Научная статья на тему 'EFFECT OF PHYSICAL ACTIVITY AND HAEMOGLOBIN LEVELS ON CARDIORESPIRATION'

EFFECT OF PHYSICAL ACTIVITY AND HAEMOGLOBIN LEVELS ON CARDIORESPIRATION Текст научной статьи по специальности «Науки о здоровье»

CC BY
143
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Человек. Спорт. Медицина
Scopus
ВАК
ESCI
Область наук
Ключевые слова
CARDIORESPIRATION / HEALTH / HAEMOGLOBIN / HAEMOGLOBIN LEVELS / PHYSICAL ACTIVITY

Аннотация научной статьи по наукам о здоровье, автор научной работы — Kriswanto E.S., Sunardi J., Sari I.P.T.P., Suharjana F.

This study aims to determine: 1) the effect of physical activity on cardiorespiration, 2) the effect of haemoglobin levels on cardiorespiration, 3) the effect of physical activity and haemoglobin levels on cardio respiration, and 4) the contribution of physical activity and haemoglobin levels to cardiorespiration. The research method used is a survey method. The respondents of this study were 194 students of the Department of Sport Education, Faculty of Sports Science, Yogyakarta State University (FIK UNY) who were taken randomly. The data used are respondents' cardiorespiratory rate, physical activity, and hemoglobin levels, which are measured using instruments such as multi-stage tests, Global Physical Activity Questionnaire (GPAQ), and hemoglobin haemometer. The data analysis technique used a regression test. The results showed that at a significance value of 0.001 < 0.05, there was a significant effect between physical activity and cardiorespiration, haemoglobin levels with cardiorespiration, and physical activity with haemoglobin levels. Physical activity or haemoglobin levels affect cardiac respiration by 83%. This study concluded that cardiorespiration is strongly influenced by physical activity and haemoglobin levels.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «EFFECT OF PHYSICAL ACTIVITY AND HAEMOGLOBIN LEVELS ON CARDIORESPIRATION»

DOI: 10.14529/hsm210406

EFFECT OF PHYSICAL ACTIVITY AND HAEMOGLOBIN LEVELS ON CARDIORESPIRATION

E.S. Kriswanto, erwin_sk@uny.ac.id, ORCID: 0000-0002-6421-808X, J. Sunardi, jaka_sunardi@uny.ac.id, ORCID: 0000-0002-6369-1932, I.P.T.P. Sari, indah_prasty@uny.ac.id, ORCID: 0000-0003-4266-1299,

F. Suharjana, f_suharjana@uny.ac.id, ORCID: 0000-0002-4491-7262 Universitas Negeri Yogyakarta, Yogyakarta, Indonesia

This study aims to determine: 1) the effect of physical activity on cardiorespiration, 2) the effect of haemoglobin levels on cardiorespiration, 3) the effect of physical activity and haemoglobin levels on cardio respiration, and 4) the contribution of physical activity and haemoglobin levels to cardiorespiration. The research method used is a survey method. The respondents of this study were 194 students of the Department of Sport Education, Faculty of Sports Science, Yogyakarta State University (FIK UNY) who were taken randomly. The data used are respondents' cardiorespiratory rate, physical activity, and hemoglobin levels, which are measured using instruments such as multi-stage tests, Global Physical Activity Questionnaire (GPAQ), and hemoglobin haemometer. The data analysis technique used a regression test. The results showed that at a significance value of 0.001 < 0.05, there was a significant effect between physical activity and cardiorespiration, haemoglobin levels with cardiorespiration, and physical activity with haemoglobin levels. Physical activity or haemoglobin levels affect cardiac respiration by 83%. This study concluded that cardiorespiration is strongly influenced by physical activity and haemoglobin levels.

Keywords: cardiorespiration, health, haemoglobin, haemoglobin levels, physical activity.

Introduction. Physical activities carried out in a planned and programmed manner will impact the health of the body. Physical activity is the body's movement within a certain time produced by the skeletal muscles so that energy is expended from the body [12, 26]. Everyone has different goals when doing physical activities. Physical activity, if done properly, can increase the degree of vibrant health to prevent disease. Physical activity is related to psychological satisfaction and self-determined motivation [24].

Cardiac muscles can develop due to the influence of physical activity. A fit person's heart and lungs will supply more blood and oxygen to their body tissues, so they do not need to work too hard compared to people whose heart and lung systems are not fit. Exercise significantly increased absolute and relative cardiorespiration [15]. This is also consistent with the research results of Balagué et al. [5] and Pollock et al. [21] that improving the interpretation of cardiorespiration exercise is highly recommended in health care.

Another critical component that supports health is haemoglobin. In the haemoglobin in the blood, iron is a crucial element [8]. Haemoglobin

in the blood binds to Oxygen and acts as a "delivery" mechanism for Oxygen [10, 22]. Lack of blood haemoglobin, blood distribution, or the ability to pump the heart can be increased through exercise [18, 23]. Internal haemoglobin can be greatly affected by physical activity because it will produce much oxygen when there is muscle movement, increasing VO2 Max.

The observation shows that the Department of Sports Education's average student, FIK UNY, tends to be heavy. Apart from studying, students also continue to do physical activities, especially sports, according to their sport. This strenuous physical activity must be supported by good physical fitness so that physical activity does not quickly provoke fatigue and a decrease in haemoglobin occurs. Decreased haemoglobin will cause anaemia. Someone who has anaemia, of course, when doing activities, will quickly experience fatigue. This study aims to analyze the effect of physical activity on cardio respiration, the influence of haemoglobin levels on cardio respiration, the effect of physical activity and haemoglobin levels on cardio respiration, and whether there is a contribution of physical activity, and haemoglobin levels to cardiorespiration.

Materials and Methods. This research is a correlational study using a survey method. This research design can be described in Fig. 1.

Fig. 1. Research Design: X1 - physical activity; X2 - haemoglobin level; Y - cardiorespiration

This study's research subjects were students of the Faculty of Sport Sciences, Yogyakarta State University. This study used a random sampling technique, namely, by taking a random sample. The samples taken were 194 students. This study has three variables consisting of 1 dependent variable and 2 independent variables. The dependent variable is cardiorespiration (Y), while the independent variable includes physical activity (X1) and haemoglobin level (X2). Operationally these variables can be defined as follows:

1. Cardiorespiration is the ability of the heart and lung capacity to perform activities measured using a multi-stage test.

2. Physical activity is the activity of sports education students starting from waking up to sleeping again in one day for seven days, as measured by using a questionnaire from the Physical Activity Questionnaire for Older Children (PAQ-C).

3. Haemoglobin level is a measure of the respiratory pigment in red blood cell granules, which function as oxygen carriers, measured using a haemoglobin diaspect haemoglobin T.

Instruments of this study are:

1. Cardiorespiration measurements were performed using a multi-stage test.

2. Physical activity measurements were carried out using the Global Physical Activity Questionnaire (GPAQ).

3. Measurement of haemoglobin levels, measured using a hemometer diaspect Haemoglobin T.

Data processing was performed using the SPSS Statistics 24 program with the following steps:

1. Normality Test with Kolmogorov Smirnov.

2. Linearity test.

3. The hypothesis test is analyzed using a simple linear regression equation. A single correlation test or a simple linear regression equation using the Pearson product-moment correlation. The simple linear regression equation is used to test the first and second hypotheses, while the third hypothesis uses multiple regression.

Results. The included research data is a summary of the reduction data (difference), post-test (after) and pre-test (before). The explanation of the data can be seen in each of the following discussions:

Physical Activity of FIK UNY students. Physical activity data of FIK UNY students with a sample of 194 students had an average of 7.19; a standard deviation of 2.79; a maximum score of 9; a minimum score of 1.

Haemoglobin Levels of FIK UNY Students. Analysis results found that the Haemoglobin Level data of FIK UNY students with a sample of 194 students had an average of 13.33; the standard deviation of 1.34; a maximum score of 16; a minimum score of 1.

Cardiorespiration of FIK UNY Students. Based on the research analysis, it was found that the Cardiorespiration data of FIK UNY students with a sample of 194 students had an average of 35.80; a standard deviation of 6.84; a maximum score of 55.28; a minimum score of 22.06.

Hypothesis Test. The normality test uses the Kolmogorov-Smirnov Test. The calculation results can be seen in Table 1.

The Kolmogorov - Smirnov normality test using SPSS in table 1 is a significant value of Asiymp. Sig (2-tailed) of 0.902, which means that the value is greater than 0.05. It can be concluded that the data are usually distributed; thus, the assumptions or requirements for normality in the regression model have been met.

The linearity test uses deviation from linearity at the level of significance (a) = 0.05. If Sig < a means it is not linear, the rule applies if Sig > a means linear. The calculation of the haemoglobin levels linearity test with cardiorespiration obtained Sig > a (0.935 > 0.05), which means that the haemoglobin level data is linear to the cardiorespiration (Table 2).

The calculation of the linearity test of the haemoglobin level with cardiorespiration obtained Sig > a (0.02 > 0.05) means that the physical activity data is linear to the cardiorespiration (Table 3).

The results of the linearity test of physical activity data with haemoglobin levels Sig > a (0.01 > 0.05) means that the physical activity data is linear to the haemoglobin levels (Table 4).

Based on the output of the Regression Test, it is known that the significance value (Sig.) of 0.001 <0.05 probability, so it can be concluded that H0 is rejected and Ha is accepted, which means that there is an effect of physical activity (X2) on cardiorespiration (Y).

Based on Table 5, it is known that the significance value (Sig.) of 0.01 < 0.05 probability, so it can be concluded that H0 is rejected and Ha is accepted, which means that there is an effect of haemoglobin (X1) on cardiorespiration (Y). Physical activity can be walking, running, jumping, or others [16]. Walking in place or jumping jacks is a physical activity that, when done regularly, can increase heart rate and cardiorespiration endurance (after warming up but

Table 1

Normality test results

Unstandardized residual

N 194

Normal parameters3 Mean 0

Std. Deviation 3.716994

Most extreme differences Absolute 0.041

Positive 0.039

Negative -0.041

Kolmogorov - Smirnov Z 0.569

Asymp. Sig. (2-tailed) 0.902

a. Test distribution is normal

Table 2

Linearity test of haemoglobin levels by cardiorespiration

Sum of squares df Mean square F Sig.

HB * Cardiorespiration Between groups (Combined) 155.444 74 2.101 1.32 0.089

Linearity 71.768 1 71.768 45.081 0.005

Within groups Deviation from linearity 83.677 73 1.146 0.72 0.935

189.442 119 1.592

Total 344.887 193

Table 3 Linearity test of haemoglobin levels by cardiorespiration

Sum of squares df Mean square F Sig.

Physical activity * Cardiorespiration Between groups (Combined) 1390.052 74 18.784 20.718 0,01

Linearity 939.25 1 939.25 1.036 0.073

Deviation from linearity 450.802 73 6.175 6.811 0.02

Within groups 107.892 119 0.907

Total 1497.943 193

Table 4 Linearity test of physical activity data with haemoglobin levels

Sum of squares df Mean square F Sig.

Physical activity * HB Between groups (Combined) 227.266 5 45.453 6.725 000

Linearity 82.611 1 82.611 12.222 0.06

Deviation from linearity 144.655 4 36.164 5.351 0.01

Within groups 1270.677 188 6.759

Total 1497.943 193

before cooling down) [6, 25]. Training-induced cardiovascular adaptation increases metabolic efficiency, whereas neuromuscular adaptation increases mechanical efficiency [3, 9, 17]. This is also supported by Ahmad & Rosli [1], Wang [27] and Zufrianingrum [29] that physical activities such as doing aerobics affect oxygen activity in the body so that oxygen flows throughout the body through the bloodstream. Regular physical activity can improve cardiovascular function. Improved cardiovascular function with physical activity has been associated with exercise-induced positive changes in metabolic disorders and risk factors associated with atherosclerosis [4]. Physical activity that a person does can affect the cardiorespiration system. The study results Haapala & Lintu (2018) show an association between cardiometabolic risk with physical activity and cardiorespiration fitness. It is in line with the statement above that movement skills (object control competence) and the ability to be positively involved in playing games (gaming competence) are equally important as a correlation between physical activity and cardiorespiration fitness [19]. Finally, physical activity that is carried out regularly can affect increasing cardiorespiration.

Based on Table 6, it is known that the significance value (Sig.) of 0.01 is smaller than < 0.05 probability, so it can be concluded that H0 is rejected and Ha is accepted, which means that there is an effect of haemoglobin (X1) and physical activity (X2) on cardiorespiration (Y). Haemoglobin contains iron. If it is deficient in iron, it will cause anaemia, causing weakness and fatigue. Lack of haemoglobin in the blood can

result in a lack of oxygen circulated to the body and brain cells; this causes exhaustion and fatigue. Iron is required for the formation of haemoglobin and myoglobin and the enzymes involved in energy production. Lack of iron can be a problem for sports or activities, especially for menstruating women. Iron deficiency occurs in three stages: (1) iron depletion or low levels of iron stores; (2) iron deficiency erythrocytes, which is an impaired ability to produce red blood cells; and (3) iron deficiency anaemia or low haemoglobin levels (< 12 g • dL - 1 for women and < 13 g • dL - 1 for men) [20]. The decrease in haemoglobin will certainly reduce blood's ability to carry the closing volume. However, the increased flow compensates for this due to decreased viscosity [7]. The ability of haemoglobin to bind to hydrogen (H +) ions generated during the transport of carbon dioxide and the ability of pulmonary ventilation to and remove carbon dioxide are crucial for maintaining acid-base balance [20]. When doing physical activity, there is an increase in high metabolic activity. The production of acids (hydrogen ions, lactic acid) is increasing so that it can cause a decrease in pH, which results in a decrease in haemoglobin. Cardiorespiration is very dependent on oxygen transport; due to decreased oxygen transport, it will also reduce the cardiorespiration work capacity [2]. Lower haemoglobin levels mean lower oxygen transport. When doing physical activity will increase the oxygen demand of the human body. The relationship between haemoglobin concentration and cardiorespiration fitness shows that VO2max has the strongest relationship with the blood's oxygen-carrying capacity [14].

Table 5

Effect of physical activity on cardiorespiration

Model Unstandardized coefficients Standardized coefficients t Sig.

B Std. Error Beta

(Constant) 21.827 0.834 26.183 0.01

1 Physicaly activity 1.943 0.108 0.792 17.966 0.001

a. Dependent variable: cardiorespiration

Table 6

Effect of Haemoglobin Levels on Cardiorespiration

Unstandardized Standardized

Model coefficients coefficients t Sig.

B Std. Error Beta

1 (Constant) 4.705 4.399 1.069 0.286

HB 2.333 0.328 0.456 7.103 0.01

a. Dependent variable: cardiorespiration

Table 7

Effect of Physical Activity and Haemoglobin Levels on Cardiorespiration

Unstandardized Standardized

Model coefficients coefficients t Sig.

B Std. error Beta

(Constant) 3.519 2.696 1.305 0.193

1 Physical activity 1.778 0.099 0.725 17.903 0.01

HB 1.462 0.207 0.286 7.065 0.01

a. Dependent variable: cardiorespiration

Table 8

Model Summary

Model R R Square Adjusted R Square Std. error of the estimate

1 .839a 0.704 .701 3.73640

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

a. Predictors: (constant), HB, physic activity

b. Dependent variable: cardiorespiration

To determine the magnitude of the effect of physical activity (X1) and cardiorespiration haemoglobin (X2) levels in a simple linear regression analysis (Table 7), we can refer to R Square or R2's value in the SPSS output in the Model Summary section (Table 8). Physically active individuals, especially women, have iron requirements that are greater than the average. Strenuous exercise requires a higher than the recommended intake of iron because small amounts of iron are lost through sweat, urine, and stool. A small impact can also cause mechanical trauma during jogging, damaging red blood cells [28]. Physical activity affects cardiovascular function, including

1) increasing blood flow to active skeletal muscle,

2) increasing blood flow to the myocardium,

3) increasing the dissociation of oxyhaemoglo-bin, 4) sweating, which plays a role in temperature regulation, and 5) reducing occurrence of abnormal rhythm in the conduction system of the heart (dysrhythmias), which can cause abnormal heart function [20]. Oxygen is used to change food substrates, converting carbohydrates and fats through aerobic metabolism into adeno-sine triphosphate (ATP). These compounds provide energy for physical activity, bodily functions, and the maintenance of constant internal balance. During physical activity, it takes more ATP to perform activities. As a result, the lungs and heart send more oxygen to all muscle cells to supply the body's energy. During physical activity, a person with high cardiorespiration resistance can deliver the required oxygen to the tissues with relative ease. The cardiorespiration system is the heart, lungs, and blood vessels' ability to be used during the body's metabolic processes

both at rest and during activity. Good cardiorespiration fitness causes an increase in the ability to work at high intensity for a long time to achieve fatigue [11, 13].

These results indicate that the R Square value is 0.839, which means that 83.9% of the influence of haemoglobin (X1) and physical activity (X1) on cardiorespiration (Y).

Conclusions. From the findings, it can be concluded that cardiorespiration activity is influenced by physical activity and haemoglobin levels by 83%.

References

1. Ahmad M.F., Rosli M.A.A. Effects of Aerobic Dance on Cardiovascular Level and Body Weight among Women. International Journal of Sport an Health Science, 2015, vol. 9 (12).

2. Anggraeni L., Wiijatmadi R. Status Hemoglobin, Kebiasaan Merokok dan Daya Tahan Kardiorespirasi (Vo2 Max) pada Atlet Unit Kegiatan Mahasiswa Bola. E-Journal. Unair. Ac. Id, 2019, vol. 14 (1), pp. 27-34. DOI: 10.204736/mgi.v14i1.14-27-34

3. Argunova Y.A., Trubnikova O.A., Ma-montova A.S. et al. The Influence of Three-Week Aerobic Exercise Program on Neurodynamic Parameters of Patients Underwent Coronary Bypass Grafting. Russian Journal of Cardiology, 2016, vol. 130 (2), pp. 30-36. DOI: 10.15829/15604071-2016-2-30-36

4. Atashak S., Peeri M., Azarbayjani. Obesity-Related Cardiovascular Risk Factors after Long-Term Resistance Training and Ginger Supplementation. Journal of Sports Science & Medicine, 2011, vol. 10 (4), p. 685.

5. Balagué N., González J., Javierre C. et al. Cardiorespiratory Coordination After Training and Detraining. A Principal Component Analysis Approach. Frontiers in Physiology, 2016. DOI: 10.3389/fphys.2016.00035

6. Brewer H., Jalongo M.R. Physical Activity and Health Promotion in the Early Years: Effective. Springer, 2018, vol. 14. DOI: 10.1007/ 978-3-319-76006-3

7. Ganong W. Buku Ajar Fisiologi Kedok-teran (22nd ed.), 2008.

8. Hoeger W.W.K., Hoeger S.A. Principles and Labs for Physical Fitness. Cengage Learning, 2013.

9. Jacquet L., Vancaenegem O., Pasquet A. et al. Exercise Capacity in Patients Supported With Rotary Blood Pumps Is Improved by a Spontaneous Increase of Pump Flow at Constant Pump Speed and by a Rise in Native Cardiac Output. Artificial Organs, 2011, vol. 35 (7), pp. 682-690. DOI: 10.1111/j.1525-1594.2011.01227.x

10. Kong J., Wolcott E., Wang Z. et al. Research Reveals the Benefits of Meditation. Journal of Pain, 2009, vol. 18 (2).

11. Kriswanto E.S., Setijono H., Mintarto E. The Effect of Cardiorespiratory Fitness and Fatigue Level on Learning Ability of Movement Coordination. Cakrawala Pendidikan, 2019, vol. 38 (2), pp. 320-329. DOI: 10.21831/cp. v38i2.24565

12. Laili N., Tanoto W., Karya S., Kediri H. Analisis Hubungan Tingkat Aktifitas Fisik Ter-hadap Kejadian Resiko Jatuh pada Pasien Fraktur di RSUD Mardi Waluyo Blitar. Jurnal Ilmiah Keperawatan Stikes Hang Tuah Surabaya, 2019, vol. 14 (2), pp. 119-130.

13. Langlois F., Vu T.T.M., Chassé K. et al. Benefits of Physical Exercise Training on Cognition and Quality of Life in Frail Older Adults. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2013, vol. 68 (3), pp. 400-404. DOI: 10.1093/geronb/gbs069

14. Leoprayogo B., Rika Haryono I., Tjhay F. Correlation Between Hemoglobin Concentration and Cardiorespiratory Fitness in Adolescent Sportsmen. Althea Medical Journal, 2020, vol. 7 (2), pp. 61-64. DOI: 10.15850/amj.v7n2.1847

15. Lin X., Zhang X., Guo J. et al. Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 2015, vol. 4 (7). DOI: 10.1161/JAHA.115.002014

16. Liu-Ambrose T., Khan K.M., Eng J.J. et al. Balance Confidence Improves with Resistance or Agility Training: Increase is Not Correlated with Objective Changes in Fall Risk and Physical Abilities. Gerontology, 2004, vol. 50 (6), pp. 373-382. DOI: 10.1159/000080175

17. MacKay-Lyons M.J., Hewlett J. Exercise Capacity and Cardiovascular Adaptations to Aerobic Training Early After Stroke. Topics in Stroke Rehabilitation, 2005, vol. 12 (1), pp. 31-44. DOI: 10.1310/RDQM-JTGL-WHAA-XYBW

18. Marzolini S., Robertson A.D., Oh P. et al. Aerobic Training and Mobilization Early Post-stroke: Cautions and Considerations. Frontiers in Neurology, 2019, vol. 10. DOI: 10.3389/fneur. 2019.01187

19. Miller A., Eather N., Duncan M., Lu-bans D.R. Associations of Object Control Motor Skill Proficiency, Game Play Competence, Physical Activity and Cardiorespiratory Fitness Among Primary School Children. Journal of Sports Sciences, 2019, vol. 37 (2), pp. 173-179. DOI: 10.1080/02640414.2018.1488384

20. Plowman S., Smith D. Exercise Physiology for Health Fitness and Performance, 2013.

21. Pollock M L., Franklin B.A., Balady G.J. et al. Resistance Exercise in Individuals with and Without Cardiovascular Disease: Benefits, Rationale, Safety, and Prescription: An Advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Associati. Circulation, 2000, vol. 101 (7), pp. 828-833. DOI: 10.1161/01.CIR. 101.7.828

22. Powers S., Howley E. Exercise Physiology: Theory and Application to Fitness and Performances. Medicine & Science in Sports & Exercise, 1995, vol. 27 (3), p. 466. DOI: 10.1249/00005768-199503000-00027

23. Salamonsen R.F., Pellegrino V., Fraser J.F. et al. Exercise Studies in Patients with Rotary Blood Pumps: Cause, Effects, and Implications for Starling-Like Control of Changes in Pump Flow. Artificial Organs, 2013, vol. 37 (8), pp. 695-703. DOI: 10.1111/aor.12070

24. Stuntz C.P., Smith C., Vensel K. Is the Relationship Between Lifestyle Factors and Physical Activity Mediated by Psychological Needs and Motivation? International Journal of Sport and Exercise Psychology, 2017, vol. 15 (3), pp. 291-305. DOI: 10.1080/ 1612197X.2015.1079923

25. Thompson Coon J., Boddy K., Stein K.

et al. Does Participating in Physical Activity in Outdoor Natural Environments have a Greater Effect on Physical and Mental Wellbeing than Physical Activity Indoors? A Systematic Review. Environmental Science and Technology, 2011, vol. 45 (5), pp. 1761-1772. DOI: 10.1021/ es102947t

26. Tompuri T.T. Metabolic Equivalents of Task are Confounded by Adiposity, which Disturbs Objective Measurement of Physical Activity. Frontiers in Physiology, 2015. DOI: 10.3389/fphys.2015.00226

27. Wang C. Improving Health Among

Elementary School Children: A Comparison of Aerobic and Mind-Body Exercise. Dissertation Abstracts International Section A: Humanities and Social Sciences, 74(3-A(E)), 2013.

28. Wener W.K.H., Sharon A H. Principles and Labs for Fitness and Wellness (13th ed.). Cengage Learning, 2016.

29. Zufrianingrum H. Hubungan antara Ka-dar Hemoglobin dan Kapasitas Vital Paru dengan Daya Tahan Kardiorespirasi Siswa yang Mengi-kuti Ekstrakurikuler Bolabasket di SMP Negeri 1 Jetis Kabupaten Bantul. Pendidikan Jasmani Ke-sehatan Dan Rekreasi, 2016, vol. 1(1).

Received 17 October 2021

УДК 796.093.44 й01: 10.14529/Ивт210406

ВЛИЯНИЕ ФИЗИЧЕСКОЙ АКТИВНОСТИ И УРОВНЯ ГЕМОГЛОБИНА НА ФУНКЦИОНИРОВАНИЕ КАРДИОРЕСПИРАТОРНОЙ СИСТЕМЫ

Э.С. Крисванто, Дж. Сунарди, И.П.Т.П. Сари, Ф. Сухарйана

Государственный университет Джокьякарты, г. Джокьякарта, Индонезия

Цель настоящего исследования: определить влияние физической активности на кардио-респираторную систему; определить влияние содержания гемоглобина в крови на кардио-респираторную систему; определить совместное влияние физической активности и содержания гемоглобина в крови на кардиореспираторную систему; определить вклад физической активности и содержания гемоглобина в крови в функционирование кардиореспираторной системы. Материалы и методы. Основным методом исследования стал метод опроса. В исследовании приняли участие 194 студента кафедры спортивного воспитания (факультет спортивных наук, Государственный университет Джокьякарты), выбранные случайным образом. В исследовании использовались показатели функционирования кардиореспираторной системы студентов (многоэтапное тестирование), данные физической активности (опросник уровня физической активности - вРЛР) и показатели содержания гемоглобина в крови (гемометр). Полученные данные были обработаны с использованием инструментов регрессионного анализа. Результаты исследования. Результаты исследования показали статистически значимую корреляцию между показателями функционирования кар-диореспираторной системы и уровнем физической активности, между показателями содержания гемоглобина в крови и функционированием кардиореспираторной системы, а также между уровнем физической активности и содержанием гемоглобина в крови. Вклад физической активности и содержания гемоглобина в крови в функционирование кардиореспираторной системы установлен на уровне 83 %. Заключение. По итогам исследования сделан вывод о том, что физическая активность и содержание гемоглобина в крови оказывают существенное влияние на функционирование кардиореспираторной системы.

Ключевые слова: кардиореспираторная система, здоровье, гемоглобин, уровень гемоглобина, физическая активность.

Эрвин Сетио Крисванто, доктор медицинских наук, преподаватель кафедры спортивных наук, Государственный университет Джокьякарты. Ул. Коломбо № 1, Слеман, г. Джокьякарта, округ Каранг Маланг Катуртунгал Депок. E-mail: erwin_sk@uny.ac.id, ORCID: 0000-0002-6421-808X.

Джака Сунарди, доктор спортивных наук, кафедра спортивных наук, Государственный университет Джокьякарты. Ул. Коломбо № 1, Слеман, г. Джокьякарта, округ Каранг Маланг Катуртунгал Депок. E-mail: jaka_sunardi@uny.ac.id, ORCID: 0000-0002-6369-1932.

Индах П.Т.П. Сари, преподаватель, кафедра спортивных наук, Государственный университет Джокьякарты. Ул. Коломбо № 1, Слеман, г. Джокьякарта, округ Каранг Маланг Катуртунгал Депок. E-mail: indah_prasty@uny.ac.id, ORCID: 0000-0003-4266-1299.

Фредерикус Сухарьяна, преподаватель, кафедра спортивных наук, Государственный университет Джокьякарты. Ул. Коломбо № 1, Слеман, г. Джокьякарта, округ Каранг Маланг Катуртунгал Депок. E-mail: f_suharjana@uny.ac.id, ORCID: 0000-0002-4491-7262.

Поступила в редакцию 17 октября 2021 г.

ОБРАЗЕЦ ЦИТИРОВАНИЯ

FOR CITATION

Effect of Physical Activity and Haemoglobin Levels on Cardiorespiration / E.S. Kriswanto, J. Sunardi, I.P.T.P. Sari, F. Suharjana // Человек. Спорт. Медицина. -2021. - Т. 21, № 4. - С. 49-56. DOI: 10.14529/hsm210406

Kriswanto E.S., Sunardi J., Sari I.P.T.P., Suharjana F. Effect of Physical Activity and Haemoglobin Levels on Cardiorespiration. Human. Sport. Medicine, 2021, vol. 21, no. 4, pp. 49-56. DOI: 10.14529/hsm210406

i Надоели баннеры? Вы всегда можете отключить рекламу.