Научная статья на тему 'Динамические характеристики машинных агрегатов'

Динамические характеристики машинных агрегатов Текст научной статьи по специальности «Машиностроение»

CC BY
103
40
Поделиться
Ключевые слова
МАШИННЫЕ АГРЕГАТЫ / ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Аннотация научной статьи по машиностроению, автор научной работы — Битуев И. К., Павлов Б. И.

Рассматривается методология оценки динамических свойств машин (на примере агрегатных станков) по амплитудно-фазовым и амплитудно-частотным характеристикам. Они дают возможность оценить устойчивость динамической системы, ее переходной процесс.

Похожие темы научных работ по машиностроению , автор научной работы — Битуев И.К., Павлов Б.И.,

DYNAMIC CHARACTERISTICS OF MACHINE AGGREGATES

Methodology of estimation the dynamic properties of machines (on the example of unit-type machine tools) on amplitude-phase and amplitude-frequency characteristics is considered. They enable to evaluate stability of dynamic system, its transition process.

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

Текст научной работы на тему «Динамические характеристики машинных агрегатов»

УДК 621.91

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАШИННЫХ АГРЕГАТОВ

© 2010 И.К. Битуев1, Б.И. Павлов2

1 Восточно-Сибирский государственный технологический университет г Улан-Удэ 2 Институт Машиноведения им. А. А. Благонравова РАН, г. Москва

Поступила в редакцию 28.03.2010

Рассматривается методология оценки динамических свойств машин (на примере агрегатных станков) по амплитудно-фазовым и амплитудно-частотным характеристикам. Они дают возможность оценить устойчивость динамической системы, ее переходной процесс.

Ключевые слова: машинные агрегаты, динамические характеристики

Повышение требований к точности размеров и формы деталей, обрабатываемых на металлорежущих станках, появление новых труднообрабатываемых материалов, а также широкое внедрение автоматизации технологических процессов и создание автоматических станков с системами управления и регулирования вызвало резкое увеличение роли динамических процессов в станках. При проектировании, изготовлении и эксплуатации станков все чаще возникает необходимость решения задач, связанных с динамикой явлений. В первую очередь это относится к обеспечению условий устойчивого движения инструмента и заготовки. Важнейшим условием, необходимым для определения динамической характеристики, является устойчивость элемента или системы. Расчет устойчивости и определение оптимальных параметров упругих механических систем являются одной из важнейших задач современной теории расчета и конструирования машин и механизмов. Недостаточный учет влияния сложной многокоординатной упругой системы машины на статическую и динамическую жесткость технологической системы отражается на качество ее результатов работы.

Целью такого расчета является установление размеров, формы, веса, рациональной компановки основных узлов и конструктивных элементов исследуемых устройств исходя

Битуев Игорь Кимович, кандидат технических наук, заведующий кафедрой «Детали машин, теория механизмов и машин». E-mail: bitueva_elv@mail.ru Павлов Борис Изосимович, доктор технических наук, профессор, заведующий лабораторией. E-mail: b.i.pavlov@mail.ru

из условия устойчивости их динамической системы. Решение этих задач далее рассматривается в процессе конструирования агрегатных станков, в которых данные проблемы наиболее представлены. Судить об устойчивости данной системы, о поведении ее во время переходных процессов, о ее динамической точности, а также о необходимых изменениях параметров колебательной системы с целью получения области устойчивости в определенных пределах, наибольшую возможность дает метод, связанный с построением амплитудно-фазовой частотной характеристики.

Для расчета амплитудно-фазовой частотной характеристики упругая механическая система с той или иной степенью точности представляется в виде некоторой механической модели, состоящей из отдельных сосредоточенных жестких масс, соединенных упругими связями, заменяющими упругие стыки этих масс. Такое представление конструкции позволяет рассматривать ее как колебательную систему, состоящую из нескольких подвижных жестких масс, соединенных с неподвижными массами при помощи стыкового соединения. Каждый стык между этими массами заменены невесомыми пружинами. При колебаниях станка происходит взаимодействие динамических процесс-сов упругой системы станка с динамическими процессами резания. Расчетная схема упругой конструкции станка (несущей системы) приведена на рис. 1, на которой изображены в виде абсолютных твердых тел консоль, салазки, стол, деталь, поворотная головка и верхняя часть станины, центры масс которых сосредоточены в указанных точках.

Рис. 1. Расчетная схема упругой конструкции станка

На рис. 1 обозначено: т1, т2, т3, т4, т5 -массы стола, поперечины, ползуна, вертикального суппорта, резцедержателя с резцом; к21, к22, кгз, к24, к25 - жесткости соответствующих стыков в направлении оси 2; ку1, ку2, ку3, ку4, ку5 - то же в направлении оси у; кф1, кф2, к^з, кф4, кф5 - крутильная жесткость стыков. Силу резания, лежащую в плоскости чертежа, примем направленной под углом а к горизонтали Р=Р0&т а. За обобщенные координаты приняты относительные перемещения масс, отсчитываемые от начала координат, расположенных в центре тяжести каждой массы и углы поворота масс относительно их центров тяжести. Конструкция, состоящая из одной подвижной массы, соединенной с

другой неподвижной массой при помощи стыкового соединения, допускает 3 степени свободы.

Исследование колебательной системы рассмотрим на примере упругой системы стол-поперечина. За обобщенные координаты принимаем перемещения каждой массы относительно неподвижной системы координат и углы поворота каждой массы относительно их центров жесткости. Составляем выражения кинетической и потенциальной энергий и диссипативной функции. После соответствующего их дифференцирования и подстановки его результатов в уравнения Лагранжа получим следующие уравнения.

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

Ш1 ¿1 + тгЬ] ео$(а:)&1 + кгг 21 + кгги - к2122 = а)$т(М) ;

Ш2Й2 + Ш2Ь2СО$( а 2) ф 2 + Ь22 2.2 + (к 21 + 122)12 - к 21 21 = 0 ; т: У1 + Ш1 Ь,1 ят(а1) & 1 + Ьу1у1 + ку1У 1 - ку1У2 = Ро ^Ч^) *т(М) т2У2 + т2Ь2^п(а2)ф2 + Ьу2у2 + (ку1 + ку2)У2 - ку1У1 = 0

(31 + т1Ь2)& 1 + т11.1СОв(а )21 + т^^Ца)У1 + Ио1 Ф1+ко1 Ф1 - ко1 ф 2 = Р0 К )

г +

+

(32 + т2Ь22) ф2 + т2Ь2 со8(а 2) ¿2 + т2Ь2 ^п^) ;&2 + Ьа 2ф 2 +( ко1+ко2)Ф 2 - ко1 Ф 1=0

Расчетная схема колебательной системы ползуна может быть представлена следующим образом:

М2 2 + Ь32 + к3 2 = Р0 оо8(а) $т(а>1) + Т(у, ф);

М у + (Ь1 + Ь2)у + (Ь111 - Ь212)Фр + (к1 + к2)у + (к111 - к212) ф = Р0 8т(а) $т(а>1); 3&& + (Ь1/12 + )фр + (Ь111 - Ь212)у + (к1/12 + к) ф + (к111 - к212)у = Р0Я $т(о>1),

Первое уравнение описывает колебания ползуна только по горизонтальному направлению, второе и третье уравнения взаимосвязаны и описывают колебания ползуна по вертикальному и угловому перемещениям. Для решения уравнений относительно координат у1 и ф1 представим их в операторном виде. Тогда решение системы относительно искомых координат имеет следующий вид У1=Оу1Ю, ф1=Бф1Ю, где Б - определитель системы, БУ1, - определители, полученные из Б путем замены столбцов, соответствующих у и ф на столбец правых частей уравнений. В результате преобразований получим передаточные функции колебательной системы в виде

^(у1)=у1/(Р0 хт(тг)), Ж(ф1)=ф1/(Р0хт(тг))

В полученных выражениях числителя и знаменателя заменяем оператор р на 1т. Получим в числителе и знаменателе комплексные числа. Необходимо передаточную функцию разделить на вещественную и мнимую части путем умножения на комплексное число, сопряженное с знаменателем. По полученным координатам в комплексной плоскости строится амплитудно-фазовая частотная характеристика. Вещественная часть координат откладывается по оси абсцисс, а мнимая - по оси ординат. Амплитудно-фазовая частотная характеристика системы стола для координаты у показана на рис. 2. Исходные данные для станка взяты из [1]. На рис. 3 показана резонансная кривая колебаний стола по оси у1, так называемая амплитудно-частотная характеристика. Для координаты ф1 на рис. 4 показана амплитудно-фазовая частотная характеристика стола, а на рис. 5 -амплитудно-частотная характеристика. На следующих рисунках (6 и 7) представлены АЧХ станка и высокочастотная часть АФЧХ стола.

На рисунках передаточная функция представлена в форме амплитудно-фазовой частотной характеристики, которая отражает изменение фазы и отношения амплитуд коле -баний выходной координаты к входной при синусоидальном изменении входной координаты. При этом частота синусоидальных коле -баний входной координаты изменяется от нуля до бесконечности. Амплитудно-фазовая частотная характеристика является комплексной величиной. Модуль этой величины (радиус-вектор) равен амплитуде вынужденных колебаний (выходная координата), а аргумент (угол) равен фазе колебаний, т.е. разности фаз выходной и входной координат.

Рис. 2. АФЧХ стола по вертикальному перемещению

О 1х103 2х103

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

Рис. 3. АЧХ стола по вертикальному перемещению

Рис. 4. АФЧХ стола по суммарному вертикальному перемещению А

А

3x10"' 2х10"4

О 1x103 2х103

Рис. 5. АЧХ стола по угловому перемещению

к

4х1СГ*-3x10 ^ 2x10"' 1x10 ^

ш

0 1x103 2х103 3x103 Рис. 6. АЧХ упругой системы станка

6х10~6

Рис. 7. Высокочастотная часть АФХЧ стола по суммарному вертикальному перемещению

Таким образом, для получения из уравнений движения амплитудно-фазовой частотной характеристики выводится передаточная функция, которая представляет собой отношение выходной координаты системы к входной. За выходную координату системы принимается

координата соответствующего направления движения системы, для которой состав-ляется передаточная функция, за входную координату принимается возмущающее воздействие на систему в виде гармонической силы, совпадающей по направлению и величине с силой, действующей на систему. В соответствии с частотным методом анализа полученная передаточная функция преобразуется в выражение амплитудно-фазовой частотной характеристики системы. Полученная характеристика подвергается анализу с целью выяснения устойчивости системы при выбранных параметрах. Если система оказалась неустойчивой при заданных условиях работы, необходимо изменить ее параметры и построить новую характеристику. Такое построение с изменением параметров системы повторяется до тех пор, пока амплитудно-фазовая частотная характеристика не примет вида, указывающего на необходимую устойчивость системы. В частности необходимо, чтобы левая ветвь этой характеристики, построенной в плоскости безразмерных координат, не охватывала точку на оси абсцисс с координатой минус единица.

Не можете найти то что вам нужно? Попробуйте наш сервис подбора литературы.

СПИСОК ЛИТЕРАТУРЫ:

1. Никитин, Б.В. Расчет динамических характеристик металлорежущих станков. - М.: Государственное научно-техническое издательство машиностроительной литературы, 1962 -23 с.

2. Кудинов, В. А. Динамика станков. - М.: "Машиностроение", 1967 - 360 с.

DYNAMIC CHARACTERISTICS OF MACHINE AGGREGATES

© 2010 I.K. Bituev1, B.I. Pavlov2

1 East-Siberian State Technological University, Ulan-Ude 2 Institute of Machine Engineering RAS, Moscow

Methodology of estimation the dynamic properties of machines (on the example of unit-type machine tools) on amplitude-phase and amplitude-frequency characteristics is considered. They enable to evaluate stability of dynamic system, its transition process.

Key words: machine aggregates, dynamic characteristics

Igor Bituev, Candidate of Tecgnical Sciences, Head of the Department "Machine Details, Theory of Mechanisms and Machines". E-mail: bitueva_elv@mail.ru Boris Pavlov, Doctor of Technical Sciences, Professor, Chief of the Laboratory. E-mail: b.i.pavlov@mail.ru