrzezniak M, Plocharski W. Impact of enzyme on quality of blackcurrant and plum juices. LWT. 2012;49(2):251-256. https://doi.org/10.1016/j.lwt.2011.12.034

17. Pinelo M, Zeuner B, Meyer AS. Juice clarification by protease and pectinase treatments indicates new roles of pectin and protein in cherry juice turbidity. Food and Bioproducts Processing. 2010;88(2-3):259-265. https://doi.org/10.1016/ j.fbp.2009.03.005

18. Abbès F, Bouaziz MA, Blecker C, Masmoudi M, Attia H, Besbesa S. Date syrup: Effect of hydrolytic enzymes (pectinase/cellulase) on physicochemical characteristics, sensory and functional properties. LWT. 2011;44(8):1827-1834. https://doi.org/10.1016/j.lwt.2011.03.020

19. Norjana I, Noor Aziah AA. Quality attributes of durian (Durio zibethinus Murr) juice after pectinase enzyme treatment. International Food Research Journal. 2011;18(3):1117-1122.

20. Lima MS, Dutra MCP, Toaldo IM, Corrêa LC, Pereira GE, Oliveira D, et al. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration. Food Chemistry. 2015;188:384-392. https://doi.org/10.1016/j.foodchem.2015.04.014

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

21. Wilkins MR, Widmer WW, Grohmann K, Cameron RG. Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technology. 2007;98(8):1596-1601. https://doi.org/10.1016/j.biortech.2006.06.022

22. Nguyen VT. Effect of binder and sweeteners on the production of effervescent artichoke (Cynara scolymus L.) tea tablets. Journal of Food Process and Preservation. 2013;37(6):1078-1083. https://doi.org/10.1111/j.1745-4549.2012.00808.x

23. Maktouf S, Neifar M, Drira SJ, Baklouti S, Fendri M, Châabouni SE. Lemon juice clarification using fungal pectinolytic enzymes coupled to membrane ultrafiltration. Food and Bioproducts Processing. 2014;92(1):14-19. https://doi. org/10.1016/j.fbp.2013.07.003

24. Vijayanand P, Kulkarni SG, Prathibha GV. Effect of pectinase treatment and concentration of litchi juice on quality characteristics of litchi juice. Journal of Food Science and Technology. 2010;47(2):235-239. https://doi.org/10.1007/ s13197-010-0023-3

25. Rai P, Majumdar GC, Jayanti VK, Dasgupta S, De S. Alternative pretreatment methods to enzymatic treatment for clarification of mosambi juice using ultrafiltration. Journal of Food Process Engineering. 2006;29(2):202-218. https://doi. org/10.1111/j.1745-4530.2006.00058.x

26. Domingues RCC, Junior SBF, Silva RB, Madrona GS, Cardoso VL, Reis MHM. Evaluation of enzymatic pretreatment of passion fruit juice. Chemical Engineering Transactions. 2011;24:517-522. https://doi.org/10.3303/CET1124087

27. Kumar S, Sharma HK. Comparative effect of crude and commercial enzyme on the juice recovery from pineapple (Ananas comosus) using principal component analysis (PCA). Food Science and Biotechnology. 2012;21(4):959-967. https:// doi.org/10.1007/s10068-012-0126-x

28. Pal A, Khanum F. Efficacy of xylanase purified from Aspergillus niger DFR-5 alone and in combination with pectinase and cellulose to improve yield and clarity of pineapple juice. Journal of Food Science and Technology. 2011;48(5):560-568. https://doi.org/10.1007/s13197-010-0175-1

29. Rinaldi M, Caligiani A, Borgese R, Palla G, Barbanti D, Massini R. The effect of fruit processing and enzymatic treatments on pomegranate juice composition, antioxidant activity and polyphenols content. LWT. 2013;53(1): 355-359. https://doi.org/10.1016Zj.lwt.2013.02.015

30. Nur'Aliaa AR, Siti Mazlina MK, Taip FS. Effects of commercial pectinases application on selected properties of red pitaya juice. Journal of Food Process Engineering. 2011;34(5):1523-1534. https://doi.org/10.1111/j.1745-4530.2009.00388.x

31. Sin HN, Yusof S, Sheik Abdul Hamid N, Rahman RA. Optimization of enzymatic clarification of sapodilla juice using response surface methodology. Journal of Food Engineering. 2006;73(4):313-319. https://doi.org/10.1016/jjfoodeng.2005.01.031

32. Saxena A, Maity T, Raju PS, Bawa AS. Degradation kinetics of colour and total carotenoids in jackfruit (Artocarpus heterophyllus) bulb slices during hot air drying. Food Bioprocess and Technology. 2012;5(2):672-679. https://doi.org/10.1007/ s11947-010-0409-2

33. Nur'Aliaa AR, Siti Mazlina MK, Taip FS, Liew Abdullah AG. Response surface optimization for clarification of white pittaya juice using a commercial enzyme. Journal of Food Process Engineering. 2010;33(2):333-347. https://doi. org/10.1111/j.1745-4530.2008.00277.x

34. Jayani RS, Saxena S, Gupta R. Microbial pectinolytic enzymes: A review. Process Biochemistry. 2005;40(9):2931-2944. https://doi.org/10.1016/j.procbio.2005.03.026

35. Saxena S. Microbial enzymes and their industrial applications. In: Saxena S, editor. Applied microbiology. New Delhi: Springer; 2015. pp. 121-154. https://doi.org/10.1007/978-81-322-2259-0_9

36. Kashyap DR, Vohra PK, Chopra S, Tewari R. Applications of pectinases in the commercial sector: A review. Bioresource Technology. 2001;77(3):215-227. https://doi.org/10.1016/S0960-8524(00)00118-8

37. Essa HA, Salama MF. Effect of macerate enzymes on the yield, quality, volatile compounds and rheological property of prickly pear juice. Nahrung. 2002;46(4):245-250. https://doi.org/10.1002/1521-3803(20020701)46:4<245::AID-F00D245>3.0.C0;2-I

38. Ejaz U, Sohail M, Ghanemi A. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics. 2021;6(3). https://doi.org/10.3390/biomimetics6030044

39. Abdullah S, Pradhan RC, Mishra S. Effect of cellulase and tannase on yield, ascorbic acid and other physicochemical properties of cashew apple juice. Fruits. 2021;76(2):51-60. https://doi.org/10.17660/th2021/76.2.1

40. Samira B, Mehrdad A, Chamani M, Gerami A. Optimization of enzymatic extraction of sugars from Kabkab date fruit. Middle-East Journal of Scientific Research. 2011;7(2):211-216.

41. Soy S, Nigam VK, Sharma SR. Enhanced production and biochemical characterization of a thermostable amylase from thermophilic bacterium Geobacillus icigianus BITSNS038. Journal of Taibah University for Science. 2021;15(1):730-745. https://doi.org/10.1080/16583655.2021.2002549

42. Lee WC, Yusof S, Hamid NSA, Baharin BS. Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering. 2006;73(1):55-63. https://doi.org/10.1016/ j.jfoodeng.2005.01.005

43. Will F, Schulz K, Ludwig M, Otto K, Dietrich H. The influence of enzymatic treatment of mash on the analytical composition of apple juice. International Journal of Food Science and Technology. 2002;37(6):653-660. https://doi.org/10.1046/ j.1365-2621.2002.00597.x

44. Padma PN, Sravani P, Misha P, Sneha N, Anuradha K. Synergistic effect of multiple enzymes on apple juice clarification. Indian Journal of Science and Technology. 2017;10(10):1-5. https://doi.org/10.17485/ijst/2017/v10i10/107716

45. Borchani M, Masmoudi M, Amira AB, Abbes F, Yaich H, Besbes S, et al. Effect of enzymatic treatment and concentration method on chemical, rheological, microstructure and thermal properties of prickly pear syrup. LWT. 2019;113(6). https://doi.org/10.1016/j.lwt.2019.108314

46. Handique J, Bora SJ, Sit N. Optimization of banana juice extraction using combination of enzymes. Journal of Food Science and Technology. 2019;56(6):3732-3743. https://doi.org/10.1007/s13197-019-03845-z

47. Heffels P, Bührle F, Schieber A, Weber F. Influence of common and excessive enzymatic treatment on juice yield and anthocyanin content and profile during bilberry (Vaccinium myrtillus L.) juice production. European Food Research and Technology. 2017;243(1):59-68. https://doi.org/10.1007/s00217-016-2722-0

48. Mohanty S, Mishra S, Pradhan RC. Optimization of enzymatic extraction and characterization of palm (Borassus flabellifer) juice. Journal of Food Measurement and Characterization. 2018;12(5):2644-2656. https://doi.org/10.1007/s11694-018-9882-5

49. Ji Y-J, Im M-H. Optimization of blue berry extraction for beverage production using enzyme treatment. Korean Journal of Food Preservation. 2017;24(1):60-67. https://doi.org/10.11002/kjfp.2017.24.1.60

50. Navarrete-Solis A, Hengl N, Ragazzo-Sanchez JA, Baup S, Calderön-Santoyo M, Pignon F, et al. Rheological and physicochemical stability of hydrolyzed jackfruit juice (Artocarpus heterophyllus L.) processed by spray drying. Journal of Food Science and Technology. 2019;57(2):663-672. https://doi.org/10.1007/s13197-019-04098-6

51. Chang LS, Karim R, Mohammed AS, Ghazali HM. Characterization of enzyme-liquefied soursop (Annona muricata L.) puree. LWT. 2018;94(8):40-49. https://doi.org/10.1016Zj.lwt.2018.04.027

52. Bora SJ, Handique J, Sit N. Effect of ultrasound and enzymatic pre-treatment on yield and properties of banana juice. Ultrasonics Sonochemistry. 2017;37(5):445-451. https://doi.org/10.1016/j.ultsonch.2017.01.039

53. Ninga KA, Carly Desobgo ZS, De S, Jong Nso E. Pectinase hydrolysis of guava pulp: Effect on the physicochemical characteristics of its juice. Heliyon. 2021;7(10). https://doi.org/10.1016/j.heliyon.2021.e08141

54. Lim LBL, Chieng HI, Wimmer FL. Nutrient composition of Artocarpus champeden and its hybrid (Nanchem) in Negara Brunei Darussalam. ASEAN Journal of Science and Technology for Development. 2011;28(2):122-138. https://doi. org/10.29037/ajstd.39

55. Ferri M, Bin S, Vallini V, Fava F, Michelini E, Roda A, et al. Recovery of polyphenols from red grape pomace and assessment of their antioxidant and anti-cholesterol activities. New Biotechnology. 2016;33(3):338-344. https://doi. org/10.1016/j.nbt.2015.12.004

56. Tze NL, Han CP, Yusof YA, Ling CN, Talib RA, Taip FS, et al. Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Science and Biotechnology. 2012;21(3):675-682. https://doi. org/10.1007/s10068-012-0088-z

57. Tadakittisarn S, Haruthaithanasan V, Chompreeda P, Suwonsichon T. Optimization of pectinase enzyme liquefaction of banana "Gros Michel" for banana syrup production", Kasetsart Journal - Natural Science. 2007;41(4):740-750.

58. Kaur S, Sarkar BC, Sharma HK, Singh C. Response surface optimization of conditions for the clarification of guava fruit juice using commercial enzyme. Journal of Food Process Engineering. 2011;34(4):1298-1318. https://doi. org/10.1111/j.1745-4530.2009.00414.x

59. Djokoto D, Dzogbefia VP, Oldham JH. Rapid extraction of pawpaw juice with the application of locally produced pectic enzymes from Saccharomyces cerevisiae ATCC 51712. Food Biotechnology. 2006;20(1):31-41. https://doi. org/10.1080/08905430500523970

60. Neifar M, Ellouze-Ghorbe R, Kamoun A, Baklouti S, Mokni A, Jaouani A, et al. Effective clarification of pomegranate juice using laccase treatment optimized by response surface methodology followed by ultrafiltration. Journal of Food Process Engineering. 2011;34(4):1199-1219. https://doi.org/10.1111/j.1745-4530.2009.00523.x

61. Sagu ST, Nso EJ, Karmakar S, De S. Optimisation of low temperature extraction of banana juice using commercial pectinase. Food Chemistry. 2014;151:182-190. https://doi.org/10.1016/j.foodchem.2013.11.031

62. Lim JY, Yoon H-S, Kim K-Y, Kim K-S, Noh J-G, Song IG. Optimum conditions for the enzymatic hydrolysis of citron waste juice using response surface methodology (RSM). Food Science and Biotechnology. 2010;19(5):1135-1142. https://doi.org/10.1007/s10068-010-0162-3

63. Qinar I. Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochemistry. 2005;40(2):945-949. https://doi.org/10.1016/j.procbio.2004.02.022

64. Umsza-Guez MA, Rinaldi R, Silva Lago-Vanzela E, Martin N, da Silva R, Gomes E, et al. Effect of pectinolytic enzymes on the physical properties of caja-manga (Spondias cytherea Sonn.) pulp. Food Science and Technology. 2011;31(2):517-526. https://doi.org/10.1590/S0101-20612011000200037

i Надоели баннеры? Вы всегда можете отключить рекламу.