ВЕСТНИК ЮГОРСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2013 г. Выпуск 2 (29). С. 17-22
УДК 53.083
ЭФФЕКТИВНАЯ ТЕПЛОПРОВОДНОСТЬ НЕПЛОТНО УПАКОВАННЫХ ПОРОШКОВ В ВОЛНЕ СВ-СИНТЕЗА
М. П. Бороненко, И. В. Милюкова, А. Е. Серегин Введение
Одним из немногих способов получения нанопорошков с аномальными фототермическим эффектом [1] и высокопористой проницаемой металлокерамики с наноструктурной поверхностью [2] является процесс самораспространяющегося высокотемпературного синтеза (СВС). Совокупность экстремально высоких температурных градиентов в волне горения и возможность направленного воздействия на дисперсную среду в ходе прохождения зоны реакции [3], определяет множество вариантов режима технологического горения и соответствующее разнообразие структуры и фазового состава конечных продуктов синтеза [4]. Таким образом, для получения материалов с заданными свойствами, необходимо осуществлять контроль за процессами горения [5], а именно, температурой и скоростью распространения фронта горения.
Детальное исследование механизма сложного теплообмена в пористой структуре порошковых материалов и дальнейшего диффузионного взаимодействия СВС-систем [6], требует применения комплексных методик эксперимента дополняющих друг друга. В качестве новой экспериментальной методики исследования СВ-синтеза может рассматриваться метод и аппаратура яркостной пирометрии высокого разрешения [7], впервые примененный к изучению локального теплообмена реакций в системе Ni-Al.
Цель работы - экспериментальное исследование высокотемпературной теплопроводности порошков бинарной системы Ni-Al в волне твердопламенного горения и определение количественных параметров методом высокоскоростной микропирометрии.
Экспериментальная установка микропирометрии
Основу опытной экспериментальной установки микропирометрии, представленной на рисунке 1, составляла универсальная оптическая скамья типа ОСК-2ЦЛ, на двух подвижных рейтерах которой были установлены один накладной столик диаметром 150 мм для кварцевого реактора СВС и столик с одним микрометрическим перемещением вдоль оси визирования микроскопа с видеокамерой. Для применения видеокамеры в качестве измерительного прибора, а именно высокоскоростного пирометра, проведена предварительная калибровка по эталонной температурной лампе ТРУ1100-2350, показанная на рисунке 2. Яркостная температура лампы равна температуре абсолютно черного тела (АЧТ), при которой яркости АЧТ и лампы на длине волны 650 нм одинаковы.
Рисунок 1. Установка микропирометрии СВС: 1 - оптическая скамья; 2 - кварцевый реактор; 3 - микроскоп; 4 - видеокамера; 5 - монитор; 6 - компьютер; 7 - консоль управления
Поставив в соответствие яркости пикселей ток, подаваемый на лампу, можно ввести новую калибровочную шкалу, связывающую яркость пикселей изображения и температуру регистрируемого видеокамерой на данной экспозиции светящегося объекта. Поправка, для пересчета яркостной температуры продуктов СВС в термодинамическую, определялась по методике изложенной в работе [8], учитывая показания термопары на низкотемпературном участке волны горения. Для расширения динамического диапазона яркостного пирометра в режиме накопления заряда, в соответствии с работой [9], калибровка проводилась заранее на всех значениях программно задаваемых временах экспозиции. Неизвестный коэффициент излучательной способности конечных продуктов СВС-синтеза, возникающий из-за случайного механизма формирования пористости в неплотно упакованных порошках, определялся рекалибровкой пирометра после проведения синтеза, измерением яркостной температуры спеченного в опыте образца при нагреве до известной температуры.
яркость пикселем, градации
Рисунок 2. Калибровка микропирометра по эталону ТРУ-1100, с коридором погрешности 2 %
Калибровка пространственного масштаба проводится по числу пикселей, укладывающихся на изображении деления 1 мм измерительной линейки.
Излучение через объектив сразу попадает на светочувствительную область матрицы прибора с зарядовой связью (ПЗС), где происходит экспозиционное (от 2 мкс и больше) накопление заряда (размер светочувствительной области - 15,3 х 12,3 мм, диагональ 19,67 мм; размер пикселя - 12 х 12 мкм). Затем происходит оцифровка данных аналого-цифровым преобразователем (АЦП) разрядностью 10 бит; и запись видеофайлов - 8 бит. После дискретизации и квантования сигнала в АЦП любой кадр изображения в памяти видеокамеры представляет собой матрицу, каждый элемент которой однозначно определяет значение температуры в заданной точке с помощью пространственной и температурной калибровки видеокамеры в оптическом тракте микроскопа.
Методика определения эффективной температуропроводности
Эксперименты проводили со стехиометрическим составом смеси соответствующим соединению №3Л1, с массовой долей алюминия (18%) и никеля (82 %) при атмосферном давлении. Реактор из кварцевого стекла длиной 12 см и диаметром 3,5 см., наполняли шихтой №-Л1. Инициализация реакции осуществлялась путем локального нагревания верхнего слоя исходной смеси электрической спиралью. Для осуществления последующей идентификации областей, были сделаны снимки насыпки шихты, и продуктов реакции при одинаковом фиксированном ортогональном освещении. Регистрация процесса горения производилась с боковой поверхности образца при прохождении волны СВС в поле зрения 2 х 2 мм видеокаме-
ры через оптический канал бинокулярного микроскопа МБС-10 на частоте 400 кадров в секунду и экспозиции 150 мкс. Полученные видеофайлы анализировали на компьютере и строили ЭБ-термограмму, как показано на рисунке 3.
Рисунок 3. Тепловизионный кадр волны горения СВС (слева) и его 3Б-модель температурного поля (справа)
Наблюдение процесса горения показало, что на начальной стадии развитие первичного одиночного очага привело к распространению фронта волны, имеющего форму, близкую к полусфере. Однако по мере возникновения новых очагов горения, теряет симметричную форму, что предопределяет направление фронта волны в дальнейшем, как показано на рисунке 4.
500 inkm
500 inkm
500 inkm
["i—ш и
1
■JHI ■ ■ 1
ie ч г !
лаги к. г 1
- £ ] ж* и ■■
ПК - .lill Ъ чААь^В
- ^ ыЛ - 500 mkm
mwr- гт и
й.
Щ |
«
Л- ^ t -С' "
: 7ГЛГ-Щ? кн j
ш ■ * лишнлч
I
Рисунок 4. Кинограмма развития во времени фронта волны горения СВС
Если область волны СВС мысленно разбить на микро-пластины [10], то можно заметить, что волной нагрева охвачены сразу несколько пластин, как в квазигомогенном режиме горения. В рамках этой модели температура пластины считается установившейся по всей поверхности. Поэтому, температура каждой пластины рассчитывалась как среднее от всех мгновенных значений в области соответствующего выделения. Принимая за характерный масштаб Фурье толщину микро-пластины, а за характерное время изменения внешних условий - межкадровый интервал, то при малых числах Био (Вг < 1) по измеренному градиенту температуры в микро-пластине и температурному напору (Ттах - Т0) очевидным образом вычисляется эффективная теплопроводность неплотно упакованной порошковой среды.
Так как реакция СВС протекала в прозрачном кварцевом реакторе, имеющим диаметр близкий к критическому и теплоотвод через боковую поверхность был существенен, то система уравнений описывающих стационарную тепловую волну, принимает следующий вид:
дх («а-
те
&Т
дх
ь в
2&
2еаТ*
= О
&
х = -ю;Т = — = 0;?г= О,
дТ
дх &Т
X - - 0: V! - 1,
ОХ
где X = Х(щ) -уравнение зависимости теплопроводности зоны горения от степени полноты реакции; т - массовая скорость горения; с - теплопроводность; п - степень полноты реакции, е - коэффициент излучения реакционной зоны; а - постоянная Стефана-Больцмана; Q -теплота реакции, То - начальная температура, диаметр образца, а - коэффициент теплоотдачи, 0 - скорость тепловыделения.
Вид рассчитанных по кадрам скоростной видеосъемки термограмм послойного горения, приведенный на рисунке 5, говорит о том, что имеет место промежуточный переход от гомогенного режима горения к эстафетному.
р.аз о.оэ Мте, Ч
Рисунок 5. Зависимость средней температуры пластинок от времени
В условиях высоких градиентов температур конвективным теплообменом можно пренебречь, потому что движение волны горения СВС в нашем случае было сверху вниз, а конвективный перенос тепла производился в противоположном направлении.
В таких случаях эффективно применение энтропийного критерия [11] для выделения площади высокотемпературной зоны реакции и ее изменения от времени, как показано на рисунке 6. Из рисунка 7 видно, что зависимость линейна и порошковая среда имеет постоянный коэффициент температуропроводности равный 3,2 х 10-5 м2/с.
Рисунок 6. Динамика прореагировавшей области горения СВС
Результат можно объяснить, если предположить, что тугоплавкий никель за счет малости размеров частиц (3-10 мкм) растворился в расплаве алюминия (размер частиц порядка 50-100 мкм), вследствие направленного градиента химического потенциала из N в А1, при этом расплав имеет эффективную температуропроводность 3,3 х 10-5 м2/с, вычисляемую по средневзвешенной температуропроводности А1 и N : 8,418 х 10-5 м2/с и 2,2 х 10-5 м2/с соответственно:
,
где СС - температуропроводность, V - весовой коэффициент (доля).
Рисунок 7. График изменения площади области прореагировавшего вещества с течением времени
Заключение
В статье представлены результаты экспериментального исследования волны горения в порошковых смесях системы Ni-Al с помощью применения метода скоростной микропирометрии. На основе полученных данных определены характерные пространственно-временные масштабы тепловой структуры и эффективная теплопроводность неплотно упакованных порошков.
ЛИТЕРАТУРА
1. Photothermal effects of laser heating iron oxide and oxide bronze nanoparticles in cartilaginous tissues / P. Y. Gulyaev, M. K. Kotvanova, S. S. Pavlova [et al.] // Nanotechnologies in Russia, 2012, V. 7. - № 3-4. - P. 127-131.
2. Гуляев, П. Ю. Экспериментальное исследование процесса формирования высокопористой металлокерамики с наноструктурированным наполнителем методом СВ-синтеза [Текст] / Ю. И. Реутов, В. И. Иордан // Перспективные материалы. - 2008. - Спец. вып. № 6. - Ч. 2. - С. 35-40.
3. Gulyaev, P. Yu. In-situ selfpropagating-hightemperature-synthesis controlled by plasma / I. P. Gulyaev, Cui Hongzhi, I. V. Milyukova // Вестник Югорского государственного университета. - 2012. - № 2(25). - С. 28-33.
4. Development Prospects of SHS Technologies in Altai State Technical University / V. V. Evs-tigneev, P. J. Guljaev, I. V. Miljukova [et al.] // International Journal of Self-Propagating High-Temperature Synthesis. - 2006. - Т. 15. - № 1. - С. 99-104.
5. Евстигнеев, В. В. Исследование тонкой тепловой структуры СВ-синтеза методом быстродействующей цифровой тепловизионной съемки [Текст] / В. В. Евстигнеев, П. Ю. Гуляев, В. Д. Гончаров // Вестник Алтайского научного центра сибирской академии наук высшей школы. - 2003. - № 4. - С. 3-6.
6. Гуляев, П. Ю. Моделирование фрактальных структур упаковок порошковых материалов / П. Ю. Гуляев, А. В. Долматов, И. В. Милюкова [и др.] // Ползуновский альманах. -№ 3. - 2007. - С. 39-41.
7. Evstigneyev, V. V. A New procedure of high-rate brightness pyrometry for studying the SHS processes / V. V. Evstigneyev, P. Yu. Gulyayev, A. B. Mukhachev, D. A. Garkol // Combustion, Explosion, and Shock Waves. - 1994. - Т. 30. - № 1. - Р. 72-74.
8. Гуляев, П. Ю. Метод повышения точности измерения температуры фронта горения в процессах СВС [Текст] / П. Ю. Гуляев, М. А. Гумиров // Ползуновский альманах. -2000. - № 3. - С. 64-69.
9. Гончаров В. Д., Гуляев П. Ю., Гумиров М. А. Расширение динамического диапазона яр-костного пирометра // Вестник Алтайского научного центра Сибирской академии наук высшей школы, 1999, № 1, С. 38-39.
10. Гуляев, П. Ю. Температуропроводность реагирующих сред [Текст] / П. Ю. Гуляев,
B. В. Евстигнеев, В. Ю. Филимонов // Перспективные материалы. - 1999. - Т. 31, № 2. -
C. 73-77.
11. Энтропийный критерий управления апертурой в тепловизионных измерительных системах для контроля зоны реакции процессов самораспространяющегося высокотемпературного синтеза [Текст] / В. В. Евстигнеев, П. Ю. Гуляев, М. В. Полторыхин [и др.] // Ползуновский альманах. - 2002. - № 1-2. - С. 42-44.