Научная статья на тему 'ЭФФЕКТИВНОСТЬ СИСТЕМ ОБЕСПЕЧЕНИЯ ПАРАМЕТРОВ МИКРОКЛИМАТА ОВОЩЕКАРТОФЕЛЕХРАНИЛИЩ'

ЭФФЕКТИВНОСТЬ СИСТЕМ ОБЕСПЕЧЕНИЯ ПАРАМЕТРОВ МИКРОКЛИМАТА ОВОЩЕКАРТОФЕЛЕХРАНИЛИЩ Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СОЧНОЕ РАСТИТЕЛЬНОЕ СЫРЬЕ / ХРАНЕНИЕ / ЭФФЕКТИВНОСТЬ СИСТЕМ ВЕНТИЛЯЦИИ / КАПИТАЛЬНЫЕ И ЭКСПЛУАТАЦИОННЫЕ ЗАТРАТЫ

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Бодров M.B.

Проанализированы аэродинамические и теплофизические недостатки систем общеобменной вентиляции при контейнерном хранении сочного растительного сырья. Основным путем повышения функциональной надежности систем обеспечения микроклимата является переход на хранение с применением систем активной вентиляции. Приведена оценка экономической эффективности строительства новых и реконструкции существующих хранилищ, показана равнозначность понятий «капиталовложения» и «инвестиции» для таких сооружений.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

EFFICIENCY OF MICROCLIMATE MAINTENANCE SYSTEM IN POTATO AND VEGETABLE STOREHOUSES

The article reveals the analysis of deficiencies in aerodynamic and thermal systems of general ventilation in the succulent plant storage container. The basic way to increase functional reliability of microclimate maintenance systems is the systems of active ventilation. The author gives an economic effectiveness of construction of new and renovation of existing storehouses and shows the equivalence between the concepts of "investment" and "investment" for such works.

Текст научной работы на тему «ЭФФЕКТИВНОСТЬ СИСТЕМ ОБЕСПЕЧЕНИЯ ПАРАМЕТРОВ МИКРОКЛИМАТА ОВОЩЕКАРТОФЕЛЕХРАНИЛИЩ»

М.В. Бодров, канд. техн. наук, ст. преп. каф. «Отопление и вентиляция» ГОУ ВПО «Нижегородский государственный архитектурно-строительный университет

УДК 628.8: 631.2

ЭФФЕКТИВНОСТЬ СИСТЕМ ОБЕСПЕЧЕНИЯ ПАРАМЕТРОВ МИКРОКЛИМАТА ОВОЩЕКАРТОФЕЛЕХРАНИЛИЩ

Проанализированы аэродинамические и теплофизические недостатки систем общеобменной вентиляции при контейнерном хранении сочного растительного сырья. Основным путем повышения функциональной надежности систем обеспечения микроклимата является переход на хранение с применением систем активной вентиляции. Приведена оценка экономической эффективности строительства новых и реконструкции существующих хранилищ, показана равнозначность понятий «капиталовложения» и «инвестиции» для таких сооружений.

Ключевые слова: сочное растительное сырье, хранение, эффективность систем вентиляции, капитальные и эксплуатационные затраты.

M.V. Bodrov, Cand. Sc. Engineering

EFFICIENCY OF MICROCLIMATE MAINTENANCE SYSTEM IN POTATO AND VEGETABLE STOREHOUSES

The article reveals the analysis of deficiencies in aerodynamic and thermal systems of general ventilation in the succulent plant storage container. The basic way to increase functional reliability of microclimate maintenance systems is the systems of active ventilation. The author gives an economic effectiveness of construction of new and renovation of existing storehouses and shows the equivalence between the concepts of "investment" and "investment" for such works.

Key words: succulent raw materials, storage, efficiency of ventilation systems, capital and operating costs.

Общеобменная механическая вентиляция применяется при контейнерном хранении картофеля и овощей. Охлаждение продукции осуществляется за счет теплообмена при обтекания воздухом штабеля контейнеров, что является основным недостатком такой схемы воздухораспределения. Формирование параметров микроклимата в контейнерах осуществляется за счет естественной конвекции и теплопроводности, температура продукции в контейнерах выше на 1,1...2,0 °С окружающего воздуха, относительная влажность воздуха фв ~ 100 %. Движения воздуха в контейнерах, вызванного общеобменной вентиляцией, или не наблюдается, или 85.90 % его проходит между контейнерами [1].

В настоящее время отсутствуют методики оптимизации удельных расходов воздуха для систем общеобменной вентиляции контейнерных картофелехранилищ. Рекомендуемые значения Lm, м3/(т ч), лежат от 15 в Германии [2] до 100 м3/(т ч) в Голландии [3]. В нашей стране за основу расчета принята кратность воздухообмена [4]: n = 8.12 ч 1 - в период охлаждения; n = 4.6 ч в основной период хранения - при непрерывном режиме работы общеобменной вентиляции безотносительно к виду хранимой продукции.

По отечественным нормам в полностью заполненном контейнерном хранилище объемом 36 х 12 х 6 м производительность систем вентиляции составит при n = 10 ч 1 около 20 000 м3/ч, при n = 5 ч 1 в пределах 10 000 м3/ч. В первом случае скорость воздуха между контейнерами равна 0,15 м/с, во втором - около 0,075 м/с, а скорость в межклубневом пространстве контейнеров, соответственно, около 0,012 м/с и 0,006 м/с, т.е. устойчивое движение воздуха в контейнерах отсутствует.

Распространенная в нашей стране схема воздухораспределения приточного воздуха в верхнюю зону «сверху вверх» при естественной вытяжной вентиляции имеет существенный недостаток - неравномерное обдувание контейнеров воздухом. В настоящее время получает практическое применение для контейнерных хранилищ вентиляция с подачей воздуха по схемам «снизу вверх» или «сверху вниз» при механической приточной и вытяжной вентиляции. Один из воздуховодов (приточный или вытяжной) находится внизу (у пола), другой под перекрытием. Имеется опыт вентилирования хранилищ путем подачи воздуха из подпольных каналов, который сдерживается высокими требованиями к механической прочности полов. При массовом хранении СРС в контейнерах принципиально возможно применение горизонтальных схем продувки.

Приведенные выше скорости воздуха в контейнерах при общеобменной механической вентиляции меньше необходимых для поддержания температурных параметров среды в контейнерах. Даже по несколько завышенным оценкам скоростей воздуха можно сделать вывод о практической неэффективности управления параметрами микроклимата в массе продукции контейнеров путем регулирования ско-

рости фильтрации и увеличения кратности воздухообмена. Частичное преодоление этого недостатка может быть достигнуто за счет специального ажурного штабелирования контейнеров с продукцией или разработки контейнеров специальной конструкции. В нашей стране контейнеры имеют практически одинаковую высоту (0,74...0,87 м) и форму квадрата. Расстояние между деревянными планками в боковых стенках назначается в пределах 15.25 мм. Количество рядов контейнеров по высоте обычно составляет 5.6.

Для рационального использования подаваемого воздуха в хранилищах контейнерного типа при раздаче воздуха «снизу вверх» или «сверху вниз» под воздухораспределителем в штабеле должен быть колодец или технический проезд (рис. 1).

В ряде стран Европы широко используются контейнеры не с решетчатыми, а с плотными воздухонепроницаемыми стенками и двойным (решетчатым и сплошным) дном. Помещение оборудуют проходными вентиляционными воздуховодами, которые размещают у стен на всю их высоту. В стенках воздуховодов устраиваются отверстия, совпадающие со щелями между сплошным и решетчатым дном контейнеров. Контейнеры устанавливаются впритык к воздуховодам. Воздух через щели в решетчатом дне поступает в контейнеры и удаляется через специальные зазоры в стенках (рис. 2), т.е. происходит активная горизонтальная вентиляция продукции в контейнере. В нашей стране все большее распространение получает использование принципа работы систем активной вентиляции при контейнерном хранении по следующей схеме. Контейнеры со сплошными боковыми стенками и решетчатым дном устанавливаются в штабель над специальным воздухораспределяющим отверстием в полу. При подаче воздуха осуществляется охлаждение всего штабеля контейнеров.

Тепловой баланс контейнерных хранилищ и необходимость подогрева наружного приточного воздуха для поддержания расчетной внутренней температуры ¿в определяется согласно методике как для любого производственного сельскохозяйственного здания [1] с учетом условной температуры наружного воздуха, начиная с которой необходимо нагревать приточный воздух в холодный период года.

Режимы работы общеобменной механической вентиляции в период охлажд ения и основной период хранения непрерывные, круглосуточные. Режимы работы систем активной вентиляции в контейнерных хранилищах рассчитываются по методике, применяемой при навальном хранении продукции [5].

Рис. 1. Варианты размещения контейнеров:

а - складирование с подачей воздуха через крупногабаритные отверстия в полу; Ь - П - образное складирование; с - складирование с технологическим колодцем; d - П - образное встречное складирование; 1 - крупногабаритное отверстие; 2 - воздухораспределитель; 3 - технологический проход (колодец); 4 - контейнер

Рис. 2. Движение воздуха в контейнерах при активной вентиляции: 1 - вентиляционный канал; 2 - отверстие в контейнерах для прохода воздуха; 3 - щель для выхода воздуха; 4 - решетка; 5 - сплошное днище

Соотношение статей затрат на хранение картофеля показывает на необходимость снижения удельной стоимости здания (амортизационные затраты), потерь от естественной убыли и гниения.

Удельные капитальные затраты /\"ф. руб./т, снижаются с увеличением вместимости хранилищ [6]:

Формула (1) согласуется с выводами [7], что с увеличением вместимости в 3 раза величина Кхр сокращается на 30 % (З0'26 = 1,33 , или 33 %).

Количественные показатели эффективности хранения зависят от конкретных условий и имеют широкий диапазон, что иллюстрируется, например, следующими данными [8]: стоимость хранения картофеля в Англии в 1970-1971 гг. составляла 14,5 ф.ст./т, в 1971-1972 гг. - 15,0, а в неблагоприятных 1975-1976 гг. и 1976-1977 гг., соответственно, 105 и 150 ф.ст./т, т.е. - отличалась в 7.10 раз.

Оценка удельного годового экономического эффекта строительства контейнерных и навальных хранилищ, оборудованных САВ, основывается на составлении приведенных затрат:

^хр — ^хр + ^хр ' ^хр ' (2)

где Схр - удельные эксплуатационные расходы, руб./(ттод); Ен = 0,10.0,12 - нормативный коэффициент сравнительной эффективности капитальных вложений, 1/год.

Удельные эксплуатационные затраты Схр включают стоимость естественной убыли и абсолютного отхода сочного растительного сырья в процессе хранения. Повышение сохранности продукции способствует, помимо уменьшения потерь, другим положительным социальным эффектам, величину которых учтем величиной удельного суммарного социально-экономического эффекта Эп, руб./(т-год):

^хр = схр — ^п + ^н ' ^хр • (3)

Расчет удельного годового экономического эффекта от реконструкции, если она направлена только на повышение качества хранения (дополнительная вместимость хранилища не может быть получена), ведется сравнением с показателями хранилища до реконструкции:

где а2 - удельная масса сохраненной продукции относительно базового варианта, т/т; Эп2 и Эп1 - соответственно, удельный экономический эффект после реконструкции и по базовому варианту, руб./(т-год); Крек - удельные капитальные затраты на реконструкцию, руб./т.

Общий годовой экономический эффект Э2общ, руб./год, от повышения степени сохранности продукции равен:

Когда реконструкция сопровождается увеличением вместимости хранилищ, удельная эффективность Эь руб./(т-год), определяется по формуле:

= (Оф\-Л-Схр н

где А1 = AG / g - удельный прирост емкости при реконструкции, т/т; Схр.н - удельная себестоимость хранения в реконструированных хранилищах, руб./ (т-год); Кхр.н - удельные капитальные затраты на строительство новых хранилищ удельной емкостью AG, руб./т.

Общий годовой экономический эффект Э1общ, руб./год, от повышения надежности хранения картофеля и овощей и увеличения вместимости хранилищ в результате реконструкции составляет:

^2общ = Эх-G. (7)

Срок окупаемости дополнительных капитальных вложений, Т, лет, на реконструкцию хранилищ при отсутствии и наличии увеличения емкостей хранилищ, соответственно:

т = кд/а2-о-сзж, т = кд/(\+а1)-а2-о-сзж. (8)

Здесь кд - сумма дополнительных капитальных вложений на реконструкцию, руб. Закупочная цена Сзак, руб./т, на хранящуюся продукцию повышается в течение периода хранения.

Широкое использование критерия приведенных п обусловлено простой и наглядной формой его представления. В плановой экономике он был единственным критерием, в основу которого был заложен нормативный срок окупаемости дополнительных капитальных вложений Т или обратная величина Е — \/Т . В рыночных условиях при замене понятия «капиталовложения» на более широкое «инвестиции» использование критерия приведенных затрат оправданно [9] при условии замены коэффициента эффективности капитальных вложений Е в прежнем понимании на коэффициент бездисконтной эффективности еэ — 1/7 э.

В зависимости от использования дохода, полученного после окупаемости инвестиций, величина коэффициента эффективности определяется по следующим формулам:

еэ1=г/( 1-е(-г-гок)); (9)

в случае капитализации дохода, т.е. изъятия его из оборота и наращивания:

Еэ2=г/( 1-е( ^-1); (10)

где г - расчетная норма дисконта, 1/год; Ток - предельный срок окупаемости инвестиций, год. В таблице приведены величины Еэ, 1/год, при различных значениях г и предельного срока окупаемости Ток, год.

Значения коэффициента эффективности Еэ1

r Значения Еэ1 для различных величин с рока окупаемости Ток, год.

1 2 3 4 5 7 9 11 13

0,05 1,03 0,53 0,36 0,28 0,23 0,17 0,14 0,12 0,11

0,10 1,05 0,55 0,39 0,30 0,25 0,20 0,17 0,15 0,14

0,15 1,08 0,58 0,41 0,33 0,28 0,23 0,20 0,19 0,158

Как видно из таблицы, при разумных сроках окупаемости производственных сельскохозяйственных зданий (более 9.10 лет) методика расчета по зависимости (2) пригодна как по понятию «капиталовложения», так и по понятию «инвестиции».

Перспективным путем повышения эффективности систем обеспечения параметров микроклимата при контейнерном и навальном хранении сочного растительного сырья является переход от систем общеобменной механической к системам активной вентиляции продукции. Показана однозначность оценки удельной годовой экономической эффективности при строительстве, реконструкции и эксплуатации хранилищ, оборудованных системами активной вентиляции, по приведенным затратам и с использованием понятия чистого дисконтного дохода.

Библиография

1. Калашников М.П. Обеспечение параметров микроклимата для хранения картофеля и овощей в условиях резкоконтинентального климата. - Улан - Удэ: Изд-во ВСГТУ, 1999. - 235 с.

2. Gall H. et al. Erfabrungen bei der Bewirtschaftung des Planzkartoffellagerhauses Kropelln. - Feldwirtschaft, 1979, Juli, № 7. - P. 322.325.

3. Туров В.М. Хранение плодоовощей. Торговля плодоовощами.- М., 1974.- 93 с. - (Обзор. информация / ЦНИИНТЭторговли, вып. 3).

4. ОНТП 6-86. Общесоюзные нормы технологического проектирования зданий и сооружений для хранения и переработки картофеля и плодоовощной продукции. - М.: Минплодоовощхоз СССР, 1985. - 40 с.

5. Бодров В.И., Бодров М.В., Ионычев Е.Г., Кучеренко М.Н. Микроклимат производственных сельскохозяйственных зданий и сооружений. - Н. Новгород: Изд-во ННГАСУ, 2008. - 623 с.

6. Волкинд И.Л. Комплексы для хранения картофеля, овощей и фруктов. - М.: Колос, 1981. - 223 с.

7. Широков Е.П. Технология хранения и переработки плодов и овощей. - М.: Колос, 1978. - 310 с.

8. EddowsM. Storage of potatoes. - Outlook on Agr., 1978, 9, 5. - P. 253.259.

9. Дмитриев А.Н. и др. Руководство по оценке экономической эффективности инвестиций в энергосберегающие мероприятия. - М.: Изд-во АВОК - ПРЕСС, 2005.

Bibliography

1. Kalashnikov M.P. Microclimate parameters maintenance for storing potatoes and other vegetables in a extremely continental climate. - Ulan - Ude: ESSUT Publishing House, 1999. - 235.p

2. Gall H. et al. Erfabrungen bei der Bewirtschaftung des Planzkartoffellagerhauses Kropelln. - Feldwirtschaft, 1979, Juli, № 7. - P. 322 ... 325.

3. Turov V. M. Storage of fruits and vegetables. Trading the fruits and vegetables. - M.: 1974 .- 93p. - (Review information / TsNIINTEtorgovli, 3rd Issue).

4. ONTP 6-86. All Union standards for technological design of buildings and facilities for storage and processing of potatoes, fruits and vegetables. - M.: Minplodoovoschhoz USSR, 1985. - 40p.

5. Bodrov V.I., Bodrov M.V., Ionychev E.G., Kucherenko M.M. Microclimate of agricultural production buildings and structures. - N. Novgorod: NNGASU, 2008. - 623p.

6. VolkindI.L. Systems for storing potatoes, vegetables and fruits. - M.: Kolos, 1981. - 223p.

7. ShirokovE.P. Technology of storage and processing of fruits and vegetables. - M.: Kolos, 1978. - 310p.

8. EddowsM. Storage of potatoes. - Outlook on Agr., 1978, 9, 5. - P. 253 ... 259.

9. Dmitriev A.N. et al. Guidelines for evaluating the cost effectiveness of investments in energy saving measures. -М.: AVOK - PRESS, 2005.

i Надоели баннеры? Вы всегда можете отключить рекламу.