Научная статья на тему 'ELECTRONIC HEALTH INFORMATION SYSTEMS TO IMPROVE DISEASE DIAGNOSIS AND MANAGEMENT'

ELECTRONIC HEALTH INFORMATION SYSTEMS TO IMPROVE DISEASE DIAGNOSIS AND MANAGEMENT Текст научной статьи по специальности «Науки о здоровье»

150
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
electronic health information system / diagnosis / treatment / pointof-care / low and middle income countries

Аннотация научной статьи по наукам о здоровье, автор научной работы — A. R. Akhatov, O. D. Primkulov

The purpose of an electronic health information system (EHIS) is to support health care workers in providing health care services to an individual client and to enable data exchange among service providers. The demand to explore the use of EHIS for diagnosis and management of communicable and non-communicable diseases has increased dramatically due to the volume of patient data and the need to retain patients in care. In addition, the advent of Coronavirus disease 2019 (COVID19) pandemic in high disease burdened low and middle income countries (LMICs) has increased the need for robust EHIS to enable efficient surveillance of the pandemic.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ELECTRONIC HEALTH INFORMATION SYSTEMS TO IMPROVE DISEASE DIAGNOSIS AND MANAGEMENT»

ACADEMIC RESEARCH IN EDUCATIONAL SCIENCES VOLUME 2 | ISSUE 7 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-7-204-210

ELECTRONIC HEALTH INFORMATION SYSTEMS TO IMPROVE DISEASE DIAGNOSIS AND MANAGEMENT

A. R. Akhatov

Professor, Jizzakh branch of National University of Uzbekistan

O. D. Primkulov

Associate Professor, Jizzakh branch of National University of Uzbekistan

ABSTRACT

The purpose of an electronic health information system (EHIS) is to support health care workers in providing health care services to an individual client and to enable data exchange among service providers. The demand to explore the use of EHIS for diagnosis and management of communicable and non-communicable diseases has increased dramatically due to the volume of patient data and the need to retain patients in care. In addition, the advent of Coronavirus disease 2019 (COVID-19) pandemic in high disease burdened low and middle income countries (LMICs) has increased the need for robust EHIS to enable efficient surveillance of the pandemic.

Keywords: electronic health information system, diagnosis, treatment, point-of-care, low and middle income countries

INTRODUCTION

The health sector is lagging behind in the era of information and technology (IT). The main purpose for use of IT in the health sector include the following: extending geographic access to health care; enhancing client communication with the health provider; improving disease diagnosis and treatment; improved data quality management; and to avoid fraud and abuse of client's confidentiality [1,2,3]. The introduction of digitization has revealed the possibilities and costs benefits to health care management. IT systems such as electronic health information systems (EHIS) have been shown to be a useful tool for improving disease diagnosis and treatment at point of care (POC), globally [4,5,6]. EHIS is the digital version of a patients' paper chart, which has capacity to store health data such as test results and treatments. It is also designed to enable real-time, patient-centered records that make information available instantly and securely to the authorized users [7]. The term EHIS is used interchangeably with electronic health records (EHRs), eHealth and electronic Academic Research, Uzbekistan 204 www.ares.uz

ACADEMIC RESEARCH IN EDUCATIONAL SCIENCES VOLUME 2 | ISSUE 7 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-7-204-210

medical records (EMRs). EHIS are a vital part of health IT built to go beyond standard clinical data collected in a providers' office and can be inclusive of a broader view of a patient care [8].

An efficient functioning EHIS requires the use of digital health systems such as three interlinked electronic register (Tier.Net), which has an ability to facilitate information exchange between software [9]. Tier.Net is used by healthcare facilities to enable electronic collection, storage, management and sharing of patient's electronic health or medical records for the purpose of patient care, research and quality management [10]. Countries are currently battling with a global pandemic caused by the outbreak of SARS COV-2, a virus that causes Coronavirus disease 2019 (COVID-19). The advent of COVID-19 in high disease burdened low and middle income countries (LMICs) such as South Africa has increased the need for robust EHIS to enable efficient surveillance of the pandemic [11]. The main objective of this review is to presents an overview of literature on the characteristics of EHIS and implementation of EHISs for improving disease diagnosis and treatment at point-of-care in the LMICs. We search for literature from the following databases: PubMed and Google Scholar and included relevant literature from LMICs.

2. Characteristic of Electronic Health Information Systems

An efficiently functioning EHIS is key to health service delivery as it promises a number of substantial benefits, including improving the quality of healthcare service delivery, decreased healthcare costs as well as reduce serious unintended consequences [12]. A poorly implemented EHR system can lead to EHR-related errors that jeopardize the integrity of the information in the EHR, leading to errors that endanger patient safety as well as compromise the quality healthcare services [12]. The following key components are required for an efficient functioning EHIS: patient management component; activity component; clinical component; pharmacy component; laboratory component; radiology information system; and billing system (Figure 1) [13]. Table 1 provides a description on the functions of EHR components within the electronic health system and patient care.

3. Opportunities Presented by EHIS in the LMICs

Evidence on EHIS in developing countries revealed the following eHealth attributes: tracking of patients who were initiated on treatment; monitoring of adherence to care and early detection of potential loss to follow up; minimize the time it takes to communicate data between different levels; reduction of errors especially the laboratory data; linkage to bar code for unique identification and laboratory samples and the prescription of medication [18]. In Mozambique, a robust Academic Research, Uzbekistan 205 www.ares.uz

ACADEMIC RESEARCH IN EDUCATIONAL SCIENCES VOLUME 2 | ISSUE 7 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-7-204-210

electronic patient management system facilitated a facility-level reporting of required indicators, improved ability to identify patients lost to follow-up; and support facility and patient management for HIV care [19]. An implementation study aimed at implementing an integrated pharmaceutical management information system for antiretroviral treatment (ART) and other medicines in Namibia showed the system's reliability in managing ART patients, monitoring ART adherence and HIV drug resistance early warning indicators [20].

4. Enablers of EHIS Implementation in the LMICs

Enables of EHIS implementation in the LMICs are aligned with leadership abilities, sound policy decision and financial support with the goals of purchasing IT, connectivity and capacity building [21]. Enablers for EHIS in LMICs includes: legislation, financial investment; staff training, political leadership; acceptability of technology; performance expectancy; and social influence among professionals [22,23,24].

4.1. Financial Investment

Many LMICs are supporting financial investment to help scaling up of EHIS. A study from China recommended that in order to achieve the national childhood immunization information management system objectives for 2010, the funding for system-building should be increased [22]. A three-country qualitative study was conducted in southern Africa on the sustainability of health information systems which revealed; more government commitment in funding EHIS such as printer ink, IT infrastructure, recruitment of personnel and running costs [23]. In Ghana, cooperation between the vendors and management was demonstrated [25]. This successful cooperation translated into regularly provision of feedback and sucessful system maintenance [25]. This has helped the facility in alleviating the common challenge faced by most Information Communication and Technology (ICT) implementers in LIMCs [25].

4.2. Legislation

South Africa National Health Act of 2003 is a good example of a legislation, policy, norms and standards defining the role of national, provincial and local governments in terms of EHIS implementation in LMICs [26]. South Africa has advocated the scale up of digital health technologies to improve access to health care and for health systems strengtherning through systems such as Tier.net and District Health Information Software (DHIS and patient registration systems [27]. The delivery of EHIS or eHealth in South Africa's public sector facilities is the responsibility of the provincial departments of health, while policy development

ACADEMIC RESEARCH IN EDUCATIONAL SCIENCES VOLUME 2 | ISSUE 7 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-7-204-210

resides with the National Department of Health (NDoH). In terms of Section 74 of the National Health Act, the NDoH is also responsible for facilitation and coordination of health information.4.3. Staff Training

There is growing evidence on the value of well-trained health informatics workforce in LMICs [24]. Studies conducted in Botswana and Uganda showed the on-the-job training and mentorship as a major enabler for EHIS in LMICs [28,29]. This were shown to be an effective approach for strengthening monitoring and evaluation capacity and ensuring data quality within a national health system [28]. It was demonstrated that on-the-job training can also improves performance through timely and increased reporting of key health indicators [29].

4.4. Political Leadership

Effective leadership can positively contribute to the successful adoption of new EHIS in any organization [30]. In Ethiopia, the role of ICT towards universal health coverage prompted academic and political spheres to make ICT on the agenda especially for disease diagnosis and treatment in the LMICs [31]. The Rwandan government has also shown commitment to telemedicine, through their strategic choice of using low-cost and less complex technologies, and strategic partnerships with educational and technology companies to help in the implementation of telemedicine [32].

4.5. Acceptability of Technology

Research has shown that factors such as English language proficiency level, computer literacy and EMR literacy level and education level can influence the level of use of EHIS [33]. Liu and others revealed that the usage of EHIS by health workers in LMICs can be influenced by the level of system simplicity and user friendliness [34]. An economical mobile health application to improve communication between healthcare workers was introduced in KwaZulu-Natal, South Africa using an iterative design process [35]. This application was received positive feedback from healthcare workers due to its ability to improve team spirit between community and clinic based staff [35].

5. Barriers and Challenges to Implemention of EHIS in the LMICs

There are various factors impeding the successful implementation and scale up of EHIS in LMICs. These include the following: complexity of the intervention and lack of technical consensus; limited human resource, poor leadership, insufficient finances, staff resistance, lack of management, low organizational capability; misapplication of proven diffusion techniques; non engagement of both local users and inadequate use of research findings when implementing [36].

ACADEMIC RESEARCH IN EDUCATIONAL SCIENCES VOLUME 2 | ISSUE 7 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-7-204-210

5.1. Complexity of the Intervention and Lack of Technical Consensus

The complexity of the EHIS which and lack of consultation as key barriers on the implementation in LMICs [36]. Designing an organizational EHIS with a complex design is a serious threat of the implementation in LMICs [37]. In Rwanda, the interfaces between the existing and new EHIS are the inhibitors to the implementation [38]. There are instances of patient information that are captured into the computer; but challenged with bandwidth requirements in health facilities [39].

5.2. Limited Human Resource

The main barriers in implementing EHIS on the LMICs relate to lack of capacity: human, leadership and management [36]. Human resource capacity is the main barrier not only in terms of the supply but also in terms of the ability to perform the task. The exodus of skilled cadres to the well-paying non-government organizations are the contributing factors to human resource capacity [40]Discussion.This review has provided us with a great platform to depict opportunities of EHIS implementation in LMICs. It has also enabled us to identify and classify barriers and challenges implementation of EHIS that must be addressed pre-implementation to ensure the success. Key to the success of EHIS is the leader's willingness to play a leading role in adopting data demand and supply principles for decision making. The presented literature reveals the need for well-defined roles of EHIS stakeholders to ensure successful implementation and utility. Here, we proposed key stakeholders roles and responsibilities in the implementation of EHIS for disease diagnosis and management at point-of-care (POC) in LMICs (Figure 2). In the proposed key stakeholders' roles and responsibilities we emphesise on that the information culture should be cascaded through different hierarchy levels of an organization. In the absence of the such culture there is likely to be poor adoption, poor data quality and utilization [55].

CONCLUSIONS

The advent of EHIS has revolutionize patient care through improving both disease diagnosis and treatment at POC. However, its use in LMICs is still limited, despite the high disease burden in these settings. EHIS implementation need to be one of the global health priorities to help respond to community's health needs, particularly during the current Covid-19 pandemic. Successful implementation of EHIS requires commitment from health leaders to play a strategic role in terms of the policy directive, resource mobilization and evidence-based decision-making. To help optimize the implementation and use of EHIS in LMICs, we have proposed roles and

ACADEMIC RESEARCH IN EDUCATIONAL SCIENCES VOLUME 2 | ISSUE 7 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-7-204-210

responsibilities of stakeholders to ensure efficient and sustainable implementation of EHIS. A systematic approach for stakeholder engagement would be crucial to ensuring successful operationalization of the proposed roles and responsibilities.

REFERENCES

1. Makanga P.T., Schuurman N., von Dadelszen P., Firoz T. A scoping review of geographic information systems in maternal health. Int. J. Gynaecol. Obstet. 2016;134:13-17. doi: 10.1016/j.ijgo.2015.11.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Kyriacou E., Pavlopoulos S., Berler A., Neophytou M., Bourka A., Georgoulas A., Anagnostaki A., Karayiannis D., Schizas C., Pattichis C., et al. Multi-purpose HealthCare Telemedicine Systems with mobile communication link support. Biomed. Eng. Online. 2003;2:7. doi: 10.1186/1475-925X-2-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Cohen G., Goldsmith J., Roller P.S., Widran S., Patterson G.W., Daugherty J.R., Van Antwerp W.P. Medical Data Management System and Process. 8, 313.433 B2. U.S. Patent. 2012 Nov 20;

4. Muller-Staub M. Evaluation of the Implementation of Nursing Diagnostics. A Study of the Use of Nursing Diagnoses, Interventions and Outcomes in Nursing Documentation. Blackwell Publishing LTD; Oxford, UK: 2007. [Google Scholar]

5. Müller-Staub M. Evaluation of the implementation of nursing diagnoses, interventions, and outcomes. Int. J. Nurs. Terminol. Classif. 2009;20:9-15. doi: 10.1111/j.1744-618X.2008.01108.x. [PubMed] [CrossRef] [Google Scholar]

6. Hunt D.L., Haynes R.B., Hanna S.E., Smith K.J.J. Effects of computer-based clinical decision support systems on physician performance and patient outcomes: A systematic review. JAMA. 1998;280:1339-1346. doi: 10.1001/jama.280.15.1339. [PubMed] [CrossRef] [Google Scholar]

7. Brook C. What is a Health Information System? [(accessed on 15 May 2020)]; Available online: https://digitalguardian.com/blog/what-health-information-system.

8. HealthIT.Gov What is an electronic health record (EHR)? National Coordinator for Health Information Technology 2018. [(accessed on 15 May 2020)]; Available online: https: //www.healthit. gov/faq/what-electronic-health-record-ehr.

9. Osler M., Hilderbrand K., Hennessey C., Arendse J., Goemaere E., Ford N., Boulle A. A three-tier framework for monitoring antiretroviral therapy in high HIV burden settings. J. Int. Aids Soc. 2014;17:18908. doi: 10.7448/IAS.17.1.18908. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

ACADEMIC RESEARCH IN EDUCATIONAL SCIENCES VOLUME 2 | ISSUE 7 | 2021

ISSN: 2181-1385

Scientific Journal Impact Factor (SJIF) 2021: 5.723 Directory Indexing of International Research Journals-CiteFactor 2020-21: 0.89

DOI: 10.24412/2181-1385-2021-7-204-210

10. Elgujja A.A. Impacts of Information Technology on Patient Care and Empowerment. IGI Global; Hershey, PA, USA: 2020. Impact of Information Technology on Patient Confidentiality Rights: A Perspectives. [Google Scholar]

11. Mashamba-Thompson T.P., Crayton E.D. Blockchain and Artificial Intelligence Technology for Novel Coronavirus Disease-19 Self-Testing. Diagnostics. 2020;10:198. doi: 10.3390/diagnostics10040198. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

i Надоели баннеры? Вы всегда можете отключить рекламу.