Научная статья на тему 'ELECTROTHERMAL RE-PROCESSING OF DUST PRODUCED DURING FERROMANGANESE PRODUCTION'

ELECTROTHERMAL RE-PROCESSING OF DUST PRODUCED DURING FERROMANGANESE PRODUCTION Текст научной статьи по специальности «Технологии материалов»

CC BY
154
45
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
iPolytech Journal
ВАК
Ключевые слова
FERROALLOYS / DUST / ELECTRIC SMELTING / THERMODYNAMIC MODELLING / ROTATABLE DESIGN / FERROSILICON MANGANESE / ФЕРРОСПЛАВЫ / ПЫЛЬ / ЭЛЕКТРОПЛАВКА / ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ / РОТАТАБЕЛЬНОЕ ПЛАНИРОВАНИЕ / ФЕРРОСИЛИКОМАРГАНЕЦ

Аннотация научной статьи по технологиям материалов, автор научной работы — Shevko Viktor M., Sinelnikov Ivan P., Karataeva Gulnara E., Badikova Aleksandra D.

This study investigates the feasibility of recovering ferroalloy from dust produced during the smelting of ferrosilicon manganese at the Taraz Metallurgical Plant LLP. Typically, the dust comprises (%wt.): MnO - 53.3; SiO2 - 24.0; MgO - 5.4; CaO - 9.6; Al2O3 - 3.8; Fe2O3 - 1.5; ZnO - 1.8; PbO - 0.6. To determine the optimal process parameters, thermodynamic modelling was deployed using the HSC-5.1 software package to analyse results from a second-order rotatable experimental design (a Box-Hunter design). Dust was pelletised in a bowl granulator followed by electric smelting in combination with coke and steel chips in a single-electrode arc furnace with a power of up to 15 kV×A; the steel chips were added as a source of iron. The study shows that at equilibrium in the presence of iron, components of the dust reacted with carbon forming manganese silicides and FeSi at temperatures above 1300ºC and 1400ºC, respectively. By increasing the amount of carbon in the charge from 14 to 30% by weight of dust, the extraction of silicon and manganese into the alloy is increased to 44.7 and 92%, respectively, at a temperature of 1800ºC. The MnC22 and MnC25 grades of ferrosilicon manganese are obtained when the amount of carbon is equal to 20-30% by weight of dust, allowing 56.4-79.3% of Si and 67.7-84.3% of Mn to be extracted into the alloy over the temperature range of 1600-1800ºC. The time taken for electric smelting of the dust is reduced by 16-18% by increasing the amount of both carbon from 18 to 36% and steel chips from 2 to 6% which resulted in a corresponding increase in the extraction of Si and Mn into the alloy from 20.9 to 60% and 68.3-82.1%, respectively. Thermodynamic modelling of the system at equilibrium was deployed to determine the temperature effect on the distribution of silicon, manganese, zinc and lead in the "dust components - carbon - iron" system, the extraction efficiency of silicon, manganese and iron into ferroalloy, and the content of these metals in the alloy. The electric smelting produces grade MnC22 of ferrosilicon manganese from a combination of granular dust, 30% coke and 6% steel chips resulting in an alloy containing silicon and manganese at 20.5 and 65.8%, respectively.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ELECTROTHERMAL RE-PROCESSING OF DUST PRODUCED DURING FERROMANGANESE PRODUCTION»

Original article / Оригинальная статья DOI: http://dx.doi.org/10.21285/1814-3520-2020-4-931-944

Electrothermal re-processing of dust produced during ferromanganese production

Viktor M. Shevko, Ivan P. Sinelnikov, Gulnara E. Karataeva, Aleksandra D. Badikova

M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan

Abstract: This study investigates the feasibility of recovering ferroalloy from dust produced during the smelting of ferro-silicon manganese at the Taraz Metallurgical Plant LLP. Typically, the dust comprises (%wt.): MnO - 53.3; SiO2 - 24.0; MgO - 5.4; CaO - 9.6; Al2O3 - 3.8; Fe2O3 - 1.5; ZnO - 1.8; PbO - 0.6. To determine the optimal process parameters, thermodynamic modelling was deployed using the HSC-5.1 software package to analyse results from a second-order rotatable experimental design (a Box-Hunter design). Dust was pelletised in a bowl granulator followed by electric smelting in combination with coke and steel chips in a single-electrode arc furnace with a power of up to 15 kV-A; the steel chips were added as a source of iron. The study shows that at equilibrium in the presence of iron, components of the dust reacted with carbon forming manganese silicides and FeSi at temperatures above 1300 °C and 1400°C, respectively. By increasing the amount of carbon in the charge from 14 to 30% by weight of dust, the extraction of silicon and manganese into the alloy is increased to 44.7 and 92%, respectively, at a temperature of 1800 °C. The MnC22 and MnC25 grades of ferrosilicon manganese are obtained when the amount of carbon is equal to 20-30% by weight of dust, allowing 56.4-79.3% of Si and 67.7-84.3% of Mn to be extracted into the alloy over the temperature range of 1600-1800°C. The time taken for electric smelting of the dust is reduced by 16-18% by increasing the amount of both carbon from 18 to 36% and steel chips from 2 to 6% which resulted in a corresponding increase in the extraction of Si and Mn into the alloy from 20.9 to 60% and 68.3-82.1%, respectively. Thermodynamic modelling of the system at equilibrium was deployed to determine the temperature effect on the distribution of silicon, manganese, zinc and lead in the "dust components - carbon -iron" system, the extraction efficiency of silicon, manganese and iron into ferroalloy, and the content of these metals in the alloy. The electric smelting produces grade MnC22 of ferrosilicon manganese from a combination of granular dust, 30% coke and 6% steel chips resulting in an alloy containing silicon and manganese at 20.5 and 65.8%, respectively.

Keywords: ferroalloys, dust, electric smelting, thermodynamic modelling, rotatable design, ferrosilicon manganese

Information about the article: Received June 22, 2020; accepted for publication July 30, 2020; available online August 31, 2020.

For citation: Shevko VM, Sinelnikov IP, Karataeva GE, Badikova AD. Electrothermal re-processing of dust produced during ferromanganese production. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2020;24(4):931-944. https://doi.org/10.21285/1814-3520-2020-4-931-944

УДК 669.15-198, 669...3

Комплексная электротермическая переработка пылей производства ферромарганца

© В.М. Шевко, И.П. Синельников, Г.Е. Каратаева, А.Д. Бадикова

Южно-Казахстанский государственный университет им. М. Ауэзова, г. Шымкент, Казахстан

Резюме: Цель - исследование возможности получения ферросплава из пылей производства ферросиликомар-ганца ТОО «Таразский металлургический завод». Объектом исследований явилась пыль с содержанием, % масс: 53,3 MnO, 24,0 SiO2, 5,4 MgO, 9,6 CaO, 3,8 Al2O3, 1,5 Fe2O3, 1,8 ZnO, 0,6 PbO. Термодинамическое моделирование проводилось с использованием программного комплекса HSC-5.1, определение оптимальных параметров процесса - с использованием ротатабельного плана второго порядка (план Бокса -Хантера). Электроплавка окомко-ванных на чашевом грануляторе пылей проводилась совместно с коксом, стальной стружкой (как источником железа в шихте) в дуговой одноэлектродной печи мощностью до 15 кВА. Установлено, что в равновесных условиях взаимодействие компонентов пылей с углеродом в присутствии железа при температуре более 13000C происходит с образованием силицидов марганца, а при температуре более 1400°C - с образованием FeSi; увеличение количества углерода в шихте от 14 до 30% от массы пыли позволяет повысить извлечение кремния в сплав при 1800°C на 44,7%, марганца - на 92%; в температурной области 1600-1800°C в присутствии 20-30% углерода

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

от массы пыли возможно извлечение в сплав 56,4-79,3% Si, 67,7-84,3% Мп с получением ферросиликомарганца марок МпС22 и МпС25. При электроплавке пылей увеличение количества углерода от 18 до 36% и стальной стружки от 2 до 6% позволило повысить извлечение в сплав Si с 20,9 до 60%, Мп - 68,3-82,1% и сократить продолжительность плавки на 16-18%. Методом термодинамического моделирования определено влияние температуры на равновесное распределение кремния и марганца, цинка и свинца в системе «компоненты пыли - углерод-железо», равновесную степень перехода кремния, марганца и железа в ферросплав и содержание этих металлов в сплаве. В результате экспериментов по электроплавке гранулированных пылей совместно с 30% кокса и 6% стальной стружки получен ферросиликомарганец марки МпС22 с содержанием 20,5% кремния и 65,8% марганца.

Ключевые слова: ферросплавы, пыль, электроплавка, термодинамическое моделирование, ротатабельное планирование, ферросиликомарганец

Информация о статье: Дата поступления 22 июня 2020 г.; дата принятия к печати 30 июля 2020 г.; дата он-лайн-размещения 31 августа 2020 г.

Для цитирования: Шевко В.М., Синельников И.П., Каратаева Г.Е., Бадикова А.Д. Комплексная электротермическая переработка пылей производства ферромарганца. Вестник Иркутского государственного технического университета. 2020. Т. 24. № 4. С. 931-944. https://doi.org/10.21285/1814-3520-2020-4-931-944

1. INTRODUCTION

The smelting of 1 ton of ferroalloy generates 8-30 kg of dust according to STC "Energostal" [1, 2]. The formation of dust in electric furnaces is due to the evaporation and sublimation of the main elements and their volatile compounds, as well as a result of mechanical entrainment of charge components [3-5]. The amount of dust generated by mechanical entrainment does not vary greatly provided the charge materials are appropriately pre-processed; however, the amount of dust generated by sublimation fluctuates considerably [6]. The formation of dust during the production of carbon ferromanganese was shown to be dependent on a number of processing and electrical parameters [7]. The content of dust collected under the hood of the furnace top during smelting of ferromanganese was reported to be (%wt.): SiO2 - 20.8; Fe2O3 -4.0; Al2O3 - 5.0; CaO - 5.2; MgO - 0.96; MnO -23.1; S - 1.1; C - 22.6 [8].

The feedstock employed as standard practice across the world when smelting manganese alloys may contain in addition to manganese, non-ferrous metals at levels insufficient for their extraction [9-11]. A different approach is employed at the Taraz Metallurgical Plant LLP (Taraz) in the RKZ-48 electric furnaces using manganese concentrates and ores from the Ushkatyn deposit (Central Kazakhstan) which have a content of zinc oxide and lead oxide ranging from 0.17 to 1 and 0.03 to 0.48%, respectively [12]. Dust enriched with zinc and lead

is produced when ferromanganese is smelted from this feedstock in these furnaces.

During the production of carbon ferromanga-nese by smelting, lead and zinc compounds are reduced to an elemental state, then oxidized to oxides prior to conversion to dust with an efficiency of 98.85 and 98.33%, respectively [13, 14].

To enable the extraction of valuable metals from the dust produced during ferromanganese production, the charge for the pyrometallurgical process is augmented by dust generated in previous smeltings [15]. The dust derived from ferromanganese production maybe used in a diverse range of further processing options [16-28]. Thus, the JSC "Nikolsky Ferroalloy Plant" proposes to use technogenic raw materials (dust, sludge) to make unfired dust-coke pellets to augment the feedstock in the charge in the production of ferromanganese [17]. The Ukrainian State Scientific and Technical Centre "Energostal" is developing and implementing economically viable technologies to enable the granulation and pelletisation of both dust and waste materials and their subsequent use as secondary raw materials [18]. An analogous process at the Assmang Manganese Cato Ridge Works Ltd (Republic of South Africa), produces sinter from dust and metal fines containing 67% metal fines, 26% furnace dust and 7% binder, which augments the lump iron-manganese ore feedstock [19]. At the Transalloys enterprise (Republic of South Africa), briquettes are produced from fines and dust to augment ore for processing in

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

furnaces [20]. The National University of Science and Technology MISIS and J.C. Steele & Sons collaborated to develop the production of brexes (extrusion briquettes) from manganese ore fines and dust from gas purifiers; these brexes are used as one of the main components of the charge ore for smelting ferrosilicon manganese [21, 22]. In Japan, considerable experience has been accumulated using dust and manganese-containing waste collected from gas cleaning systems while smelting ferroalloys in electric furnaces. The recovered wastes were used as a sinter charge in the same smelting process, for the extraction of zinc, and in other industries [15, 17, 23, 24]. Plasma technology to process iron-containing dusty materials has recently been reported [25, 26]. In England, pilot tests were conducted to dispose of waste in plasma furnaces, for example, by re-melting fer-romanganese dust waste at a temperature of 1500°C; the degree of Mn extraction, as metal, was 87%, and the wastes from this re-melting contained 22% of ZnO and 3.6% of Pb3O4. An alloy practically free of Zn and Pb was produced by the addition of fine coke and sand to this charge [15].

Hydrometallurgical processing of dust from ferromanganese production was investigated at the Zh. Abishev Chemical and Metallurgical Institute (Karaganda) [27, 29]. The process consists of leaching by water in the presence of sulphur dioxide at a temperature of 70°C with a processing time of 1-2 hours. The manganese extraction efficiency is 96%, while 99% of zinc and 90% of lead remain in the cake together with other rare metals.

In this study, we propose processing dust from ferrosilicon manganese production to pro-

duce a high-quality ferroalloy and concurrently the sublimation of non-ferrous metals.

2. RESEARCH METHODOLOGY

The study consisted of thermodynamic modelling and electric smelting of a dust-based charge in an arc furnace. The elemental content at equilibrium was determined by an algorithm developed by our group1 using the HSC-5.1 software package (Finland) and the principle of Gibbs2 energy minimisation [21].

The electric smelting furnace is shown in fig. 1. The charge was smelted in a single-electrode electric arc furnace (up to 15 kV.A) lined with chromium-magnesite bricks. A graphite crucible (d = 6 cm, h = 12 cm) was placed on the hearth electrode formed from a graphite block. A removable furnace cover allowed access to the furnace and contained two holes, one for a graphite electrode having a diameter of 3 cm and the other to relieve gas pressure. The crucible was heated by an arc for 20-25 min. Next, the first charge (200-250 g) was loaded into the crucible. It was smelted for 3-6 min followed by a 200-250 g charge loaded every 4-6 min. In one experiment, 1500-2000 g of charge was smelted. A TDZhF-1002 transformer supplied electric power to the furnace at a current of 350-400 A and voltage of 30-35 V. The power was controlled by a thyristor regulator. Following electric smelting, the furnace was cooled for 6-7 h. The graphite crucible was removed from the furnace and broken open. The weight of the ferroalloy was recorded and and the content of Mn and Si measured by atomic adsorption spec-troscopy using an ASS-1 instrument (Germany).

1Roine A, Kotiranta J-MT, Bjorklund P, Lamberg P. HSC Chemistry 6.0 User's Guide. Outotec Research Oy. 2006. Available from: https://www.chemits.com/de/assets/templates/chemits/download/hsc/HSC_Sim.pdf [Accessed 06 May 2020] / Roine A., Kotiranta J.-M.T., Bjorklund P., Lamberg P. HSC Chemistry 6.0 User's Guide. Outotec Research Oy. 2006. [Электронный ресурс]. URL: https://www.chemits.com/de/assets/templates/chemits/download/hsc/HSC_Sim.pdf (06.05.2020)

Shevko VM, Serzhanov GM, Karataeva GE, Amanov DD. Calculation of the element equilibrium distribution by the HSC-5.1 software package. Computer program. Certificate for an object protected by copyright of the Republic of Kazakhstan No. 1501 dated January 29, 2019. / Шевко В.М., Сержанов Г.М., Каратаева Г.Е., Аманов Д.Д. Расчет равновесного распределения элементов применительно к программному комплексу HSC-5.1. Программа для ЭВМ. Свидетельство на объект, охраняемый авторским правом РК № 1501 от 29 января 2019 г.

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

M

а b

Fig. 1. Single-electrode electric arc furnace: a - general view; b - sketch of the furnace with structural units (1 - furnace shell, 2 - chromium-magnesite lining, 3 - carbon-graphite hearth, 4 - graphite crucible, 5 - carbon-graphite "pillow", 6 - TDZhF-1002 transformer, 7 - graphite electrode, 8 - lower current lead, 9-12 - control ammeters and voltmeters,

13 - electrode movement mechanism, 14 - flexible part of the short network, 15 - furnace cover Рис. 1. Одноэлектродная дуговая электропечь: а - общий вид; b - эскиз печи с конструктивными узлами (1 - кожух печи, 2 - хромомагнезитовая футеровка, 3 -углеграфитовая подина, 4 - графитовый тигель, 5 - углеграфитовая «подушка», 6 - трансформатор ТДЖФ-1002, 7 - графитовый электрод, 8 - нижний токоподвод, 9-12 - контролирующие амперметры и вольтметры, 13 - механизм перемещения электрода,

14 - гибкая часть короткой сети, 15 - крышка печи

The dust used in the experiments was taken from the electrothermal production of ferrosilicon manganese at the Taraz Metallurgical Plant LLP containing (%wt.): MnO - 53.3; SO - 24. 0; MgO - 5.4; CaO - 9. 6; AfeOa - 3.8; Fe2Os -1.5; ZnO - 1.8; PbO - 0.6.

Coke from the PJSC Magnitogorsk Metallurgical Plant was used as a reducing agent consisting of (%wt.): SiO2 - 4.7; CaO - 1.6; MgO -

0.4; AI2O3 - 1.9; Fe2O3 - 2.1; S - 0.6; H2O - 1.2; C - 86.1; others - 1.4. Steel chips provided a source of iron and contained 98.8, 0.8, 0.2 and 0.2%wt. of Fe, C, Si, and other components, respectively.

The dust was mixed with bentonite clay and granulated in a bowl granulator giving a granule of size ranging from 0.5-1.0 cm.

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

ш

3. RESULTS

The temperature effect on the proportions by weight of silicon and manganese-containing substances in the "dust components - carbon -iron" is represented in fig. 2. The carbon and iron content of the dust was 18 and 1.5%, re-

spectively. Fig. 2 shows that manganese sili-cides (Mn3Si, Mn5Si3, MnSi) begin to form at T>1300°C, and iron silicides (FeSi, Fe3Si) at T>1400°C.

The temperature effect on the distribution (a, %) of silicon and manganese at equilibrium is shown in fig. 3.

1100

a b

Fig. 2. Temperature effect on the quantitative distribution of silicon- and manganese-containing substances in the "dust components -carbon-iron" system at equilibrium: a - silicon-containing substances; b - manganese-containing substances Рис. 2. Влияние температуры на равновесное количественное распределение кремний- и марганецсодержащих веществ в системе «компоненты пыли -углерод -железо»: а - кремнийсодержащие вещества;

b - марганецсодержащие вещества

70 60 50 ^40

^30

20 10

0

Si

FeSi

1100 1400 1700

Temperature, °С

100

90

80

70

60

^50 й

S40

ö

30 20 10 0

«•"•rM?^

1100 1400 1700

Temperature, °С

b

Fig. 3. Temperature effect on the distribution of silicon and manganese in the "dust components - carbon - iron" system at equilibrium: a - silicon distribution; b - manganese distribution Рис. 3. Влияние температуры на равновесное распределение кремния и марганца в системе «компоненты пыли-углерод-железо»: a - распределение кремния, b - распределение марганца

а

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

Silicon is mainly present in the form of sili-cides which react to form Mn3Si in the temperature range of 1300-1660°C giving a level of 19.9% at 1900°C and to form MnSi at temperatures above 1660°C, fig. 3. The amount of aSi in the forms of MnSi, FeSi and MnsSh at 1800°C is 22.2%, 2.95% and 3.16%, respectively. Silicon is converted to MnSi17 and MnSi1 727 in the proportions 0.19 and 0.14%, respectively. The proportion of silicon incorporated into the alloy, a!Siall, increases with temperature (tab. 1). The forms of silicon found in the alloy are FeSi, MnSi, Mn3Si, MnSi1,7 and MnSi1,727.

Table 1. The temperature effect on the proportion of silicon incorporated into the alloy Таблица 1. Влияние температуры на степень

The effect of temperature on the amount of aMn as MnSi varies considerably with a maximum of 68.4% at 1600°C. The maximum proportions of aMn as MnSi and Mn5Si3 measured at 1800°C are 25.5 and 6.1%, respectively. The amount of aMn as MnSi17 and MnSi1 727 at 1800°C is low amounting to 0.13 and 0.09%, respectively. The degree of extraction of Mn into

the alloy, aIMn, as the following forms Mn3Si, Mn5Si3, MnSi, MnSi1,7 MnSi1,727 at temperatures of 1400, 1500, 1600' and 1700°C is 41.3, 76.2, 87.8 and 89.4%, respectively.

The temperature dependence of aZn and aPb is shown in fig. 4 when smelting dust in the presence of carbon at 18% and Fe at 1.5% of dust content by weight. This fig. shows that zinc is completely reduced at temperatures above 600°C and sublimes at T>800°C. The aZn value in the gas exceeds 90.0% at temperatures above 1500°C. The degree of lead sublimation is lower, for example, at 1800°C, the value of aPb in the gas phase is only 75.1%.

The effect of temperature on the content of Si, Mn and Fe in the ferroalloy is shown in fig. 5. The ferroalloy contained Si in the range of 17.3-21.7% and Mn in the range of 76.5-73.2% at temperatures in the range of 1500-1800°C.

The degree of silicon and manganese extraction as a function of both temperature and proportion of carbon in the dust is shown in fig. 6. At all temperatures and amounts of carbon the degree of extraction aIMn > alSi. The aIMn and aISi are correlated to the level of carbon in the charge; an increase in the amount of carbon is associated with an increase in aIMn and, to a greater extent, aISi.

перехода кремния в сплав

Temperature, °C 1300 1400 1500 1600 1800

a!Si,% 1.7 12.8 30.0 39.1 45.6

100 90 80 70 60

о

^ 50

ä40 30

20

10

0

Zn(g)

500 800 1100 1400 1700 Temperature, °С

100 t 90 80 70 60 ^50

Рн40

ö

30 20 10 0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

500 800 110014001700 Temperature, °С

b

Fig. 4. Temperature effect on the distribution of zinc and lead in the "dust components - carbon - iron" system:

а - zinc distribution; b - lead distribution Рис. 4. Влияние температуры на степень распределение цинка и свинца в системе «компоненты пыли-углерод-железо»: а - распределение цинка; b - распределение свинца

а

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

100 90 80 70 60 50 s 1 40

1 I 30 S .S 20 10 0

ЧУ

S ^ <u

1100

1400

Mn

1700

Temperature, °С

Fig. 5. Temperature effect on the content of silicon, manganese and iron in the ferroalloy Рис. 5. Влияние температуры на содержание кремния, марганца и железа в ферросплаве

80 70 60 50 on 40 й 30

w ö 20

10

30

22

18 14

1200 1500 1800

Temperature, °С

100

90

80

70

60

О 4 50

n, nM 40

H 30

ö 20

10

0

30 22

18 14

1200 1400 1600 1800 Temperature, °С

b

Fig. 6. The effect of temperature and level of carbon on the end-point extraction of silicon (a) and manganese (b) into the alloy (numbers on the lines denote the percentage by weight of carbon in the dust) Рис. 6. Влияние температуры и количества углерода нa суммарную степень перехода кремния (a) и марганца (b) в

сплав (цифры у линий - количество углерода от массы пыли)

0

а

A set of experiments was completed to determine the optimal parameters for dust processing. The second-order rotatable Box-Hunter experimental design3 is reproduced in tab. 2 and 3.

Two second order linear equations were determined by regression analysis4 of these results to describe the dependence of aISi and aIMn on temperature and amount of carbon:

aISi=-593.34+0.73 T-5.18C--2.37-10-4T2-7.49-10-2C2+6.43-10-3TC, (1)

aIMn=-2792.92+3.36 T+13.93C--1.0110-3 T2-2.0610-1 C2-2.4410-3 T C. (2)

The response surfaces described4 by these functions are shown in 3D representations and 2D contour plots in fig. 7 and 8 over the experi-

3

Akhnazarova SL, Kafarov VV. Experiment optimisation methods in the chemical industry: textbook 2nd ed. Moscow: Izdatel'stvo Vysshaya Shkola; 1985, 327 p. / Ахназарова С.Л., Кафаров В.В. Методы оптимизации эксперимента в химической промышленности: учеб. пособ. 2-е изд. М.: Высшая школа, 1985. 327 с.

4Ochkov VF. Mathcad 14 for students, engineers and designers. St.-Petersburg: BHV-Petersburg; 2009, 512 p. / Очков В.Ф. Mathcad 14 для студентов, инженеров и конструкторов. СПб.: БХВ-Петербург, 2009. 512 с.

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

mental range. To obtain particular levels of aISi and aIMn these plots were inspected to dete r-mine the set points for both temperature and amount of carbon. To obtain aISi in the range of 70 to 80.4%, the process must be carried out at 1687-1800°C with a carbon content of 2530%. To obtain aIMn in the range of 95 to 96.8%, the process must be carried out at 1625°C in the presence of at least 20.5% of carbon in the region denoted by point a in fig. 8.

Table 2. Predicted and experimental results for the degree of extraction of silicon into the alloy in an experimental design with independent variables of temperature (Т, °С) and amount of carbon (С, %wt. of the dust weight)

Таблица 2. Матрица планирования и результаты исследований влияния температуры (Т, °С) и количества углерода (С, %) от массы пыли

Independent variables Dependent

№ Coded level Actual level variable

X1 X2 Т, °С С, % aISi, %

1 +1 +1 1756 27.7 72.8

2 -1 +1 1543 27.7 44.2

3 +1 -1 1756 16.3 42

4 -1 -1 1543 16.3 28.5

5 +1.41 0 1800 22.0 61.3

6 -1.41 0 1500 22.0 35.5

7 0 +1.41 1650 30.0 67.6

8 0 -1.41 1650 14.0 30.8

9 0 0 1650 22.0 53.0

10 0 0 1650 22.0 53.4

11 0 0 1650 22.0 52.8

12 0 0 1650 22.0 53.1

13 0 0 1650 22.0 52.6

Table 3. Predicted and experimental results for the degree of extraction of manganese into the alloy in an experimental design with independent variables of temperature (Т, °C) and amount of carbon (С, %wt. of the dust weight)

Таблица 3. Матрица планирования и результаты исследований влияния температуры (Т, °С) и количества углерода (С, %) от массы пыли на степень перехода марганца в сплав

Independent variables Dependent

№ Coded level Actual level variable

X1 X2 Т, °С С, % aIMn,%

1 +1 +1 1656 20.8 93.6

2 -1 +1 1444 20.8 63.7

3 +1 -1 1656 15.2 79.0

4 -1 -1 1444 15.2 46.2

5 +1.41 0 1700 18.0 89.3

6 -1.41 0 1400 18.0 30.4

7 0 +1.41 1550 22.0 91.2

8 0 -1.41 1550 14.0 71.0

9 0 0 1550 18.0 84.0

10 0 0 1550 18.0 84.1

11 0 0 1550 18.0 84.3

12 0 0 1550 18.0 83.8

13 0 0 1550 18.0 83.6

The dependence of the content of both silicon and manganese in the alloy on both the temperature and amount of carbon is shown in a different view in fig. 9 and 10. The Si content in the ferroalloy is increased from 19-20 to 2830% by increasing the amount of carbon in the dust by weight from 14 to 30%. The effect of the amount of carbon on the manganese content is more complex, viz. in the temperature range of

b

Fig. 7. The response surface for degree of extraction of silicon in the alloy as a function of independent variables temperature and amount of carbon: a - 3D image; b - contour plot Рис. 7. Влияние температуры и углерода на степень распределения кремния в сплав: a - объемное изображение; b - горизонтальный разрез

a

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

a b

Fig. 8. The response surface for degree of extraction of manganese in the alloy as a function of independent variables temperature and amount of carbon: a - 3D image; b - contour plot Рис. 8. Влияние температуры и количества углерода на степень распределения марганца в сплав: a - объемное изображение; b - горизонтальный разрез

О

80

70

60

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

50

40

30

20

10

Mn

Si

1300 1500 1700

Temperature, °С

Fig. 9. The dependence of silicon and manganese content in the ferroalloy on both temperature and amount of carbon: 1 - 14% C, 2 - 22% C, 3 - 30% C Рис. 9. Влияние температуры и количества углерода на содержание марганца и кремния в ферросплаве: 1-14% С, 2-22% С, 3-30% С

30

25

20

С

15

10

5

1300 1400 1500 1600 1700 1800

Temperature, °С

Fig. 10. The dependence of silicon content in the ferroalloy on both temperature and amount of carbon over the acceptable range for silicon content in the alloy defined by GOST 4756-91: 1 - 14% С, 2 - 18% С, 3 - 22% С, 4 - 30% С, abcd - 10-15% Si, cdem - 15-20% Si, cmnf - 20-25% Si, nfz> 25% Si

Рис. 10. Влияние температуры и количества углерода на области содержания кремния в сплаве по ГОСТ 4756-91:1 - 14% С, 2 - 18% С, 3 - 22% С, 4 - 30% С, abcd - 10-15% Si, cdem - 15 - 20% Si, cmnf - 20-25% Si, nfz > 25%Si

0

1500-1800°C, an increase in the amount of carbon decreases the Mn content, nevertheless, the Mn content remains high in the range of 76-65%.

It is recommended that the optimal processing conditions are selected based on the silicon content, because aISi <aIMn, fig. 6. The

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

processing conditions required to obtain ferrosil-icon manganese within the technical requirements defined by GOST 4756-915 can be determined from fig. 10.

The processing parameters and alloy analysis results for alloy produced in the region denoted by abmz are given in tab. 4.

Table 4. Processing parameters and product analysis in the region denoted by abmz

Таблица 4. Граничные технологические параметры в области abmz

Ferrosilicon manganese with a content of Mn<60%, a low silicon content of 10% and low aSi in the range of 2.4-5.3% is obtained at temperatures in the range 1310-1330°C using dust with a carbon content in the range of 14-30% by weight as shown in fig. 10 and tab. 4. A ferroalloy complying with grades MnC12 and MnC17 is obtained in the region denoted by cdem in tab. 4 with the level aISi under 40%. The MnC22 and MnC25 ferrosilicon manganese grades are produced in the region denoted by nfz in tab. 4 at temperatures in the range 1600-1800°C using dust with a carbon content in the range of 2030% by weight; the contents of Si and Mn are in the range of 25-30 and 64.5-72.0%, respectively, and IaMn in the alloy is in the range of 67.784.3% and IaSi 56.4-79.3%.

A study was made of electric smelting of charges of various mixtures of granulated dust with coke and steel chips as shown in tab. 5. The amount of steel chips was kept constant and equal to 4.5% of the dust by weight while the amount of coke was varied from 18 to 36%.

Table 5. Electric smelting results for ferrosilicon manganese production from granular dust with various amounts of coke and a fixed amount of steel chips Таблица 5. Результаты электроплавок гранулированных пылей производства ферросиликомарганца_

Coke amount,% of dust by weight Technological parameters

aISi, % aIMn,% CSi,% CMn,%

18 20.9 68.3 13.3 75.4

27 47.8 73.8 23.6 65.1

36 60.0 82.1 25.9 67.2

As the amount of coke increases, the aISi significantly increases from 20.9 to 60% and, to a lesser degree, aIMn increases from 68.3 to 82.1%. Smelted alloy of grade MnC12 as determined by the content of Si and Mn, is produced when the mixture contains coke at 18%. Grade MnC22 is produced when the content of coke is both 27 and 36%.

The rate of ferroalloy formation increases by 16-18% when the content of steel chips is increased from 2% to 6%, viz. processing time reduces from 55-60 to 45-50 min. In these experiments the content of coke was 27-30% and at the end-point of the extraction, 48-60 and 73-82% of Si and Mn, respectively, were extracted into the alloy. An example of ferroalloy obtained from dust collected during ferrosilicon manganese production at the Taraz Metallurgical Plant LLP in the presence of coke at 30% and steel chips at 6% is shown in fig. 11. The grade of this ferrosilicon manganese is MnC22 which has a silicon content of 20.5% and manganese content of 65.8%.

Fig. 11. Ferroalloy produced from dust collected during ferrosilicon manganese production at the Taraz Metallurgical Plant LLP Рис. 11. Ферросплав, полученный из пылей

производства ферросиликомарганца ТОО «Таразский металлургический завод»

The point in fig. 10 Parameters Alloy grade

Т,°С Carbon amount, % С&, % CMn,% aISi, % aIMn, %

a 1310 30 10 54.0 2.4 54.0 Off-grade by Mn

b 1330 14 10 49.6 5.3 49.6

c 1380 30 15 74.8 11.3 74.8 MnC12

d 1420 14 15 71.6 11.4 71.6

e 1480 30 20 75.0 40.0 75.0 MnC17

m 1800 14 20 73.1 34.6 75.1

n 1600 30 25 72.0 62.5 72.0 MnC22 MnC25

f 1800 30 25 67.7 56.4 67.7

z 1800 30 25 64.5 79.3 84.3

5

GOST 4756-91. Ferrosilicon manganese. Technical requirements and delivery terms. Moscow: Standardinform; 2011, 7 p. / ГОСТ 4756-91. Ферросиликомарганец. Технические требования и условия поставки. М.: Стандартинформ, 2011. 7 с.

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

4. CONCLUSION

The following conclusions were drawn from the results of this study of re-processing dust generated during ferrosilicon manganese production:

- under equilibrium conditions, the smelting of dust and carbon in the presence of iron at temperatures above 1300°C produces manganese silicides (Mn3Si, Mn5Si3, MnSi17, MnSii,727), furthermore at temperatures above 1400°C FeSi is formed. Zinc and lead from the dust sublime at temperatures over 800 and 1300°C, respectively. An increase in the amount of carbon from 14 to 30% by weight of dust at a temperature of 1800°C, increases the extraction of Si and Mn into the alloy from 30.6 to 80.4 and from 79 to 99.8%, respectively. The MnC22 and MnC25 grades of ferrosilicon manganese are produced by maintaining carbon at 30% by

weight of dust at a temperature of 1600-1800°C; the content of Si and Mn in this alloy is in the range of 25-30 and 64.5-72.0%, respectively, and the content in the alloy of ZaMn and ZaSi is 67.7-84.3 and 56.4-79.3%, respectively;

- the smelting time is reduced by 16-18% by increasing the amount of both carbon from 18 to 36% and steel chips from 2 to 6%, furthermore, the extraction of Si and Mn into the alloy is increased from 20.9 to 60 and 68.3-82.1%, respectively;

- MnC22 grade ferrosilicon manganese is obtained by arc furnace electric smelting of a mixture of granular dust with an amount of coke by weight of 27% and steel chips by weight of 6%; the content of silicon and manganese in this alloy is equal to 20.5 and 65.8%, respectively, and the degree of extraction of silicon and manganese into the alloy is equal to 46 and 74%, respectively.

References

1. Tolochko AI, Slavin VI. Dust and Sludge Disposal in Ferrous Metallurgy. Chelyabinsk: Metallurgiya, Chelya-binskoye otdeleniye; 1990, 152 p. (In Russ.)

2. Zhuchkov VI, Leontiev LI, Dashevsky VY. Situation and Development of Ferroalloy Metallurgy in Russia. In: FERROALLOYS: Development Prospects of Metallurgy and Machine Building based on Completed Research and Development. NIOKR-2018: Proceedings of the Theoretical and Practical Conference with International Participation and School for Young Scientists. 29 October - 2 November 2018, Yekaterinburg. Yekaterinburg; 2019, p. 1-14. https://doi.org/10.18502/kms.v5i1.3948

3. Kozhamuratov RU, Safarov RZ, Shomanova ZhK, Nosenko YuG. Recycling of Ferroalloy Production Waste. In: Global Science and Innovations 2017: Proceedings of the International Scientific Conference. 04 December 2017, Bursa. Bursa: Eurasian Center of Innovative Development "DARA"; 2017, p. 207-213.

4. Kazyuta VI. Recycling of Metallurgical Industry Dust and Waste Filter Materials. Stal'. 2014;9:95-102. (In Russ.)

5. Stalinsky DV, Petrov YL. Innovative Approaches when Creating Modern Environmentally Safe and Energy Efficient Ferroalloy Productions. In: Infacon XIV: Proceedings of the Fourteenth International Ferro-Alloys Congress. 31 May - 4 June 2015, Kiev. Kiev; 2015, vol. 1, p. 733-737.

6. Nokhrina OI, Proshunin IE, Rozhikhina ID. Processing Wastes from Manganese-Alloy Production. Steel in Translation. 2009;39:314-316. https://doi.org/10.3103/S096709120904007X

7. Shevko VM, Erzhanov KE, Ashirov RA. Formation of Lead-Zinc Dusts of Ferromanganese Production. Vestnik

MKTU im. A. Yasavi = Bulletin of IKTU named A. Yasawi. 1997;6:47-51.

8. Kasimov AM, Rovenskij AI, Maksimov BN. Dust and Gas Emissions from Main Ferroalloys Production. Moscow: Metallurgiya; 1988, 110 p. (In Russ.)

9. Gasik MI, Zubov VA. Ferrosilicon Electrometallurgy. Dnepropetrovsk: Sistemnye tekhnologii; 2002, 704 p.

10. Bhardwaj BP. The Complete Book on Ferroalloys (Ferro Manganese, Ferro Molybdenum, Ferro Niobium, Ferro Boron, Ferro Titanium, Ferro Tungsten, Ferro Silicon, Ferro Nickel, Ferro Chrome). Delhi: NIIR; 2017, 480 p.

11. Olsen SE, Tangstad M, Lindstad T. Production of Manganese Ferroalloys. Trondheim: SINTEF and Tapir Academic Press; 2007, 247 p.

12. Buketov EA, Gabdullin TG, Takenov TD. Metallurgical Processing of Central Kazakhstan Manganese Ores. Alma-Ata: Nauka; 1979, 164 p. (In Russ.)

13. Shen Ruihua, Zhang Guangqing, Dell'Amico M, Brown P, Ostrovski O. Characterisation of Manganese Furnace Dust and Zinc Balance in Production of Manganese Alloys. ISIJ International. 2005;45(9):1248-1254. https://doi.org/10.2355/isijinternational.45.1248

14. Gabdullin ST, Takenov TD, Tolymbekov Zh, Osipova LV. On thermodynamics of manganese, lead and zinc evaporation processes under ferromanganese electro-thermia. Trudy universiteta Karagandinskogo gosudar-stvennogo tekhnicheskogo universiteta = Universitettin enbekteri - University's works. 2003;2:20-22.

15. Ravich BM, Okladnikov VP, Lygach VN, Menkovskij MA. Integrated Use of Raw Materials and Waste. Moscow: Himiya; 1988, 288 p. (In Russ.)

16. Gaal S, Tangstad M, Ravary B. Recycling of Waste

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

Materials from the Production of FeMn and SiMn. In: The Twelfth International Ferroalloys Congress Sustainable Future. 6-9 June 2010, Helsinki. Helsinki; 2010, p. 81-88.

17. Zhdanov A.V., Zhuchkov V.I., Dashevskii V.Ya., Le-ont'ev L.I. Utilization of Ferroalloy-Production Wastes. Steel in Translation. 2014;44:236-242. https://doi.org/10.3103/S0967091214030206

18. Petrov YuL, Pshemyskij GF, Bocharnik TYu. Design Solutions on Recycling of Gas Cleaner and Aspiration Unit Manganese-Containing Dust and Sludge at Ferroalloy Plants. Ekologiya i promyshlennost'. 2012;2:96-101.

19. Davey KP. The Development of an Agglomerate through the Use of FeMn Waste // Transformation through Technology. In: INFACON X: Proceedings of the Tenth International Ferroalloys Congress. 1 -4 February 2004, Cape Town. Cape Town; 2004, p. 272-280.

20. Steenkamp JD, Maphutha P, Makwarela O, Banda WK, Thobadi I, Sitefane M, et al. Silicomanganese Production at Transalloys in the Twenty-Tens. Journal of the Southern African Institute of Mining and Metallurgy. 2018;118(3):309-320. https://doi.org/10.17159/2411 -9717/2018/v118n3a13

21. Bizhanov AM, Podgorodetskyi GS, Kurunov IF, Dashevskyi VY, Farnasov GA. Experience with the Use of Extrusion Briquettes (Brex) to Make Ferrosilicomanga-nese. Metallurgist. 2013;57(1-2): 105-112. https://doi.org/10.1007/s11015-013-9699-8

22. Bizhanov A, Kurunov I, Podgorodetskyi G, Dashevskyi V, Pavlov A. Extruded Briquettes - New Charge Component for the Manganese Ferroalloys Production. ISIJ International. 2014;54(10):2206-2214. https://doi.org/10.2355/isijinternational.54.2206

23. Ishitobi T, Ichihara K, Homma T. Operational Improvements of a Submerged Arc Furnace in Kashima Works (KF-1) Relined in 2006. In: Sustainable Future: Proceedings of the Twelfth International Ferroalloys Con-

gress. 6-9 June 2010, Helsinki. Helsinki; 2010, vol. 2, p. 509-515.

24. Hamano T, Zhang Guangqing, Brown P, Ostrovski O. Processing of Manganese Furnace Dust: Drying and Reduction of Zinc Oxide by Tar. ISIJ International. 2008;48(7):906-911.

25. Kumar R, Sanyal D. Plasma Technology in Ferroalloy Processing. In: 4th Refresher Course on Ferro Alloys. Chapter 15. 12-14 January 1994, Jamshedpur. Jamshed-pur: National Metallurgical Laboratory (CSIR-NML); 1994, p. 15.01-15.20.

https://doi.org/10.13140/RG.2.1. 1899.9209

26. Neuschutz D. Plasma Processing of Dusts and Residues. Pure and Applied Chemistry. 1996;68(5):1159-1165.

27. Isabayev SM, Kuzgibekova HM, Zhinova EV, Zilina IM, Zhamukhametova AT. Hydrometallurgical Processing of Non-Concentrated Maganese-Containing Raw Material with Receiving High-Quality Products. Kompleksnoe ispol'zovanie mineral'nogo syr'ya = Complex Use of Mineral Resourses. 2018;4:166-172.

https://doi.org/10.31643/2018/6445.43

28. Isabaev SM, Kugizbekova H, Zikanova TA, Isabaev AS. Extraction of Non-Ferrous Metals from Manganese Dusts. In: Tezisy dokladov Mezhdunarodnoj konferencii, posvyashchennoj 50-letnemu yubileyu IMiO NC KPMS Respubliki Kazahstan = Abstracts of the Reports of the International Conference Dedicated to the 50th Anniversary of the National Center for Integrated Processing of Mineral Raw Materials of the Republic of Kazakhstan. October 1995, Alma-Ata. Alma-Ata; 1995, p. 62.

29. Isabayev CM, Zhinova EV, Zhilina IM. Hydrometallur-gical Processing of Candle Ends during Recovery Roasting of the Ores from Ushkatyn-3 Ore-Field. Novosti nauki Kazakhstana = News of Kazakhstan Science. 2019;4(142):114-126. (In Russ.)

Библиографический список

1. Толочко А.И., Славин В.И., Супрун Ю.М., Хайрутди-нов Р.М. Утилизация пылей и шламов в черной металлургии. Челябинск: Металлургия, Челябинское отделение, 1990. 152 с.

2. Zhuchkov V.I., Leontiev L.I., Dashevsky V.Y. Situation and development of ferroalloy metallurgy in Russia // FERROALLOYS: Development prospects of metallurgy and machine building based on completed Research and Development. NIOKR-2018: Proceedings of the Theoretical and practical conference with international participation and School for young scientists (Yekaterinburg, 29 October - 2 November 2018). Yekaterinburg, 2019. P. 1-14. https://doi.org/10.18502/kms.v5i1.3948

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3. Кожамуратов Р.У., Сафаров Р.З., Шоманова Ж.К., Носенко Ю.Г. Утилизация отходов ферросплавного производства // Global Science and Innovations 2017: материалы Междунар. науч. конф. (г. Бурса, 04 декабря 2017 г.). Бурса: Eurasian Center of Innovative Development «DARA», 2017. C. 207-213.

4. Казюта В.И. Утилизация пыли металлургических производств и отработанных фильтровальных мате-

риалов // Сталь. 2014. № 9. С. 95-102.

5. Stalinsky D.V., Petrov Y.L. Innovative approaches when creating modern environmentally safe and energy efficient ferroalloy productions // Infacon XIV: Proceedings of the Fourteenth International Ferro-Alloys Congress (Kiev, 31 May - 4 June 2015). Kiev, 2015. Vol. 1. Р. 733-737.

6. Nokhrina O.I., Proshunin I.E., Rozhikhina I.D. Processing wastes from manganese-alloy production // Steel in Translation. 2009. Vol. 39. Р. 314-316. https://doi.org/10.3103/S096709120904007X

7. Шевко В.М., Ержанов К.Е., Аширов Р.А. Формирование свинцово-цинковых пылей производства ферромарганца // Вестник МКТУ им. А. Ясави. 1997. № 6. С. 47-51.

8. Касимов А.М., Ровенский А.И., Максимов Б.Н. Пыле-газовые выбросы при производстве основных видов ферросплавов. М.: Металлургия, 1988. 110 с.

9. Гасик М.И., Зубов В.А. Электрометаллургия ферросилиция. Днепропетровск: Системные технологии, 2002. 704 с.

10. Bhardwaj B.P. The complete book on ferroalloys (ferro manganese, ferro molybdenum, ferro niobium, ferro

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

boron, ferro titanium, ferro tungsten, ferro silicon, ferro nickel, ferro chrome). Delhi: NIIR, 2017. 480 р.

11. Olsen S.E., Tangstad M., Lindstad T. Production of manganese ferroalloys. Trondheim: SINTEF and Tapir Academic Press, 2007. 247 p.

12. Букетов Е.А., Габдуллин Т.Г., Такенов Т.Д. Металлургическая переработка марганцевых руд Центрального Казахстана. Алма-Ата: Наука, 1979. 164 с.

13. Shen Ruihua, Zhang Guangqing, Dell'Amico M., Brown P., Ostrovski O. Characterisation of manganese furnace dust and zinc balance in production of manganese alloys // ISIJ International. 2005. Vol. 45. Issue 9. P. 1248-1254. https://doi.org/10.2355/isijinternational.45.1248

14. Габдуллин С.Т., Такенов Т.Д., Толымбеков Ж., Осипова Л.В. К термодинамике процессов испарения марганца, свинца и цинка в условиях электротермии ферромарганца // Труды Карагандинского государственного университета. 2003. № 2. С. 20-22.

15. Равич Б.М., Окладников В.П., Лыгач В.Н., Менков-ский М.А. Комплексное использование сырья и отходов. М.: Химия, 1988. 288 с.

16. Gaal S., Tangstad M., Ravary B. Recycling of waste materials from the production of FeMn and SiMn // The Twelfth International Ferroalloys Congress Sustainable Future (Helsinki, 6 - 9 June 2010). Helsinki, 2010. P. 81-88.

17. Zhdanov A.V., Zhuchkov V.I., Dashevskii V.Ya., Le-ont'ev L.I. Utilization of ferroalloy-production wastes // Steel in Translation. 2014. Vol. 44. P. 236-242. https://doi.org/10.3103/S0967091214030206

18. Петров Ю.Л., Пшемыский Г.Ф., Бочарник Т.Ю. Проектные решения по утилизации марганецсодержащей пыли и шламов газоочисток и аспирационных установок на ферросплавных заводах // Экология и промышленность. 2012. № 2. С. 96-101.

19. Davey K.P. The development of an agglomerate through the use of FeMn waste // Transformation through Technology. INFACON X: Proceedings of the Tenth International Ferroalloys Congress (Cape Town, 1 -4 February 2004). Cape Town, 2004. P. 272-280.

20. Steenkamp J.D., Maphutha P., Makwarela O., Banda W.K., Thobadi I., Sitefane M., et al. Silicomanganese production at Transalloys in the twenty-tens // Journal of the Southern African Institute of Mining and Metallurgy. 2018. Vol. 118. No. 3. P. 309-320. https://doi.org/10.17159/2411 -9717/2018/v118n3a13

21. Bizhanov A.M., Podgorodetskyi G.S., Kurunov I.F., Dashevskyi V.Y., Farnasov G.A. Experience with the use of extrusion briquettes (brex) to make ferrosilicomanga-nese // Metallurgist. 2013. Vol. 57. Issue 1-2. P. 105-112. https://doi.org/10.1007/s11015-013-9699-8

22. Bizhanov A., Kurunov I., Podgorodetskyi G., Dashev-skyi V., Pavlov A. Extruded briquettes - new charge component for the manganese ferroalloys production // ISIJ International. 2014. Vol. 54. No. 10. P. 2206-2214. https://doi.org/10.2355/isijinternational.54.2206

23. Ishitobi T., Ichihara K., Homma T. Operational improvements of a submerged arc furnace in Kashima works (KF-1) relined in 2006 // Sustainable Future: Proceedings of the Twelfth International Ferroalloys Congress (Helsinki, 6-9 June 2010). Helsinki, 2010. Vol. 2. P. 509-515.

24. Hamano T., Zhang Guangqing, Brown P., Ostrovski O. Processing of manganese furnace dust: drying and reduction of zinc oxide by Tar // ISIJ International. 2008. Vol. 48. No. 7. P. 906-911.

25. Kumar R., Sanyal D. Plasma technology in ferroalloy processing // 4th Refresher Course on Ferro Alloys. Chapter 15 (Jamshedpur, 12-14 January 1994). Jamshedpur: National Metallurgical Laboratory (CSIR-NML), 1994. P. 15.01-15.20. https://doi.org/10.13140/RG.2.1.1899.9209

26. NeuschQtz D. Plasma processing of dusts and residues // Pure and Applied Chemistry. 1996. Vol. 68. No. 5. P. 1159-1165.

27. Исабаев С.М., Кузгибекова Х.М., Жинова Е.В., Жилина И.М., Жамухаметова А.Т. Гидрометаллургическая переработка некондиционного марганецсодер-жащего сырья с получением высококачественных продуктов // Комплексное использование минерального сырья. 2018. № 4. С. 166-172.

https://doi.org/10.31643/2018/6445.43

28. Исабаев С.М., Кугизбекова Х., Зиканова Т.А., Исабаев А.С. Извлечение цветных металлов из пылей марганцевого производства // Тез. докл. Междунар. конф., посвященной 50-летнему юбилею ИМиО НЦ КПМС Республики Казахстан (г. Алма-Ата, октябрь 1995 г.). Алма-Ата, 1995. С. 62.

29. Исабаев С.М., Жинова Е.В., Жилина И.М. Гидрометаллургическая переработка огарков восстановительного обжига из руды месторождения Ушкатын-3 // Новости науки Казахстана. 2019. № 4 (142). C. 114-126.

Authorship criteria

Shevko V.M., Sinelnikov I.P., Karataeva G.E., Badikova A.D. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

The final manuscript has been read and approved by all the co-authors.

Критерии авторства

Шевко В.М., Синельников И.П., Каратаева Г.Е., Бади-кова А.Д. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

INFORMATION ABOUT THE AUTHORS

Viktor M. Shevko,

Dr. Sci. (Eng.), Professor,

Head of the Department of Metallurgy,

M. Auezov South Kazakhstan State University,

5, Tauke Khan Ave., Shymkent 160000, Kazakhstan;

e-mail: [email protected]

Ivan P. Sinelnikov,

Master Degree Student, M. Auezov South Kazakhstan State University, 5, Tauke Khan Ave., Shymkent 160000, Kazakhstan; e-mail: [email protected]

Gulnara E. Karataeva,

Cand. Sci. (Eng.),

Associate Professor of the Department of Metallurgy, M. Auezov South Kazakhstan State University, 5, Tauke Khan Ave., Shymkent 160000, Kazakhstan; e-mail: [email protected]

Aleksandra D. Badikova,

Junior Researcher of the Department of Metallurgy, M. Auezov South Kazakhstan State University, 5, Tauke Khan Ave., Shymkent 160000, Kazakhstan; e-mail: [email protected]

СВЕДЕНИЯ ОБ АВТОРАХ

Шевко Виктор Михайлович,

доктор технических наук, профессор, заведующий кафедрой металлургии, Южно-Казахстанский государственный университет им. М. Ауэзова, 160000, г. Шымкент, пр. Тауке Хана, 5, Казахстан; e-mail: [email protected]

Синельников Иван Петрович,

магистрант,

Южно-Казахстанский государственный университет им. М. Ауэзова, 160000, г. Шымкент, пр. Тауке Хана, 5, Казахстан; e-mail: [email protected]

Каратаева Гульнара Ергешовна,

кандидат технических наук, доцент кафедры металлургии, Южно-Казахстанский государственный университет им. М. Ауэзова, 160000, г. Шымкент, пр. Тауке Хана, 5, Казахстан; e-mail: [email protected]

Бадикова Александра Дмитриевна,

младший научный сотрудник

кафедры металлургии,

Южно-Казахстанский государственный

университет им. М. Ауэзова,

160000, г. Шымкент, пр. Тауке Хана, 5, Казахстан;

e-mail: [email protected]

ВЕСТНИК ИРКУТСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА 2020;24(4):931-944

i Надоели баннеры? Вы всегда можете отключить рекламу.