Научная статья на тему 'DEVELOPMENT OF EQUIPMENT FOR ARC METALLIZATION WITH PULSATING SPRAYING AIRFLOW TO IMPROVE THE TECHNOLOGICAL PROPERTIES OF THE COATING'

DEVELOPMENT OF EQUIPMENT FOR ARC METALLIZATION WITH PULSATING SPRAYING AIRFLOW TO IMPROVE THE TECHNOLOGICAL PROPERTIES OF THE COATING Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
51
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ARC METALLIZATION / PULSATING JET / PULSATOR / OXYGEN / FREQUENCY / MICROHARDNESS

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Zakharova I.

In the global practice of the applications, more than 50% of metal coatings applied by the method of electric arc metallization, which has the following advantages: high productivity, simplicity of equipment, low power consumption, the possibility of obtaining coatings with high operational properties through the use of scarce and inexpensive wires of industrial production. At arc spraying, there is intensive oxidation of metal sprayed with air oxygen, which leads to a considerable burnout of alloying elements and significantly reduces the properties of the applied coating. To reduce the oxidative effect of the spraying airflow on the liquid metal of the electrodes, the method of pulsating air supply to the electrode melting zone by introducing an additional element - the pulsator valve in the spray system of the electroarc metallizer is proposed. This paper presents the design of the device - the pulsator valve to create a controlled pulsating atomizing flow with certain pulses at arc metallization. The optimal design is provided, which allows reducing the impact of the transport flow (namely air oxygen) on the atomized material of the electrodes as much as possible.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «DEVELOPMENT OF EQUIPMENT FOR ARC METALLIZATION WITH PULSATING SPRAYING AIRFLOW TO IMPROVE THE TECHNOLOGICAL PROPERTIES OF THE COATING»

обхвдш показники динашки та динам1чш наванта-ження в багатомасовш систем1 мехашзму наве-дення.

Висновки з цього дослiдження i перспек-тиви подальших po6iT у цьому напрямку

У статп обгрунтовано алгоритшчт степеш свободи модел системи нечеткого виведення типу Мамдаш для реал1зац! коректора регулятора положения робочого органу.

Виконано параметричний синтез Fuzzy коректора, його тестування та комп'ютерну реал1зац1ю в середовищ1 Simulink математичного пакету MatLAB.

Анал1з результата моделювання показав, що перехвдш процеси змшних стану системи в замкну-тш систем1 з Fuzzy коректором в режим1 позицюну-вання е неколивними без режим1в дотягування i максимально допустимим прискоренням та спов1ль-ненням.

Список лiтератури

1. Mamdani E.H. Applications of fuzzy logic to approximate reasoning using linguistic synthesis // IEEE Trans-actions on Computers. - Vol. 26, no. 12. -1977. - Pp. 1182-1191.

2. Герман Э.Е. Проектирование нечетких моделей интеллектуальных промышленных регуляторов и систем управления / Э.Е. Герман, Л.А. Клименко // Iнформацiйно-керуючi системи на залiзнич-ному транспорта - 2015. - № 3.- C. 24-31.

3. Sharma D. Designing and Modeling Fuzzy Control Systems / D. Sharma // International Journal of Computer Applica- tions. - 2011. - № 1(16). - P. 4653. https://doi.org/10.5120/1973-2644.

4. Filo G. Modelling of fuzzy logic control system using the MATLAB SIMULINK program / G. Filo // Technical Trans- actions. - 2010. - № 8(107). - P. 7381.

5. Singhala P. Temperature Control using Fuzzy Logic / P. Singhala, D.N. Shah, B. Patel // International Journal of Instrumentation and Control Systems (IJICS). - 2014. - № 1(4). - P. 1-10. https://doi.org/10.5121/ijics.2014.41011.

6. Saudagar P.A. Design of Fuzzy Logic Controller for Humidity Control in Greenhouse / P.A. Saudagar, D.S. Dhote, K.D. Chinchkhede // International Journal of Engineering Inventions. -2012. - № 1(11). - P. 45-49.

7. Solanke D.R. Design & Implementation of Fuzzy Inference System For Automatic Braking System / D.R. Solanke, K.D. Chinchkhede, A.B. Manwar // International journal of Reseach in Science and Engineering. - 2017. - № 6(9).- P. 1242-1255.

8. Chopra S. Fuzzy Controller: Choosing an Appropriate and Smallest Rule Set / S. Chopra, R. Mitra, V. Kumar // International Journal of Computational Cognition. - 2005. - № 4(3). - P. 7379.

DEVELOPMENT OF EQUIPMENT FOR ARC METALLIZATION WITH PULSATING SPRAYING AIRFLOW TO IMPROVE THE TECHNOLOGICAL PROPERTIES OF THE COATING

Zakharova I.

Associate Professor Pryazovskyi State Technical University, Ukraine

Abstract

In the global practice of the applications, more than 50% of metal coatings applied by the method of electric arc metallization, which has the following advantages: high productivity, simplicity of equipment, low power consumption, the possibility of obtaining coatings with high operational properties through the use of scarce and inexpensive wires of industrial production.

At arc spraying, there is intensive oxidation of metal sprayed with air oxygen, which leads to a considerable burnout of alloying elements and significantly reduces the properties of the applied coating.

To reduce the oxidative effect of the spraying airflow on the liquid metal of the electrodes, the method of pulsating air supply to the electrode melting zone by introducing an additional element - the pulsator valve in the spray system of the electroarc metallizer is proposed.

This paper presents the design of the device - the pulsator valve to create a controlled pulsating atomizing flow with certain pulses at arc metallization. The optimal design is provided, which allows reducing the impact of the transport flow (namely air oxygen) on the atomized material of the electrodes as much as possible.

Keywords: arc metallization, pulsating jet, pulsator, oxygen, frequency, micro-hardness.

During electroarc spraying, there is an intensive chemical reaction of the spraying airflow with the material that is sprayed, which leads to a significant burnout of alloying elements [1-5]. The intensity of oxidation increases with the growth of such parameters as compressed air pressure, distance from the nozzle of the device to the sprayed part, which has a negative impact on the mechanical properties of coatings and reduces their quality.

This is one of the main challenges of arc metallization, and considerable attention is paid to its solution by scientists.

The lack of scientifically grounded economical technology to reduce the impact of spraying flow oxygen on the liquid metal of the ends of the molten electrodes, led to the development of the arc metalization method using a pulsating spraying airflow and the design of the device to reduce the burnout of alloying elements and improve the properties of the coating. Earlier studies of this topic are not known or require theoretical and technological substantiations for the practical use of the method.

Thus, the purpose of the research is to reduce oxidation of metal particles at arc metallization to obtain

coatings with the specified properties and to implement resource saving.

To reduce the oxidizing effect of the spraying jet on the liquid metal of the ends of the molten electrodes, it is proposed to use a pulsating spraying flow to separate and transport the material sprayed from the surface of the electrode ends. The use of a pulsating spraying airflow, due to pulsations of a certain frequency, reduces the influence of oxygen on the molten metal of

the electrodes [6,7]. Also, the equipment for obtaining controlled pulsating spraying flow has been developed [9-11].

Design of the pulsating device (pulsator) is a cylindrical body with inlet and outlet nozzles for the input and output of compressed air, inside which the rod with a bore and the possibility of rotation is installed, Fig. 1.

Type A

Cylindrical rod bore

Type B

Square rod bore

-0 z10

\

« 10

1

Fig. 1 Assembly diagram of the pulsator valve. 1 - housing; 2 - rod; 3 - lid; 4 - nozzle; 5 - bearing; 6 - screw.

High precision manufacturing of parts with minimal clearances, especially the rod bodies and mounting position of the bearing, as well as the sealing lid, which acts as a second bearing mounting, allows achieving a pulsation with almost complete overlap of the airflow. In other words, when the rotation occurs, at the moment when the stem bore mismatches with the socket bore,

the air supply is completely cut off even at high pressure.

The proposed solution is to mount bearings on the rod axis, which will precisely and firmly position the rod in the pulsator housing. Mounting the lid on four screws allows for a near-monolithic connection to the housing, thus fixing the upper bearing firmly and elim-

mating the possibility of rod movement in all axes except the rotation axis. The bearing arrangement on the rod eliminates friction during rotation and, consequently, wear and heat generation, making this design capable of continuous operation in the industrial spraying process.

The rod shank is mounted to the electric motor via a keyway coupling.

The design of the pulsator ensures the stability of the flow pulses of the preset frequency, due to the fixation bearings of the pulsator-valve in the housing. The

removable lid provides mobility of the pulsator valve in the presence of wear and tear during continuous operation. The design provides free rotation of the pulsator valve in the presence of ultra-high pressure (5-6 atm) in the air supply system.

The presence of the pulsator valve in the air supply system does not affect the arc metallization process but reduces the amount of air required.

Fig. 2. Pulsator design, intended for industrial use with stationary metallizers. a - pulsator components: 1 - housing; 2 - rod; 3 - lid. b - pulsator as a part: 1 - housing; 2 - nozzle; 3 - lid; 4 - rod

To determine the effect of this process on the quality of the coating, particle microhardness measurements were performed. It was found that with increasing frequency of pulsation of a spraying flow micro-

hardness of particles increases for frequencies 65 - 85 HB

Fig. 3.- Character of change in microhardness of coating particles.

Hz, then some decrease is observed, and microhardness approaches to a level similar to that at low frequencies or without pulsations. The nature of the change and range of hardness changes of the particles are shown in the figure. 3

The dependence is calculated with consideration of maximum and minimum particle hardness of the coating.

Based on the carried out researches it is established that the optimum range of frequencies of pulsation of spraying airflow are frequencies 65 - 85 Hz.

Conclusions

As a solution to the problem of reducing the oxidizing effect on the metal of sprayed electrodes, a pulsating supply of the spraying airflow at electric arc metallization by introducing an additional element is proposed.

The pulsating device is a cylindrical body with inlet and outlet nozzles for the input and output of compressed air, inside which a rod with a bore and the possibility of rotation is installed.

The pulsating effect is obtained by rotating the rod with the bore and periodically connecting the inlet and outlet nozzles of the pulsator cylinder.

The designed device (pulsator) is installed in front of the arc spraying system, allowing to significantly reduce air consumption and possessing no inconvenience (interference) in the arc spraying process.

References

1. Xiaoou H, Yufen L. The current situation and future of thermal industry in China.Thermal Spray Solutions. Advance in Technology and Application Proc. Of ITSC-2004.0saka, Japan,2009

2. Sundararajan G. Mahajan Y.R, Joshi S.V. Thermal spraying in Indian: status and prospects. Expanding thermal spray performance to new markets and application. Proc. of ITSC-2009. Las-Vegas, USA,2009, P511-516

3. Vakhalin V.A., Maslenkov S.B., Kudinov V.V. Protsess plavleniya i raspyleniya materiala el-ektrodov pri elektrodugovoy metallizatsii. Fizika i khimiya obrabotki materialov. 1981. №3 s 58-63

4. Alkhimov A.P., Kosarev V.F., Plokhov A.V. Nauchnyye osnovy tekhnologii kholodnogo gazo-dinamicheskogo napyleniya (KHGN) i svoystva napyl-ennykh materialov. Novosibirsk: NGTU, 2006. 280 s.

5. Katts N.V., Antoshin Ye.V. Vadivasov D.G. Metallizatsiya raspyleniyem. M.: Mashinostroyeniye 1966, S.200

6. Royanov V.A. Ustroystvo dlya elektro-dugovoy metallizatsii s pul'siruyushchim rezhimom is-techeniya vozdushno-raspylyayushchey strui

/V.A.Royanov, V.I. Bobikov //Svarochnoye proizvod-stvo №4,2015 s.12-15

7. Royanov V.A., Snizheniye vozdeystviya kis-loroda na zhidkiy metall pri elektrodugovom napylenii pul'siruyushchey struyey vozdukha // V.A. Royanov, Zakharova I.V., Kryuchkov N.S./WorldSience 5(45), Warsaw RS Global Sp.2.O.O.IndexCopernicus, aca-demia.edu.2019

8. V. Royanov, I.Zakharova, E. Lavrova. Development of properties of spray flow and nature of pressure distribution in electric arc metalization // Eastern-European Journal of Enterprise Technologies, 6/5 (90) 2017, - S.41-49.

9. V.A. Royanov I.V. Zakharova N. Kryuchkov Izucheniye vliyaniya konstruktsiy raspylyayushchego ustroystva na kachestvo napylennogo sloya// Universi-tetskaya nauka - 2017: Mezhdun. nauch.-tekhn. konf., Priazovskiy gosudarstvennyy tekhnicheskiy universi-tet, g.Mariupol', 18-19 maya 2017 g. - Mariupol': GVUZ «PGTU», 2017.- T2.- S. 86-87 3axapoBa I. B., POSHOB B.

10. O. Kryuchkov M. S. Vplyv pul'suyuchoho rozpylyuval'noho potoku na efektyvnist' vy-korystannya elektrodiv, pry utvorenni pokryttiv. // Ma-terialy 4 mizhnarodnoyi naukovo-praktychnoyi konfer-entsiyi «Topical issues of the development of modern science» Sofyya, Bolharyya, 11-13 hrudnya, 2019. s.88-94

11. Zakharova I.V., Royanov A.O., Kryuchkov M.S. Vplyv chastoty pul'satsiy na mitsnist' zcheplennya pokryttya z osnovoyu. // The 16th International conference "Science and society" (December 27, 2019) Accent Graphics Communications & Publishing, Hamilton, Canada. 2019. 6-11 p.

ФОРМИРОВАНИЕ СИСТЕМНОЙ ЭФФЕКТИВНОСТИ ПРОЦЕССОВ ПРОГРАММИРОВАННОЙ ЭКСПЛУАТАЦИИ ВОЗДУШНЫХ СУДОВ

Аль-Аммори А.

доктор технических наук, профессор, заведующий кафедрой информационно-аналитической деятельности и информационной безопасности, Национального транспортного университета, Киев, Украина

Дяченко П.В. кандидат технических наук, доцент, доцент кафедры компьютерных наук и системного анализа, Черкасский государственный технологический университет, Черкассы, Украина

Клочан А.Е.

аспирант кафедры информационно-аналитической деятельности и информационной безопасности, Национального транспортного университета, Киев, Украина

Семаев А.А.

аспирант кафедрой информационно-аналитической деятельности и информационной безопасности,Национального транспортного университета, Киев, Украина

Аль-Аммори Х.А.

аспирант кафедры международных перевозок и таможенного контроля, Национального транспортного университета, Киев, Украина

Семаева А.О.

аспирант кафедрой информационно-аналитической деятельности и информационной безопасности,

Национального транспортного университета, Киев, Украина

i Надоели баннеры? Вы всегда можете отключить рекламу.