Научная статья на тему 'Dorivor o‘simliklarni gelioquritish qurilmasida quritish jarayonini matematik modellashtirish'

Dorivor o‘simliklarni gelioquritish qurilmasida quritish jarayonini matematik modellashtirish Текст научной статьи по специальности «Техника и технологии»

CC BY
517
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
quyosh quritgichi / matematik modellar / empirik tenglamalar / matlab / regressiya tenglamasi / cftool ilovasi. / solar dryer / mathematical models / empirical equation / Matlab / regression equation / cftool application.

Аннотация научной статьи по технике и технологии, автор научной работы — Sultanova Shaxnoza Abduvaxitovna, Usmanov Komil Isroilovich

Mazkur maqolada dorivor o‘simliklarni gelioquritish qurilmasida quritish tajribalari yoritilgan. Quritish tajribalari yangi turdagi quyosh quritgichida olib borildi. Quyosh quritgichi havo kollektori, quritish kamerasi va havo aylanish tizimidan iborat. Quritish davrida quritish moslamasining turli darajalarida quritish havosining harorati, nisbiy namligi, havo oqimi tezligi, quyosh nurlanishi va massa yo‘qotilishi doimiy ravishda o‘lchandi. Boshlang‘ich namligi 0,85 quruq modda (kg suv/kg quruq modda) bo‘lgan dorivor o‘simliklar quyosh nurlanishining o‘zgarishiga qarab har xil haroratda oxirgi namlik miqdori 0,13 (kg suv/kg quruq modda)gacha quritilgan. Quritish vaqti namlik nisbati bilan eksponensial va polinom munosabatlarga ega. Samarali diffuziya koeffitsiyenti harorat oralig‘ining turli darajalarida o‘zgargan. Barcha qo‘llangan 11 ta empirik quritish modellaridan Midilli – Kucuk va Page modellari tajriba ma’lumotlariga ko‘proq mos keldi. Xuddi shunday, matematik modelning ishlashi korrelyatsiya koeffitsiyenti (R2 ), qisqartirilgan x-kvadrat (X2 ) va o‘rtacha kvadrat xatosi (RMSE) koeffitsiyentlarini solishtirish orqali tekshirildi.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Mathematical modeling of the process of drying medicinal plants in a solar dryer

Experiments were made on drying medicinal plants in a solar dryer. A new type of a solar dryer was used for this purpose. The solar dryer comprises an air collector, a drying chamber and an air circulation system. In course of the drying process, drying temperature, relative humidity, fair low velocity, solar radiation, and mass loss were continuously measured at different levels of the dryer. Medicinal plants with an initial moisture content of 0.85 dry matter (kg water/kg dry matter) were dried to a final moisture content of 0.13 (kg water/kg dry matter) at different temperatures depending on changes in solar radiation. Drying time was studied as an exponential and polynomial relationship with moisture content. The effective diffusion coefficient varied at different levels of the temperature range. Of all 11 empirical drying models used, the Midilli – Kucuk and Page models best fit experimental data. Similarly, the performance of the mathematical model was tested by comparing the correlation coefficient (R2 ), reduced x-square (X2 ) and root mean square error (RMSE) coefficients.

Текст научной работы на тему «Dorivor o‘simliklarni gelioquritish qurilmasida quritish jarayonini matematik modellashtirish»

UDC: 681.542.2(045)(575.1) EDN: https://elibrary.ru/fnnftu

DORIVOR O'SIMLIKLARNI GELIOQURITISH QURILMASIDA QURITISH JARAYONINI MATEMATIK MODELLASHTIRISH

Sultanova Shaxnoza Abduvaxitovna1, Usmanov Komil Isroilovich2

1texnika fanlari doktori, professor

e-mail: [email protected]

2texnika fanlari bo'yicha falsafa doktori (PhD), katta o'qituvchi

ORCID: 0000-0002-6400-1200 e-mail: fuzzylogicrules@gmail. com

1Islom Karimov nomidagi Toshkent davlat texnika universiteti

2Toshkent kimyo-texnologiya

instituti

Annotatsiya. Mazkur maqolada dorivor o'simliklarni gelioquritish qurilmasida quritish tajribalari yoritilgan. Quritish tajribalari yangi turdagi quyosh quritgichida olib borildi. Quyosh quritgichi havo kollektori, quritish kamerasi va havo aylanish tizimidan iborat. Quritish davrida quritish moslamasining turli darajalarida quritish havosining harorati, nisbiy namligi, havo oqimi tezligi, quyosh nurlanishi va massa yo'qotilishi doimiy ravishda o'lchandi. Boshlang'ich namligi 0,85 quruq modda (kg suv/kg quruq modda) bo'lgan dorivor o'simliklar quyosh nurlanishining o'zgarishiga qarab harxil haroratda oxirgi namlik miqdori 0,13 (kg suv/kg quruq modda)gacha quritilgan. Quritish vaqti namlik nisbati bilan eksponensial va polinom munosabatlarga ega. Samarali diffuziya koeffitsiyenti harorat oralig'ining turli darajalarida o'zgargan. Barcha qo'llangan 11 ta empirik quritish modellaridan Midilli - Kucuk va Page modellari tajriba ma'lumotlariga ko'proq mos keldi. Xuddi shunday, matematik modelning ishlashi korrelyatsiya koeffitsiyenti (R2), qisqartirilgan x-kvadrat (X2) va o'rtacha kvadratxatosi (RMSE) koeffitsiyentlarini solishtirish orqali tekshirildi.

Kalit so'zlar: quyosh quritgichi, matematik modellar, empirik tenglamalar, matlab, regressiya tenglamasi, cftool ilovasi.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА СУШКИ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ В ГЕЛИОСУШИЛКЕ

1доктор технических наук, профессор

2доктор философии по техническим наукам (PhD), старший предподаватель

Ташкентский государственный технический университет имени Ислама Каримова

2Ташкентский химико-технологический институт

Султанова Шахноза Абдувахитовна1, Усманов Комил Исроилович2

Аннотация. В этой статье описаны эксперименты по сушке лекарственных растений в гелиосушилке. Эксперименты по сушке проводились на новом типе солнечной сушилки. Солнечная сушилка состоит из воздушного коллектора, сушильной камеры и системы циркуляции воздуха. В течение периода сушки температура сушильного воздуха, относительная влажность, скорость воздушного потока, солнечная радиация и потеря массы непрерывно измерялись на разных уровнях сушилки. Лекарственные растения с исходной влажностью сухого вещества 0,85 (1 кг воды на 1 кг сухого вещества) сушат при различных температурах до конечной влажности сухого вещества 0,13 в зависимости от изменения солнечной радиации. Время высыхания имеет экспоненциальную и полиномиальную зависимость от отношения влажности. Эффективный коэффициент диффузии варьировался на разных уровнях температурного диапазона. Из всех 11 эмпирических моделей сушилок модели Midilli - Kucuk и Page больше соответствовали экспериментальным данным. Точно так же производительность математической модели была проверена путём сравнения коэффициентов корреляции (R2), приведённого x-квадрата (X2) и среднеквадратичной ошибки (RMSE).

Ключевые слова: солнечная сушилка, математические модели, эмпирическое уравнение, Matlab, уравнение регрессии, приложение cftool.

H^TH6ocnHK^HTHpoBaHHe/citation: Sultanova, Sh. A., & Usmanov, K. I. (2024). Mathematical modeling of the 8 process of drying medicinal plants in a solar dryer. (in Uzbek). Science and Innovative Development, 7(4), 8-14.

MATHEMATICAL MODELING OF THE PROCESS OF DRYING MEDICINAL PLANTS IN A SOLAR DRYER

Sultanova Shakhnoza Abduvahitovna1, Usmanov Komil Isroilovich2

Abstract. Experiments were made on drying medicinal plants in a solar dryer. A new type of a solar dryer was used for this purpose. The solar dryer comprises an air collector, a drying chamber and an air circulation system. In course of the drying process, drying temperature, relative humidity, air flow velocity, solar radiation, and mass loss were continuously measured at different levels of the dryer. Medicinal plants with an initial moisture content of 0.85 dry matter (kg water/kg dry matter) were dried to a final moisture content of 0.13 (kg water/kg dry matter) at different temperatures depending on changes in solar radiation. Drying time was studied as an exponential and polynomial relationship with moisture content. The effective diffusion coefficient varied at different levels of the temperature range. Of all 11 empirical drying models used, the Midilli - Kucuk and Page models best fit experimental data. Similarly, the performance of the mathematical model was tested by comparing the correlation coefficient (R2), reduced x-square (X2) and root mean square error (RMSE) coefficients.

Keywords: solar dryer, mathematical models, empirical equation, Matlab, regression equation, cftool application.

Kirish

Jahonda quyosh energiyasini issiq suv ta'minoti, isitish va yoritish uchun yetarli darajada ishlab chiqarish qayta tiklanadigan energiya manbalari (QTEM) ichida eng samaralisi hisoblanadi.

Quyosh energiyasi Yer sayyorasidagi hayot uchun asosiy energiya manbayidir. U tabiatning biz uchun tabiiy bo'lgan yomg'ir, shamol, fotosintez, dengiz oqimlari va boshqa shu kabi omillarni belgilab beradi. Hozirgi kunda biz ishlatadigan yoqilg'ining 35 turidan ortig'i quyosh energiyasi shakllaridan biri.

Quritish jarayoni deb, material tarkibidagi suv miqdorining chiqarib yuborilishi va unda quruq massa nisbatining oshirilishiga aytiladi. Quritish murakkab texnologik (fizik-kimyoviy) jarayon bo'lib, ushbu jarayonda mahsulotlar quritilganda, nafaqat sifati saqlab qolinishi, balki sifati oshishi ham nazarda tutiladi. Shuning uchun jarayonlarning ratsional rejimi va usullarini tanlashda quritish texnologiyasining ilmiy asosiga tayanish kerak, ya'ni dastlab quritish obyekti sifatida ishlatiladigan mahsulot xususiyatlarini o'rganish, buning asosida quritish usulini tanlash va jarayon rejimlarini asoslash, quritgichlarning ratsional konstruksiyalarini yaratish zarur (Noori et al., 2021).

Quritish texnologiyalari ham o'zgarishga moyildir. Organizm uchun fiziologik jihatdan qimmatli moddalar - vitaminlar, suvda eriydigan uglevodlar, minerallarning saqlash muddatini uzaytirish uchun namlikni tezda chiqarib yuboruvchi va mahsulotni maksimal darajada yaxshi saqlash uchun qisqa muddatli quritish jarayonlari tobora ko'proq qo'llanmoqda. Hozirgi davrda dunyo aholisining tez sur'atlarda ko'payayotganini hisobga olgan holda, keyingi yuz yillikda insonlar ozuqasi sifatida quritilgan mevalar iste'mol qilinadi va ular tez tiklanuvchi mevalar sifatida qabul qilinadi (Noori et al., 2021).

Quritish jarayonini tezlashtirishda maxsus qurilmalarni qo'llash (quyosh quritgichi) quyosh energiyasidan foydalanishning istiqbolli yo'nalishlaridan biridir.

Quritish jarayoni rejimining asosiy parametrlariga havo harorati, shamol tezligi va namlik kiradi. Ushbu parametrlar nafaqat jarayonlar, balki quritishga mo'ljallangan materialning xususiyatlariga ham ta'sir qiladi (Yaldiz et al., 2001).

1Doctor of Technical Sciences, Professor

2Doctor of Philosophy in Technical Sciences (PhD), Senior Lecturer

Tashkent State Technical University named after Islam Karimov

2Tashkent Institute of Chemical Technology

Kelib tushgan/Получено/ Received: 08.05.2024

Qabul qilingan/Принято/ Accepted: 31.05.2024

Nashr etilgan/ Опубликовано/Published:

Quyosh quritgichlari quyosh energiyasi ta'siri bo'yicha, to'g'ridan-to'g'ri yoki bilvosita ishlaydigan turlarga bo'linadi. Birinchi turdagi quyosh quritgichlarida quyosh energiyasi to'g'ridan-to'g'ri mahsulotning o'ziga va quritilayotgan mahsulot joylashgan kameraga uning qora rangga bo'yalgan ichki devorlari orqali so'riladi.

Material va metodlar

Quritish jarayonining aksariyati yuqori haroratlarda amalga oshirilganligi sababli bu quritilgan mahsulotning tuzilishi, ozuqaviy qiymati, ta'mi, rangi va xushbo'yligi kabi sifat ko'rsatkichlariga salbiy ta'sir qiladi. Ushbu o'zgarishlarni minimallashtirish uchun harorat, quritish vaqti, havo tezligi kabi quritish usullari va shartlarini optimallashtirish zarur. Ma'lumotlar o'zgaruvchanligining kamayishi tufayli quritish kinetikasi ko'pincha ikki parametrli namlik va quritish tezligi yordamida baholanadi. Ushbu tadqiqotda (1) va (2) tenglamalar yordamida rayhon barglarining namlik koeffitsiyenti va quritish tezligi hisoblab chiqilgan (Vijayan et al., 2016).

Mavjud adabiyotlarda quritishning bir qancha matematik modellari taklif qilingan. Ushbu tadqiqotda gelioquritgich tizimlarida rayhon barglarini quritish jarayoni uchun 1-jadvalda keltirilgan empirik modellar ko'rib chiqildi.

1-jadval

Rayhon barglari namligini aniqlash uchun ishlatiladigan quritish modellari

Model nomi Model

Newton MR = exp(-kt)

Page MR=exp(-ktn)

Modified Page MR=exp[-(kt)]n

Logarithmic MR=aexp(-kt)+c

Henderson and Pabis MR=aexp(-kt)

Tow-term MR=aexp(-k0t)+bexp (-k_11)

Two term exponential MR=aexp(-kt)+(1-a)exp (-kat)

Midelli at al. MR=aexp(-kt)n+bt

Approximation of diffusion MR=aexp(-kt)+(1-a)exp (-kbt)

Verma et al. MR=aexp(-kt)+(1-a)exp (-gt)

Midilli - Kucuk MR=aexp(-kV)+frt

Rayhon barglarining quritish jarayoni eksperimental va statistik jihatdan o'rganildi. Quritish harakati quritish jarayonida namlik nisbati o'zgarishi bilan belgilanadi. Rayhon barglari uchun namlik nisbati ma'lumotlari o'n bitta yupqa qatlamli quritish modellari yordamida o'rnatildi. Quritish paytida rayhon barglarining namlik nisbati (MR) 1- va 2-tenglamalar yordamida hisoblanishi mumkin:

илт-. Mf-Mp

MR =——- (1)

M0-Me

DR = (2)

At

(1) tenglama yordamida eksperimental ma'lumotlar to'plamidan olingan MR natijalari 1-jadvalda ko'rsatilganidek, empirik tenglamalar koeffisiyentlarini aniqlash uchun Matlab R2022a dasturiy ta'minoti (cftool) bo'limidan foydalanildi (1-rasm).

5 ( Page К +

[V] Auto fit

I Stop I

Results

General model:

f(x) = ехр(-к"тс^п) Coefficients (with 95% confidence bounds): к = 0.05771 (0.04085,0.07457) n = 1.687 (1.521, 1.852)

Goodness of fit: SSE: 0,007662 R-square: 0.9938 Adjusted R-square: 0,9933 RNISE: 0.02639

Table of Fits ®

Fit name ж Data Fit type SSE R-square DFE Adj R-sq RMSE ® Coeff Validation Data Validation SSE Validation RMSE

□ Page jnamlikvs. vaqt |exp(-k*xAn) 0.0077 |05938 In |05933 0.0264 I* 1 1

1-rasm. Page matematik modeli uchun regressiya tenglamasi natijasi

Rayhon barglarini quritish jarayonida eng mos matematik modellarni aniqlash uchun uchta muhim statistik paramétra i hisoblash muhim: 3-tenglama yordamida korrelyatsiya koeffitsiyenti(ß= 4-aenalama yordamida x-kvadlrat: )X2) va S-tenglama yordamida ildiz o'rtacha kvadrat xatosi (RMSE). (R2) qiymati 1 ga yaqin, (X2) va (RMSE) lar qiymati 0, ya'ni eng kichik qiymaüarni ko'rsatad igan mode l en g yaxshi moslikni bildiradi:

^•2 __ (¿_i(MiRpre,taMiRe:rp,t)2 (4)

RMSE y . (S)

Ushbu tenglamalarda:

MRexpj - tajribada kuzatilgan normallashtirilgan namlik nisbati;

MRprej - kuzatish uchun taxmin qilingan qiymat;

MRexpav - eksperimental ma'lumotlar nuqtalari orasidagi o'rtacha normallashtirilgan namlik nisbati;

N - umumiy soni;

z - modeldagi doimiylar sonini ifodalaydi.

Tadqiqot natijalari

Gelioquritgich qurilmasida dorivor o'simliklarning quritish vaqti, havo sarfi va mahsulot massasiga ta'siri nazariy hisoblab chiqildi. 1- va 2-rasmlarda mahsulot namligini 85 dan 13 % gacha kamaytirish uchun mos ravishda 12 va 13 soat vaqt kerak bo'ldi. Ushbu grafikdan berilayotgan issiq havo sarfining oshishi bilan mahsulotning quritish vaqti keskin kamayishini ko'rish mumkin (2-rasm).

2-rasm. Midilli matematik modeli uchun regressiya tenglamasi natijasi

Belgilangan modelni sinab ko'rish uchun har qanday maxsus quritish sharoitida namlik koeffitsiyentining eksperimental va bashorat qilingan qiymatlari taqqoslanganda, bu qiymatlar to'g'ri chiziq atrofida yotadi (3-rasm). Midilli - Kucuk modeli eksperimental va bashorat qilingan namlik miqdori o'rtasida qoniqarli kelishuvni ta'minladi va bashorat qilingan ma'lumotlar, odatda, to'g'ri chiziq atrofida joylashgan bo'lib, rayhon barglarining quyosh quritish harakatlarini tavsiflash uchun modelning mosligini ko'rsatdi.

1

0.9

0.

0.7

0.6

1 0.5 to £=

0.3 0.2 0.1 0

0 2 4 6 8 10 12 14

vaqt

3-rasm. Midilli quritish modeli tomonidan bashorat qilingan egri chiziqlar va kirish joyida majburiy konveksiyaning aralash rejimiga ega quyosh tunnelida quritish bo'yicha eksperimental ma'lumotlarning taqqoslanishi (o'rtacha harorat 60 °C)

Tadqiqot natijalari tahlili

Korrelyatsiya koeffitsiyenti (R2), qisqartirilgan x-kvadrat (X2) va o'rtacha kvadrat xatosi (RMSE) kabi turli xil model konstantalari va statistik parametrlarning qiymatlari olindi. Korrelyatsiya koeffitsiyenti qiymatlari eng yuqori bo'lgan quritilgan rayhon barglari uchun Modified Page modelining RMSE, R2 va X2 ko'rsatkichlari eng past ekanligi aniqlandi. Olingan natijalarga ko'ra, 11 ta empirik quritish modellaridan Midilli - Kucuk va Page modellari eng yaxshiligi aniqlandi.

2-jadval

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Rayhon barglarini quritishdan olingan matematik modellarning tenglamalar koeffitsiyentlari va statistik natijalari

№ Model konstantalari R2 X2 RMSE

1 k= 0,84996 0,949993 0,003247 0,054743

2 k=0,05771, n = 1,687 0,993831 0,0007662 0,02639

3 k= 0,102812, n = 0,826708 0,941678 0,003634 0,055449

4 k = 0,071691, a = 0,895283, c = -0,01090 0,978647 0,001463 0,033551

5 k=0,073495, a = 0,886173 0,978611 0,001333 0,033579

6 k0 = 0,073495, a = 0,886095, b = 7,83E-5, k = 0,073382 0,978611 0,001629 0,033579

7 k= 0,062219, a = 0,593501 0,977576 0,001397 0,034383

8 k = 0,258907, a = 0,885617, n = 0,282444, b = -8,8E-05 0,978614 0,001628 0,033577

9 k= 0,073491, a = 0,585426, b = 0,000162 0,978611 0,001466 0,033579

10 k=0,073485, a = 0,585426, g = 2,4355E-05 0,978611 0,001466 0,033579

11 k = 0,04478, a = 0,9935, n = 1,9, b = 0,004668 0,999335 0,0008642 0,009799

Rayhon barglarini quritish kinetikasini o'rganish quritgichning ishlashini optimallashtirish uchun katta ahamiyatga ega. Midilli - Kucuk va Page modellari uchun R2 va RMSE qiymatlari ishlab chiqilgan quritgich va quyosh quritgich uchun mos ravishda (0,999335; 0,09799) va (0,993831; 0,02639) ekanligi aniqlandi. Shunday qilib, tanlangan ushbu empirik modellar rayhon barglarini quritish jarayonini aniq tasvirlab, ishchi parametrlarni optimallashtirish va samaradorlikni oshirish imkonini beradi.

Matematik modellashtirish quritish samaradorligini loyihalash va optimallashtirish, shuningdek, turli xil quyosh quritish tizimlari ishlashini tahlil va bashorat qilish uchun juda muhim. Ushbu modellar dorivor o'simliklarni quritish harorati, namlik miqdori, quritish tezligi va quritilgan mahsulot sifatini bashorat qilish uchun foydalidir.

Xulosalar

Ushbu tadqiqotda yangi ishlab chiqilgan quyosh quritgichi iqlim sharoitida dorivor o'simliklar, rayhon barglarini quritish uchun ishlatilishi mumkin. Dastlabki namlik miqdori 0,93 quruq asosda bo'lgan rayhon barglari 20 soat ichida yakuniy namlik miqdori 0,13 ga yetguncha quritildi. Barcha quritish jarayonlari pasayish tezligi davrida sodir bo'ldi. Bundan tashqari, quyosh quritgichi qushlar, hasharotlar, yomg'ir va changdan to'liq himoyalangan. Rayhon barglarini quritish jarayonlarini tushuntirish uchun nozik qatlamli eksperimental ma'lumotlarga o'n bir xil model o'rnatildi va R2, RMSE va X2 ko'rsatkichlari bo'yicha solishtirildi. Rayhon barglarini yupqa qatlamli quritish natijalariga ko'ra, Midilli - Kucuk va Page modellari turli darajalarida quritilishining har xil haroratda yuqori qobiliyati bilan quritish jarayonida mahsulotning namlik miqdorini bashorat qilish uchun ishlatilishi mumkin bo'lgan eng yaxshi model sifatida aniqlandi.

REFERENCES

1. Abhijit, T., Safarov, J. E., & Sultanova, Sh. A. (2021). Modeling of the process of drying food raw materials. (In Russian). Universum: Technical Sciences, 11(92). https://7universum.com/ru/tech/ archive/item/12638

2. Basunia, M. A., & Abe, T. (2001). Thin-layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, 47(4), 295-301. https://doi.org/10.1016/S0260-8774(00)00133-3

3. Dickinson, E. W. (1980). Solar Energy Technology Handbook (1st ed.). CRC Press. https://doi. org/10.1201/9781351076739

4. Madhankumar, S., Viswanathan, K., Taipabu, M. I., & Wu, W. (2023). A review on the latest developments in solar dryer technologies for food drying process. Sustainable Energy Technologies and Assessments, 58, 103298. https://doi.org/10.1016Zj.seta.2023.103298

5. Mambetsheripova, A. A., et al. (2024). Results of the study of the drying process (In Russian). Universum: Technical Sciences, 3(120). https://7universum.com/ru/tech/archive/item/17107

6. Noori, A. W., Royen, M. J., & Haydary, J. (2021). Thin-layer mathematical modeling of apple slices drying, using open sun and cabinet solar drying methods. International Journal of Innovative Research and Scientific Studies, 4(2), 43-52. https://doi.org/10.53894/ijirss.v4i2.55

7. Safarov, Zh. E., Khuzhakulov, U. K., & Sultanova, Sh. A. (2020). Mathematical formulation of a one-dimensional shrinkage model. (In Russian). Universum: Technical Sciences, 8(77). https://7universum. com/ru/tech/archive/item/10643

8. Samaneh, S., Nasrin, E., & Rahimi, A. (2011). Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results. Fuel and Energy Abstracts, 36, 2847-2855. https://doi.org/10.1016/j.energy.2011.02.027

9. Sharshir, S. W., et al. (2023, June). Recent efforts in developing agricultural product drying processes using solar energy. Solar Energy, 257, 137-154. https://doi.org/10.1016/j. solener.2023.04.022

10. Sultanova, Sh. A. (2017). Modeling the drying process of the structure of coolant flows in a water heating unit. Universum: Technical Sciences, 11(44). https://7universum.com/ru/tech/archive/item/5255

11. Sultanova, Sh. A., & Usenov, A. B. (2020). Using the analytical and calculation method to describe the movement of flow elements in a Soxhlet extractor (In Russian). Universum: Technical Sciences, 11(80). https://7universum.com/ru/tech/archive/item/10907

12. Sultanova, Sh. A., et al. (2024). Development of adaptive neuro-fuzzy models for predicting solar dryer performance. (In Russian). Universum: Technical Sciences, 5(122). https://7universum. com/ru/tech/archive/item/17503

13. Tham, Th., Ng, M. X., Gan, Sh., Chua, L. S., Aziz, R., Abdullah, L. Ch., Ching, H., Ong, S. Ph., Chin, N., & Chung, L. (2017). Effect of Ambient Conditions on Drying of Herbs in Solar Greenhouse Dryer with Integrated Heat Pump. Drying Technology, 35. https://doi.org/10.1080/07373937.2016.1271984

14. Usmanov, K. I., et al. (2020). Adaptive fuzzy synergetic control of multidimensional nonlinear dynamic objects. (In Russian). Universum: Technical Sciences, 3(72). https://7universum.com/ru/tech/ archive/item/9016

15. Usmanov, K. I., et al. (2023). Synthesis of a control system for the process of diesel fuel hydropuring with the Adar method. E3S Web of Conferences - EDP Sciences, 458, 01025.

16. Usmanov, K., Eshbobaev, J., & Yakubova, N. (2023). Modeling and optimization of the ammonium solution extraction process. Eng. Proc., 52(198). https://doi.org/10.3390/ASEC2023-16274.

17. Vijayan, S., Arjunan, T. V., & Kumar, A. (2016). Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative Food Science & Emerging Technologies, 36, 59-67. https://doi.org/10.1016/j.ifset.2016.05.014

18. William, B. (1977). Direct solar drying of fruits and vegetables in the southeastern united states. Energy Use Manag. Proc. Int. Conf. Tucson, 3-4, 521-525. New York.

19. Yaldiz, O., Ertekin, C., & Uzun, H.I. (2001). Mathematical modeling of thin layer solar drying of Sultana grapes. Energy, 26, 457-465. https://doi.org/10.1016/S0360-5442(01)00018-4

i Надоели баннеры? Вы всегда можете отключить рекламу.