Научная статья на тему 'English terminology in molecular biology'

English terminology in molecular biology Текст научной статьи по специальности «Биологические науки»

CC BY
1324
121
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
molecular biology / molecular genetics / gene / genome / genetic information / transcriptome / terminology / linguistics / English language / молекулярная биология / молекулярная генетика / ген / геном / генетиче- ская информация / транскриптом / терминология / лингвистика / английский язык

Аннотация научной статьи по биологическим наукам, автор научной работы — P. Y. Andreev, E. Y. Kaverina, E. A. Andreeva, V. I. Akimov

There are two important scientific events which happened in the late 60s of the XIX century and influenced modern biological science. Then 34-old Padre G. Mendel began his experimental series, revealing how ancestral traits are passed to off-springs and F. Miescher for the first time extracted DNA from leukocyte nucleus. Since then we needed at least over a hundred years to accept that DNA is the substrate of inheritance. 1953 became a turning point for molecular biology and genetics era. Pioneer researches which shed light on the fundamental principles of storing, reproducing and implementing genetic information caused conceptual breakthroughs, such as the double helix, genetic code, gene structure and molecular mechanisms of protein biosynthesis. The quintessence of the derived factual material led to triumph in molecular biology and molecular genetics in 2003, when the human genome sequence was revealed. All of these accomplishments gave rise to new terms of English origin, which were then widely used in Russian scientific publications causing major interest in Russian linguistics. It is well known that some ancient languages, such as Latin and Greek largely contributed to science having coined new terms and measurement units. The relicts in form of Latinisms and words of Greek etymology are widely used in professional terminology and every day communication. The aim of this paper is to overview Anglicisms and to discuss etymology and some semantic features of these terms, revealing how often some essential terms of English origin are used in Russian molecular biology publications.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

АНГЛИЙСКАЯ ТЕРМИНОЛОГИЯ В МОЛЕКУЛЯРНОЙ БИОЛОГИИ

Два важных научных события произошли в конце 60-х годов XIX века и разбили лед современной биологической науки. 34-летний Г. Мендель начал свою экспериментальную серию, рассказав, как наследственные черты передаются потомкам, и Ф. Мишер впервые извлек ДНК из ядра лейкоцитов. С тех пор нам понадобилось как минимум более ста лет, чтобы признать, что ДНК является субстратом наследования. 1953 год стал переломным для эпохи молекулярной биологии и генетики. Пионерские исследования, которые пролили свет на фундаментальные принципы хранения, воспроизведения и реализации генетической информации, привели к концептуальным прорывам, таким как двойная спираль, генетический код, структура генов и молекулярные механизмы биосинтеза белков. Квинтэссенция полученного фактического материала привела к триумфу в молекулярной биологии и молекулярной генетике в 2003 году, когда была обнаружена последовательность генома человека. Все эти достижения породили новые термины английского происхождения, которые затем широко использовались в российских научных публикациях, вызывая большой интерес к русскому языкознанию. Хорошо известно, что некоторые древние языки, такие как латинский и греческий, внесли большой вклад в науку, так как были придуманы новые термины и единицы измерения. Реликвии в форме латинизмов и слов греческой этимологии широко используются в профессиональной терминологии и повседневном общении. Целью данной статьи является обзор англицизмов и обсуждение этимологии и некоторых семантических особенностей этих терминов, презентация того, как часто некоторые важные термины английского происхождения используются в российских публикациях по молекулярной биологии.

Текст научной работы на тему «English terminology in molecular biology»

Секция «Иностранные языки в медицинских специальностях и в практике работников здравоохранения: преимущества и возможности»

ENGLISH TERMINOLOGY IN MOLECULAR BIOLOGY P.Y. Andreev, Student

E.Y. Kaverina, Candidate of Sciences in Medicine, Associate Professor E.A. Andreeva, Candidate of Sciences in Medicine, Associate Professor Voronezh Burdenko State Medical University (Russia, Voronezh)

V.I. Akimov, Candidate of Technical Sciences, Associate Professor Voronezh State Technical University (Russia, Voronezh)

DOI: 10.24411/2500-1000-2019-11290

Abstract. There are two important scientific events which happened in the late 60s of the XIX century and influenced modern biological science. Then 34-old Padre G. Mendel began his experimental series, revealing how ancestral traits are passed to off-springs and F. Miescher for the first time extracted DNA from leukocyte nucleus. Since then we needed at least over a hundred years to accept that DNA is the substrate of inheritance.

1953 became a turning point for molecular biology and genetics era. Pioneer researches which shed light on the fundamental principles of storing, reproducing and implementing genetic information caused conceptual breakthroughs, such as the double helix, genetic code, gene structure and molecular mechanisms of protein biosynthesis. The quintessence of the derived factual material led to triumph in molecular biology and molecular genetics in 2003, when the human genome sequence was revealed. All of these accomplishments gave rise to new terms of English origin, which were then widely used in Russian scientific publications causing major interest in Russian linguistics.

It is well known that some ancient languages, such as Latin and Greek largely contributed to science having coined new terms and measurement units. The relicts in form of Latinisms and words of Greek etymology are widely used in professional terminology and every day communication.

The aim of this paper is to overview Anglicisms and to discuss etymology and some semantic features of these terms, revealing how often some essential terms of English origin are used in Russian molecular biology publications.

Keywords: molecular biology, molecular genetics, gene, genome, genetic information, transcriptome, terminology, linguistics, English language.

Anglicisms in Molecular Biology: an overview

Over the last decades many molecular structures and mechanisms were revealed, having big influence on humanity by shedding light on pathogenesis of many disorders and other aspects of living matter existence, which were kept mysterious before. Revealed facts ultimately needed to be recorded in the language with appropriate definitions and terms. There are four prominent Russian papers dedicated to nucleic acids chemistry and gene expression, including textbook with

glossary [1], encyclopedia [2] and two monographs [3; 4], which were analyzed for this research. The results have shown that many terms have English origin and can be classified into four categories: single -letter compounds, abbreviations, acronyms, transliterated terms.

I. Single -Letter Compounds

This category involves two-word compounds in which the first word is contracted to the initial letter, e.g. L-chain. Although this group comprises a limited number of words, it is responsible for key cellular processes,

macromolecules, adaptive immunity, DNA status and research. Here are some examples of molecular immunology terms. H-chain and L-chain are named in this way because of differences in their molecular mass: H means heavy, whereas L means light. Also, there is C constant and V variable domain in those chains. Current definitions represent the structure of immunoglobulin genes and molecules, explaining why synthesized antibodies can potentially match to almost unlimited alien agents, e.g. J-chain (joining chain of multimeric IgA and IgM) and V(D)J recombination in which V stands for variable, D for diversity, and J for joining. In Russian publications these terms are adopted and used as H-цепь, L-цепь [5], C-домен, V-домен, J-цепь [6] and V(D)Jрекомбинация [7].

D-Loop is one of several DNA replication mechanisms in prokaryotes and mitochondrial DNA replication of some species. The letter D is used to underline the visualization of process, because a new DNA chain, which was synthesized de novo, displaces complementary one in form of capital D [8]. This was revealed and described by Kasamatsu, H et al. R-Loop is a three-stranded structure, which was described in 1976 by Thomas M. et al. It is formed by DNA-RNA hybridization in vivo [9; 10; 11]. It plays crucial role in gene expression, immunoglobulin class switch recombination, DNA replication, and genome stability. R-loops were detected in prokaryotes and in eukaryotes, including mammals and are ubiquitous [10]. Also, this structure can be created in vitro for research purposes. The letter R can probably mean the presence of RNA component in complex. These terms are used in Russian papers as D-петля и R-петля.

Along with the mentioned above, there are numerous examples of phenomena verbally manifested as single-letter compounds, e.g. Asite, P-site and E-site, representing stages of protein biosynthesis. They are regions of ri-bosome, binding RNA. A-site is responsible for aminoacyl-tRNA binding and P-site binds peptidyl-tRNA [12; 13]. The first letter of these two regions corresponds to the first letter of their ligands. As for E-site, E means exit. This is symbolic for E-site function - to reach a free tRNA before it leaves ribosome. In

Russian publications these compounds are used as А-сайт, P-сайт и E-сайт. However, this is a tendency to substitute сайт for центр in some papers.

Furthermore, there are some cases exam-pling discrete letters, which are not connected with another word by hyphen, such as G0, G1 and G2. Letter G is shorthand for Gap. Along with S and M these one-letter terms are to label the stages of interphase. They are traditionally transliterated with Cyrillic letter [14; 15], which could be observed even in early Russian papers [16].

II. Abbreviations

As it was already announced, this category along with single-letter compounds, acronyms and terms based on original words makes a substantial contribution to molecular biology glossary. Moreover, there is some evidence that abbreviations are the most frequent term category. They are widely used to name various structures and processes, including enzymes and other proteins, receptors, adaptor molecules, signal pathways, nucleotide sequences and genes etc. Before the Human Genome Project (HGP) was started it was hastily predicted that full nucleotide sequence of our species consists approximately 50-140 thousand genes [17]. However, the triumph in 2001 brought unexpected results: far fewer genes (about 30 thousand) were discovered [18; 19]. Today the official HGP website reports: "The current consensus predicts about 20.5 thousand (20500?) genes, but this number has fluctuated a great deal since the project began" [20]. This number of expressed genes is only about 3% of a full genome sequence. This phenomenon was described in 1978 by Cavalier-Smith and called "C-value paradox" [21]. Anyhow, 20.5 thousand genes is a large group of vocabulary entries.All of them were given English names and their names have abbreviations, e.g. ABCA-1 (ATP binding cassette subfamily A member 1), ADH1B (alcoholdehydrogenase 1B), CYP11B2 (cytochrome P450, family 11, subfamily B, polypeptide 2), NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1), LDHA, LDHB (lactatedehydrogenase isoforms).

Furthermore, it was demonstrated that genome can be organized by not only linear

gene sequence, but by overlapped genes. Such overlapped units are mostly spread in viruses and about third annotated genes are overlapped in Bacteria [22] and about 10% in a set of 13,484 pairs of human-mouse orthol-ogous [23], giving a reason to conclude that this phenomenon is rather common in species, including H. sapiens and other Eumetazoa [24; 25]. The role of gene overlap is evolutionary significant, noticing that this way new gene appear is possible [26]. Secondary, it is the way to reduction in number of nucleotides needed for encoding genes, while small genome. In this light amount of gene products is even much more unbelievable in contrast with genes.

This consequence can be explained per contra by process called "alternative splicing" [27; 28], which is in the fact that expressed RNA can be modified in vivo given that the genetic information is realized, using the next way: DNA ^ RNA ^ products (protein, various RNA, including tRNA and rRNA etc). These modifications are possible due to Eu-karyotic transcriptome features which are in the fact that RNA is immature after transcription, having exone-introne structure. Exone is an expressed sequence, whereas introne is excised out from mRNA precursor. The density of introns is various between species. On the average there are 8.4 introns/gene for H. sapiens (139418 introns in genome overall) and 0.0075 introns/gene for unicellular fungus E. cuniculi (15 introns in genome overall) [29]. At the same time, there are no intron in histones and rRNA genes. This fact can be probably explained, noticing that announced genes are really ancient and extremely conservative among species. There are only 4 differences in sequence of amino acid residues between calf and pea seedling in H4 histone molecule [30] in respect that divergence time of Plants and Animalia is estimated as 1, 609 mln ± 60 years ago [31]. All five histones (H1, H2A, H2B, H3, H4) are organized in a single gene cluster, which is repeated about 35 times in humans. rRNA genes are organized in cluster and have no introns, as well. They are copied over and over again (about 100 copies in human genome). Such conservatism was strictly determined by evolutionary pressure and underlines ultimate importance

of histone and RRNA genes with no margin for error in sequence due to their product vital functions.

On the other hand, some exons can be also deleted. This fact gives ability for a large diversity of mature RNA after it is spliced, which is based on exons combination, increasing the value of probable protein diversity [3]. It is notable that "one gene - one polypeptide hypothesis" [32], which was accepted before, is seriously disputed after alternative splicing was revealed. Now it is believed that 94% of expressed RNA can be spliced in H. Sapiens, what makes gene product multiplicity unthinkable [33]. All this gives a reason for linguistic interest, paying respect to gene products nomenclature, which needs new terms.

The NK-cell example could be quite suitable to be considered, paying respect to its name and membrane composition. NK stands for natural killer, which in Russian papers has received a loan equivalent натуральный киллер. Not all abbreviations have a Russian equivalent, e.g. activating receptors or so called SLAM (signaling lymphocytic activation molecule), such as NTBA (NK-T-B antigen), CRACC (CD2-like receptor-activating cytotoxic cell); inhibitory receptors, such as LILRB (leukocyte immunoglobulin-like receptor), TIGIT (T cell Ig and ITIM domain) [34]; cytokine receptors, such as IFNAR [35; 36; 7; 37], many subtypes of interleukin receptors (IL1R, IL2R etc.); adhesion receptors, such as DNAM-1 (DNAX accessory mole-cule-1) [38; 39].

Moreover, there are some nomenclature examples in molecular biology glossary, the names of which are a complicated mixture of a single-letter compound and abbreviation types of word-formation.

A-DNA, B-DNA and Z-DNA - are various forms of DNA molecule. The fact that DNA is not a static molecule was firstly noticed by R. Franklin in her X-ray crystallography investigations. Depending on the extent of solution hydration DNA can change its form. In case of low-hydrated solution DNA take a configuration of A-form unlike B-DNA. The last one usually takes place in vivo (normal hydration). Revealing of DNA structure by J. Watson and F. Crick in 1953 is closely con-

nected with results of X-Ray crystallography and famous Photograph 51 by R. Franklin, -an image of B-form DNA. These two forms are canonic right-handled structures. It means that any basement sequences are able to form those DNA forms, unlike Z-DNA, which is formed by CG-reach nucleotide sequence, having not canonic left-handled conformation [40].

OriC (origin of replication C), TerC (termination of replication C) are DNA sequences in different species, which are recognized by replication complex for initiation and termination of replication [41; 42; 43]. There are some other chromosomal loci of replication starting point, such as OriT in F-plasmid, OriL and OriH in human mitochondrial DNA (L and H stand for light and heavy. This way OriH locus is the sequence of so-called H-chain of DNA. Heavy DNA chains are TG rich, OriA in chloroplast DNA in Nicotiana tabacum etc.

III. Acronyms

This word-formation category also makes a substantial contribution to molecular biology vocabulary. Some names are undoubtedly of great interest to genetics and related disciplines, representing parts of genome, which play a key role in fundamental biologic processes, such as gene expression, alternative splicing, genetic recombination and immune response, e.g. intron, exon, cystron, transpos-on, antigen and prion.

The name of coding and noncoding sequences was proposed by Gilber W. in his article "Why genes in pieces?": "The notion of the cistron, the genetic unit of function that one thought corresponded to a polypeptide chain, now must be replaced by that of a transcription unit containing regions which will be lost from the mature messenger which I suggest we call introns (for intragenic regions) - alternating with regions which will be expressed-exons." [44].

Etymology of the word exon is inexplicit. It seems likely that Gilbert W. concluded that this term arose intron-like and its etymology could be legitimately interpreted as expressing regions. Gilbert mentioned cistron in his article "Why gene in pieces". This word arose from cis-trans test and was used synonymously to gene in those years. Terms exon,

intron and cistron are used 117, 92 and 11 respectively in journal «Молекулярная биология» (2229 publications); 47, 31 and 6 respectively in «Биохимия» (3829 publications); 117, 156 and 7 respectively in «Генетика» (5055 publications).

In 1950s-1980s existence of movable genetic elements was verified and they are called transposons. Although, etymology of this term remains unclear, it can be based on transposable element or transposable region. The term transposon is mentioned 13 times in «Молекулярная биология»; 9 times in «Биохимия» and 47 times in journal «Генетика».

The term antigen may be one of most common words in immunology and related disciplines, including Russian publications. This term is mentioned 61 times in the name of articles in journal «Иммунология» with today 1819 articles number totally and 67 times among 3110 articles in «Медицинская иммунология» It was firstly used by Laszlo Detre, Hungarian microbiologist in 1899 [45]. It is believed that its origin is based on combination of words "antibody generator". There are 876 mentions in journal «Медицинская иммунология» (3110 publications).

In 1982 Prusiner discovered previously unknown infectious agent, which caused scrapie and named it prion. It was revealed that this agent is a protein and does not contain nucleic acids. This discovery strongly influenced scientific society and gave rise to a serious discussion about the fact that transcription with following translation are not the single way of information implementing in living matter and proteins can be considered as information carriers. Informational properties of prions are in their ability to make surrounding proteins accept homologous conformation and become pathogenic as well. The acronym prion was introduced by S. Prusiner for proteinaceous infection to replace the terms unconventional virus or unusual slow virus-like agent [42]. This term became one of the most used biologic term in journal «Природа» 2017, representing 57 mentions in one article.

IV. Transliterated Terms

This category of word-formation in molecular biology makes a particular linguistic in-

terest. Such terms as enhancer, spacer, homing are commonly used in Russian research articles as transliterated equivalents: энхансер, спейсер, хоминг/хоуминг. We believe that this is due to the complexity of concept behind each term which require several words to express it in Russian.

Enhancer is a repertoire of DNA which is composed of specific nucleotide sequence and can be recognized by transcriptional factors. It activates expression of related genes after binding such factors. This term is mentioned 42 times in «Молекулярная биология», 31 times in «Биохимия» and 62 times in «Генетика».

Genome of different species, including H. sapiens and C. modestus, has some ultracon-servative genes, e.g. RRNA and histone genes, which products are extremely important for viability and existence. The structure of these genes demonstrates some ancient features, such as intron absence, which is typical for prokaryotes. Moreover, their nucleotide sequence is really similar in species. All these characteristics are the evidence of evolutionary importance of such genes, explaining their conservatism with no right to make any sequence mistake because of pressure of the natural selection. RRNA genes of H. Sapiens and C. modestus are organized in clusters. Human cluster is composed of 18S, 5,8S and 28S rRNA and 5S rRNA gene is located out of cluster. This cluster is repeated approximately 100 times in H. Sapiens and C. modestus [46] and genes are separated from each other and from nearby cluster by spacers. In this light spacers are sequence, which

scribed (external spacers of rRNA genes in C. modestus). There are 42 mentions in journal «Молекулярная биология», 18 in «Биохимия» and 26 in «Генетика».

Homing is typical process for some cell phenotypes in multicellular species and actually means "coming home", when some cells, which are widely spread among tissues, are back into the organ of their origin using special receptors [47]. It is not often mentioned

in announced journals to consider its frequency.

Conclusion

The role of Anglicisms in molecular biology terminology cannot be overestimated. The words of English origin are the basics in etymology of the most fundamental terms, which are used in context of the vital processes, such as transcription, translation, gene expression, immune response; cellular structures; gene and protein nomenclature etc. It was revealed that the most frequntly mentioned acronym in the journal triad («Молекулярная биология», «Биохимия» and «Генетика») is exon and the most frequently mentioned acronym in journal «Медицинская иммунология» is antigen. Together with it, the most frequently mentioned original word is enhancer in triad of these journals.

In summary we can conclude that English terminology is widely used in Russian papers, mostly in form of abbreviations, single-letter compounds, acronyms and transliterated terms. Transliteration is often used in case of original words, making professional vocabulary of Russian molecular biologist diverse and precise.

separate genes. Some of them can be tran-

References

1. Бокуть С.Б. Молекулярная биология: молекулярные механизмы хранения, воспроизведения и реализации генетической информации: учеб. пособие / С.Б. Бокуть, Н.В. Герасимович, А.А. Милютин. Мн.: Выш. шк. - 2005. - С. 439-448.

2. Аппель Б., Бенеке Б.И., Бененсон Я. Нуклеиновые кислоты: от А до Я / под ред. Мюллер С. Пер. с англ. М.: БИНОМ. Лаборатория знаний. - 2013. - 413 с., ил. с цв. вкл.

3. Николаев А.Я. Биологическая химия: Учебник. 3-е изд., перераб. и доп. М.: ООО «Медицинское информационное агентство». - 2007. - 538 с.: ил. С. 129-131.

4. Георгиев Г.П. Гены высших организмов и их экспрессия. Москва: Наука. - 1989. -255 с.

5. Успехи современной биологии. Объёмы 101-102. Академия наук СССР. - 1986. -С. 452.

6. Ляликов С.А., Тихон Н.М. Клиническая иммунология и аллергология: учеб. пособие. Минск: Вышэйшая школа. - 2015. - 366 с.: ил. С. 45, 88.

7. Сальникова С.В., Славянская Т.А. современный взгляд на проблему лечения уро-телиального рака // Вестник Российского университета дружбы народов. Серия: Медицина. - 2018. - Т. 22. - № 4. - С. 365-386.

8. Kasamatsu H., Robberson D.L., Vinograd J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate // Proceedings of the National Academy of Sciences of the United States of America. 1971. 68 (9): 2252-2257.

9. Crouch R.J., Girksen M.L. Ribonuclease H, Nucleases, Linn S.M., Roberts R.J. (eds) Cold Spring Harbor Laboratory. Cold Spring Harbor, New-York. 1983. P. 211-241.

10. Sollier J., Cimprich K.A. Breaking bad: R-loops and genome integrity // Trends Cell Biol. 2015; 25: 514-522

11. Groh M, Gromak N. Out of balance: R-loops in human disease // PLoS Genetics. September 2014. 10 (9): e1004630.

12. Aoki, Hiroyuki et al. Oxazolidinone antibiotics target the P site on Escherichia coli ribo-somes // Antimicrobial agents and chemotherapy. Vol. 46,4 (2002): 1080-5. doi:10.1128/AAC.46.4.1080-1085.2002

13. Kaminishi, Tatsuya et al. Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A // Nucleic acids research. Vol. 43, 20 (2015): 10015-25. doi:10.1093/nar/gkv975

14. Чебышев Н.В., Гринева Г.Г., Козарь М.В., Гуленков С.И. Биология: Учебник. - 3-е изд., испр. и доп. М.: ООО «Издательство Медицинское информационное агенство». -2010. - 568 с.: ил. С. 65-69.

15. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология: Учебное пособие для студентов медицинских вузов. М.: ООО «Медицинское информационное агентство». -2007. - 536 с.: ил. С. 14-16.

16. Гофман-Кадошников П.Б., Петров Д.Ф. Биология с общей генетикой. Москва: Медицина. - 1966. - С. 76-78.

17. Venter, J.C., Adams, M.D., et al., The sequence of the human genome // Science. - 2001. - №291. - Р.1304-1351.

18. Claverie, J.M. Gene number. What if there are only 30,000 human genes? // Science. -2001. - № 291. - Р.1255-1257.

19. Lander E.W. et al. Initial sequencing and analysis of the human genome // Nature. 2001. № 409. Р. 860-921.

20. https://web.ornl.gov/sci/techresources/Human_Genome/project/index.shtml

21. Cavalier-Smith T. December 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox // J. Cell. Sci. 34: 247-278.

22. Huvet, Maxime, Michael P.H. Stumpf. Overlapping genes: a window on gene evolvability // BMC genomics vol. 15,1 721. 27 Aug. 2014, doi:10.1186/1471-2164-15-721

23. Sanna CR, Li W.H., Zhang L: Overlapping genes in the human and mouse genomes // BMC Genomics.2008;9:169. 10.1186/1471-2164-9-169

24. Veeramachaneni, Vamsi et al. Mammalian overlapping genes: the comparative perspective // Genome research. vol. 14,2 (2004): 280-6. doi:10.1101/gr.1590904

25. Черезов Р.О., Симонова О.Б. Перекрывающиеся гены и антисмысловая транскрипция у эукариот // Генетика. - 2014. - Т. 50. - № 7. - С. 749-765.

26. Pavesi, Angelo et al. Viral proteins originated de novo by overprinting can be identified by codon usage: application to the "gene nursery" of Deltaretroviruses // PLoS computational biology vol. 9,8 (2013): e1003162. doi:10.1371/journal.pcbi.1003162

27. Chow LT, Gelinas RE, Broker TR, Roberts RJ. An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA // Cell. 1977; 12(1):1-8.

28. Berget S. M., Moore C., Sharp P. A. (1977). Spliced segments at the 5' terminus of adenovirus 2 late mRNA // Proc. Natl. Acad. Sci. U.S.A. 74 3171-3175. 10.1073/pnas.74.8.3171

29. Mourier T, Jeffares D.C. Eukaryotic intron loss // Science. May 2003. 300 (5624): 13931393. doi:10.1126/science.1080559

30. De Lange RJ, Fambrough DM, Smith EL, Bonner J. Calf and pea histone IV. 3. Complete amino acid sequence of pea seedling histone IV; comparison with the homologous calf thymus histone // J Biol Chem. 1969 Oct 25;244(20):5669-5679.

31. Hedges S.B., Blair J.E., Venturi M.L., Shoe J.L. 2004. A molecular timescale of eukary-ote evolution and the rise of complex multicellular life // BMC Evolutionary Biology. V.4. №2. P. 1-9.

32. Beadle G.W., Tatum E.L. Genetic Control of Biochemical Reactions in Neurospora // PNAS. 15 November, 1941. 27 (11): 499-506.

33. Ауэрман Т.Л., Генералова Т.Г., Суслянок Г.М. Основы биохимии: Учеб. Пособие. М.: ИНФРА-М. - 2013. - С. 116-118.

34. Акинфиева О.В., Бубнова Л.Н., Бессмельцев С.С. NKT-клетки: Характерные свойства и функциональная значимость для регуляции иммунного ответа // Онкогематология. -2010. - №4. - С. 39-46.

35. Коваленко Е.И., Стрельцова М.А. Адаптивные свойства натуральных киллеров -лимфоцитов врождённого иммунитета // Биоорганическая химия. - 2016. - Т. 42. - № 6. - С. 590-605.

36. Sloane DE, Tedla N, Awoniyi M, Macglashan DW, Borges L, Austen KF, et al. Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition // Blood (2004) 104:2832-9. 10.1182/blood-2004-01-0268

37. Лисаков А.Н., Нагиева Ф.Г., Баркова Е.П. и др. Исследование in vitro интерфероно-вых рецепторов иммунокомпетентных клеток при экспериментальной гриппозной инфекции // Инфекция и иммунитет. - 2015. - Т. 5. - №3. - С. 273-278.

38. Christopher J. Carbone, Hui Zheng, Serge Y. Fuchs. Альтернативные убиквитин-конъюгирующие ферменты е2 регулируют эндоцитоз рецептора интерферона-1 // Успехи молекулярной онкологии. - 2014. - Т. 1. - №2. - С. 61-73.

39. Лосева Е.В., Логинова Н.А., Неклюдов В.В., Мац В.Н., Курская О.В., Пасикова Н.В. Влияние интерферонов-альфа человека и крысы на поведение разновозрастных крыс, а также сравнение гомологии их аминокислотных последовательностей // Журнал высшей нервной деятельности им. И.П. Павлова. - 2009. - Т. 59. - №4. - С. 461-472.

40. Коничев А.С. Молекулярная биология: Учеб. для студ. пед. вузов / А.С. Коничев, Г.А. Севастьянова. 2-е изд., испр. М.: Издательский центр «Академия». - 2005. - С. 87-93.

41. Юнчан Се, Чженго Хе. Характеристика физических взаимодействий между ини-циаторным белком репликации DnaA и репликативной хеликазой mycobacterium tuberculosis H37Rv // БИОХИМИЯ. - 2009. - Т. 74. - Вып. 12. - С. 1622-1630.

42. Prusiner S.B. Novel proteinaceous infectious particles cause scrapie // Science. April 1982. 216 (4542): 136-44.

43. Лима Нето К.А.,. Рандо Ф.С, Фрейтас В.Б., Родригес Л.Ф., Росадо Ф.Р., Фиорини А., Жименес Ф., Таварес Дж., Фернандес M.A. Линейная структура центральной части точки начала репликации ДНК ampd2 локуса млекопитающих // БИОХИМИЯ. - 2014. - T. 79. - вып. 1. - С. 49-56.

44. Gilbert W. Why genes in pieces? // Nature, 1978. Volume 271. P. 501.

45. Origins of the Terms "Antibody" and "Antigen" // Scand. J. Immunol., 19, 281-285, 1984 p. 281

46. Шайкевич Е.В., Загоскин М.В., Муха Д.В. Сравнительная характеристика межгенных спейсеров кластера генов рибосомной РНК комаров рода Culex (Diptera: Culicidae) // Молекулярная биология. - 2013. - T. 47. - № 3. - C. 413-422.

47. Henschler, Reinhard et al. "Homing of Mesenchymal Stem Cells." Transfusion medicine and hemotherapy : offizielles // Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie vol. 35,4 (2008): 306-312.

АНГЛИЙСКАЯ ТЕРМИНОЛОГИЯ В МОЛЕКУЛЯРНОЙ БИОЛОГИИ

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

П.Ю. Андреев, студент

Е.Ю. Каверина, канд. мед. наук, доцент

Е.А. Андреева, канд. мед. наук, доцент

Воронежский государственный медицинский университет им. Н.Н. Бурденко

(Россия, г. Воронеж)

В.И. Акимов, канд. техн. наук, доцент

Воронежский государственный технический университет (Россия, г. Воронеж)

Аннотация. Аннотация. Два важных научных события произошли в конце 60-х годов XIX века и разбили лед современной биологической науки. 34-летний Г. Мендель начал свою экспериментальную серию, рассказав, как наследственные черты передаются потомкам, и Ф. Мишер впервые извлек ДНК из ядра лейкоцитов. С тех пор нам понадобилось как минимум более ста лет, чтобы признать, что ДНК является субстратом наследования.

1953 год стал переломным для эпохи молекулярной биологии и генетики. Пионерские исследования, которые пролили свет на фундаментальные принципы хранения, воспроизведения и реализации генетической информации, привели к концептуальным прорывам, таким как двойная спираль, генетический код, структура генов и молекулярные механизмы биосинтеза белков. Квинтэссенция полученного фактического материала привела к триумфу в молекулярной биологии и молекулярной генетике в 2003 году, когда была обнаружена последовательность генома человека. Все эти достижения породили новые термины английского происхождения, которые затем широко использовались в российских научных публикациях, вызывая большой интерес к русскому языкознанию.

Хорошо известно, что некоторые древние языки, такие как латинский и греческий, внесли большой вклад в науку, так как были придуманы новые термины и единицы измерения. Реликвии в форме латинизмов и слов греческой этимологии широко используются в профессиональной терминологии и повседневном общении.

Целью данной статьи является обзор англицизмов и обсуждение этимологии и некоторых семантических особенностей этих терминов, презентация того, как часто некоторые важные термины английского происхождения используются в российских публикациях по молекулярной биологии.

Ключевые слова: молекулярная биология, молекулярная генетика, ген, геном, генетическая информация, транскриптом, терминология, лингвистика, английский язык.

i Надоели баннеры? Вы всегда можете отключить рекламу.