Научная статья на тему 'ЭНЕРГОЭФФЕКТИВНОСТЬ СИСТЕМЫ ОХЛАЖДЕНИЯ КОНДЕНСАТОРОВ ПАРОВЫХ ТУРБИН ТИПА К-1000-60/3000 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА СЖИЖЕННОМ СО2'

ЭНЕРГОЭФФЕКТИВНОСТЬ СИСТЕМЫ ОХЛАЖДЕНИЯ КОНДЕНСАТОРОВ ПАРОВЫХ ТУРБИН ТИПА К-1000-60/3000 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА СЖИЖЕННОМ СО2 Текст научной статьи по специальности «Механика и машиностроение»

CC BY
17
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОНДЕНСАТОР ПАРОВОЙ ТУРБИНЫ / СИСТЕМА ОХЛАЖДЕНИЯ / НИЗКОТЕМПЕРАТУРНЫЙ ТЕПЛОВОЙ ДВИГАТЕЛЬ / СЖИЖЕННЫЙ УГЛЕКИСЛЫЙ ГАЗ

Аннотация научной статьи по механике и машиностроению, автор научной работы — Зайнуллин Р.Р., Гафуров А.М.

Представлены результаты исследования низкотемпературного теплового двигателя на сжиженном СО2 по экономии расхода условного топлива в системе охлаждения турбин типа К-1000-60/3000 в зимний период.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Зайнуллин Р.Р., Гафуров А.М.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ENERGY EFFICIENCY OF AN COOLING SYSTEM OF CONDENSERS OF K-1000-60/3000 STEAM TURBINES WITH USE OF A CONTOUR OF CIRCULATION ON THE LIQUEFIED СО2

Results of research of the low-temperature heat engine are presented on the liquefied СО2 on economy of a consumption of equivalent fuel in an cooling system of K-1000-60/3000 turbines during the winter period.

Текст научной работы на тему «ЭНЕРГОЭФФЕКТИВНОСТЬ СИСТЕМЫ ОХЛАЖДЕНИЯ КОНДЕНСАТОРОВ ПАРОВЫХ ТУРБИН ТИПА К-1000-60/3000 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА СЖИЖЕННОМ СО2»

При этом использование низкотемпературного теплового двигателя с замкнутым контуром циркуляции на C3H8 в системе охлаждения паровых турбин типа К-1000-60/3000 позволяет дополнительно вырабатывать электроэнергию на атомных электростанциях (рис. 1) в диапазоне температур окружающей среды от 268,15 К (-5°С) до 223,15 К (-50°С).

Использованные источники:

1.Калимуллина Д.Д., Гафуров А.М. Новые системы охлаждения конденсаторов паровых турбин ТЭС. // Инновационная наука. - 2016. - № 33. - С. 100-101.

2.Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 5 кПа. // Инновационная наука. 2016. № 2-3. -С. 38-40.

3.Гафуров А.М., Калимуллина Д.Д. Способ утилизации сбросной теплоты в конденсаторах паровых турбин, охлаждаемых воздушными ресурсами. // Инновационная наука. - 2015. - № 12-2. - С. 29-31.

4.Гафуров Н.М., Гатина Р.З., Гафуров А.М. Возможности использования геотермальной теплоты с температурой до 250°С в бинарных циклах, охлаждаемых водными ресурсами. // Теория и практика современной науки.

- 2017. - № 2 (20). - С. 193-196.

5.Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 5,5 кПа. // Инновационная наука. - 2016. № 2-3.

- С. 40-42.

УДК 62-176.2

Зайнуллин Р.Р., к.ф.-м.н. старший преподаватель кафедры ПЭС

Гафуров А.М. инженер I категории УНИР ФГБОУВО «КГЭУ» Россия, г. Казань ЭНЕРГОЭФФЕКТИВНОСТЬ СИСТЕМЫ ОХЛАЖДЕНИЯ КОНДЕНСАТОРОВ ПАРОВЫХ ТУРБИН ТИПА К-1000-60/3000 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА СЖИЖЕННОМ

СО2

Представлены результаты исследования низкотемпературного теплового двигателя на сжиженном СО2 по экономии расхода условного топлива в системе охлаждения турбин типа К-1000-60/3000 в зимний период. Ключевые слова: конденсатор паровой турбины, система охлаждения, низкотемпературный тепловой двигатель, сжиженный углекислый газ.

Zainullin R.R.

Gafurov A.M.

ENERGY EFFICIENCY OF AN COOLING SYSTEM OF CONDENSERS OF K-1000-60/3000 STEAM TURBINES WITH USE OF A CONTOUR OF CIRCULATION ON THE LIQUEFIED СО2

Results of research of the low-temperature heat engine are presented on the liquefied СО2 on economy of a consumption of equivalent fuel in an cooling system of K-1000-60/3000 turbines during the winter period.

Keywords: condenser of the steam turbine, cooling system, low-temperature heat engine, liquefied carbon dioxide gas.

Наиболее длительный опыт эксплуатации турбин типа К-1000-60/3000 получен на атомных электростанциях с водо-водяными реакторами. Мощные конденсационные паровые турбины типа К-1000-60/3000 характеризуются тем, что почти весь пар, пройдя через турбину, направляется в конденсатор. Низкие начальные параметры пара (5,88 МПа, 274,3°С) компенсируются по мощности большими расходами пара в турбину (1340 кг/с). В среднем для производства 1 кВт-ч электроэнергии требуется 160 кг охлаждающей воды. Поэтому возможность эффективного использования охлаждающей среды в системе охлаждения конденсаторов паровых турбин является важной научно-технической задачей. Проводятся исследования и разработки новых систем охлаждения, в которых промежуточным теплоносителем вместо воды служит низкокипящее рабочее тело.

В конденсаторе паровой турбины типа К-1000-60/3000 поддерживается низкое давление пара равное 5,0 кПа, что соответствует температуре насыщения в 32,87°С. Процесс конденсации пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости в окружающую среду. При этом потери теплоты в конденсаторе паровой турбины составляют примерно половины (45-50%) затрачиваемой теплоты в цикле. В зимний период времени конденсатор паровой турбины является источником сбросной низкопотенциальной теплоты с температурой в 32,87°С, а окружающая среда - прямой источник холода с температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью низкотемпературного теплового двигателя с замкнутым контуром циркуляции на сжиженном углекислом газе СО2 [1].

Замкнутый контур циркуляции низкотемпературного теплового двигателя включает в себя последовательно соединенные насос, теплообменник-испаритель (конденсатор паровой турбины), турбодетандер с электрогенератором и теплообменник-конденсатор аппарата воздушного охлаждения (АВО). Охлаждение рабочего газа СО2 осуществляют наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [2].

Низкотемпературный тепловой двигатель работает следующим образом. Отработавший в турбине пар при давлении в 5,0 кПа охлаждается и

конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. Полученный основной конденсат с помощью конденсатного насоса направляют в систему регенерации. В качестве охлаждающей жидкости используется сжиженный углекислый газ СО2, который сжимают в насосе до высокого давления 6,93 МПа и направляют в конденсатор паровой турбины для охлаждения отработавшего в турбине пара. Конденсация пара сопровождается выделением скрытой теплоты парообразования равного примерно 2136 кДж/кг, которая отводится на нагрев и испарение сжиженного газа СО2 до температуры перегретого газа в 27,85°С. Далее перегретый газ СО2 расширяют в турбодетандере теплового двигателя, который соединен с электрогенератором. На выходе из турбодетандера отработавший в турбине газ СО2 направляют на охлаждение в конденсатор АВО, где в процессе охлаждения газа СО2 ниже его температуры насыщения происходит интенсивное сжижение, после чего сжиженный газ СО2 направляют для сжатия в насос теплового двигателя. Затем органический цикл Ренкина на основе низкокипящего рабочего тела повторяется [3].

На рис. 1, 2 представлены графики расчетных показателей по экономии расхода условного топлива на ТЭС (т.у.т./ч) и эксергетической эффективности низкотемпературного теплового двигателя при осуществлении процесса охлаждения конденсаторов паровых турбин типа К-1000-60/3000 контуром циркуляции на сжиженном СО2 в зависимости от температуры наружного воздуха [4].

32 т

и _

о

-4 I-1)111-1 I Р I

223.15 228.15 233,15 238.15 243,15 248.15 253.15 258.15 263.15 268,15 273.15

Температу ра наружною воздуха, К

Рис. 1. Для турбин типа К-1000-60/3000 с расходом пара в 1340 кг/с.

Рис. 2. Для турбин типа К-1000-60/3000 с расходом пара в 1340 кг/с. Эксергетическая эффективность низкотемпературного теплового двигателя (рис. 2) варьируется от 5,41% до 16%. При этом использование низкотемпературного теплового двигателя с замкнутым контуром циркуляции на СО2 в системе охлаждения паровых турбин типа К-1000-60/3000 позволяет экономить (рис. 1) до 31 т.у.т./час на атомных электростанциях в температурном диапазоне окружающей среды от 263,15 К (-10°С) до 223,15 К (-50°С).

Использованные источники:

1.Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 5 кПа. // Инновационная наука. 2016. № 2-3. -С. 38-40.

2.Гафуров А.М. Способ преобразования сбросной низкопотенциальной теплоты ТЭС в работу низкотемпературного теплового двигателя с замкнутым контуром. // Вестник Казанского государственного энергетического университета. - 2016. - №3 (31). - С. 73-78.

3.Гафуров Н.М., Гатина Р.З., Гафуров А.М. Возможности использования геотермальной теплоты с температурой до 250°С в бинарных циклах, охлаждаемых воздушными ресурсами. // Теория и практика современной науки. - 2017. - № 2 (20). - С. 190-193.

4.Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 5,5 кПа. // Инновационная наука. - 2016. № 2-3. - С. 40-42.

i Надоели баннеры? Вы всегда можете отключить рекламу.