RESEARCH AND DEVELOPMENT IN THE FIELD OF NEW IT AND THEIR APPLICATIONS
УДК 004.584
DOI: 10.25559/SITITO.16.202004.893-900
Development of a Human-Machine Interface Based on Hybrid Intelligence
V. V. Khramov
Southern University (IMBL), Rostov-on-Don, Russian Federation 33a/47 Nagibin Ave., Rostov-on-Don 344068, Russian Federation vxpamov@inbox.ru
Abstract
The principles of harmonization of interactions between natural and artificial intelligence as part of ergo-technical systems are considered. An updated concept of the man-machine system has been developed within the framework of digitalization of management of socio-economic systems that have an arbitrary set of NON-factors that allow their implementation by soft models. Within the framework of modeling such an interface, studies of the synergy of artificial intelligence of an automated system of the technical component of the ergo-system and the natural intelligence of a human operator are of particular importance. It is shown that the requirement of universality, the ability to perform various management tasks, and its compatibility with a number of functional subsystems of the control object itself - the machine - are important for the interface. The article presents the general structure of the interaction of a dual human-machine intelligence and an object, the environment and an intelligent control system, and highlights soft models. This often allows us to correct the actions of the operator that can lead to undesirable consequences. The article considers bionic approaches to the concept of hybrid, human-machine intelligence. The article considers adaptive hybrid intelligent control schemes for a man-machine system, a variant of their classification and a method of construction. Accordingly, for the implementation of this approach, a method is proposed that includes a combination of algorithms and methods of traditional formal logical thinking and fuzzy logic.
Keywords: human-machine interface, soft mathematical model, hybrid intelligence, algorithm, ergatic system.
The author declares no conflicts of interest.
For citation: Khramov VV Development of a Human-Machine Interface Based on Hybrid Intelligence. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2020; 16(4):893-900. DOI: https://doi.org/10.25559/SITITO.16.202004.893-900
G ®
Контент доступен под лицензией Creative Commons Attribution 4.0 License. The content is available under Creative Commons Attribution 4.0 License.
Vol. 16, No. 4. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern Information Technologies and IT-Education
ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ
Разработка человеко-машинного интерфейса на основе гибридного интеллекта
В. В. Храмов
ЧОУ ВО «Южный университет (ИУБиП)», г. Ростов-на-Дону, Российская Федерация 344068, Российская Федерация, г. Ростов-на-Дону, пр. М. Нагибина, д. 33А/47 vxpamov@inbox.ru
Аннотация
В статье рассмотрены принципы гармонизации взаимодействий между естественным и искусственным интеллектом в составе эрготехнических систем. Обновленная концепция человеко-машинной системы была разработана в рамках цифровизации управления социально-экономическими системами, имеющими произвольный набор НЕ-факторов, позволяющих их реализовать с помощью мягких моделей. В рамках моделирования такого интерфейса особое значение имеют исследования синергии искусственного интеллекта автоматизированной системы технической составляющей ещо-системы и естественного интеллекта человека-оператора. Показано, что для интерфейса важно требование универсальности, способности выполнять различные задачи управления и его совместимости с рядом функциональных подсистем самого объекта управления - машины. В статье представлена общая структура взаимодействия двойного человеко-машинного интеллекта и объекта, окружающей среды и интеллектуальной системы управления, а также выделены мягкие модели. Это часто позволяет скорректировать действия оператора, которые могут привести к нежелательным последствиям. В статье рассматриваются бионические подходы к концепции гибридного человеко-машинного интеллекта. В статье рассматриваются адаптивные гибридные интеллектуальные схемы управления человеко-машинной системой, вариант их классификации и способ построения. Соответственно, для реализации данного подхода предлагается метод, включающий комбинацию алгоритмов и методов традиционного формально-логического мышления и нечеткой логики.
Ключевые слова: человеко-машинный интерфейс, мягкая математическая модель, гибридный интеллект, алгоритм, эргатическая система.
Автор заявляет об отсутствии конфликта интересов.
Для цитирования: Храмов, В. В. Разработка человеко-машинного интерфейса на основе гибридного интеллекта / В. В. Храмов. - DOI 10.25559^ГПТО.16.202004.893-900 // Современные информационные технологии и ИТ-образование. - 2020. - Т. 16, № 4. - С. 893-900.
Современные информационные технологии и ИТ-образование
Том 16, № 4. 2020 ^ 2411-1473 sitito.cs.msu.ru
h RESEARCH AND DEVELOPMENT IN THE FIELD
V. V. Khramov OF NEW IT AND THEIR APPLICATIONS
Introduction
The development of modern ergotechnical systems (further - ETS) is associated with the peculiarities of information processing, and therefore their most important component is the ergatic subsystem "human - information". Such systems include a technical system " consisting of an operator (a group of operators) and the information with which it interacts (they interact) in its activities during the information exchange process accompanied by the expansion of their application areas"1. At the same time, a significant part of its (or all the main) functions of a person delegates to artificial intelligence [1]. It is common to speak [2,3] about hybrid-intellectualized human-information interaction, which is understood as "Intellec-tualized (clearative-creative) interaction of a person with information, carried out using machine-activated (computer-activated) his mental activity"2.
The main directions of creation and application of such systems in the past are:
- study and exploration of the Earth from space, monitoring of ground areas [4,5,6,7];
- pilotless aerial vehicles for various purposes [8,9,10];
- robotic systems (both ground-based and aerospace)3 [11,12]. The characteristic features inherent of ETS are the presence of " a person as an integral part of the system as a whole, a software and technical component and artificial intelligence (further - AI) the main elements of which are the knowledge base and the intelligent interface. It is artificial intelligence that plays an important role in the functioning of ergo-technical systems"[13].
For modern ergo-systems, the effective functioning of the system as a whole is important, so it is the operator's qualifications that comes to the fore. ETS, as a rule, include the following components (subsystems): informational, management, modeling of the control object, decision-making, adaptation.
Informational subsystem is a set of sources (sensors) and corresponding processing algorithms that provide information about the current technical condition of the ETS elements, perform the function of monitoring its technical condition.
The decision-making subsystem (DMS) comes to the fore in the functioning of the ETS as a whole. "The control of the correctness of the operator's actions today is carried out according to the result of completing the task... Accordingly, in modern ETS, the result of the task performed by the operator is recorded, but it is practically impossible to influence the ergatic element to improve the operational characteristics of the system in real time in case of its incorrect actions to prevent the failure of the task"[13]. Under these conditions, the ergatic element becomes increasingly inefficient. In addition, in the context of rapidly developing technical capabilities of modern ETS, it is necessary to modernize, and in some cases create completely new, very expensive means of training and retraining operators.
Methods and models
A promising scientific solution to the problem of organizing the control of the operator's actions and the necessary information impact on it is to integrate into the existing structure of the ETS a special control mode and information impact on the ergatic element, which is implemented in the form of an additional intellectual subsystem. Moreover, when modeling such a human-machine interface, it is particularly important to study the synergy between the artificial intelligence of the automated system of the technical component of the ergo-system and the natural intelligence of the human operator
The synergetic basis of artificial intelligence
Generalizing «existing views on complexity and complex systems, formulating and detailing the characteristic properties of complex systems within the synergetic paradigm» [19], note that the complexity is:
- a set of system elements connected in a non-trivial way by original connections with each other;
- dynamic network of elements connected according to certain rules;
- complexity is the internal diversity of a system, the diversity of its elements or subsystems, which makes it flexible, able to change its behavior depending on the changing situation;
- multi-level system (there is a complexity architecture);
- openness of a system that exchanges matter, energy, and information with the environment;
- ambiguity of the boundary of a complex system (the vision of its boundaries depends on the position of the observer);
- this is the possibility of emergence of emergent phenomena and / or properties;
- systems with memory, they are characterized by the phenomenon of hysteresis, when changing the mode of operation, the processes resume according to the «old channels»;
- they are regulated by feedback loops: negative, which ensures the restoration of balance, a return to the previous state, and positive, which is responsible for rapid, self-reinforcing growth, during which complexity blooms [19, c. 77-78];
It is obvious that the properties of complex systems described in [19-21] are also applicable to ergasystems with artificial intelligence, which is a function of the complexity of a self-organizing system.
Hybrid intelligence of ergatic systems and bionic effects
As shown in [22, 23], the artificial intelligence system of an "ergatic system is a system of organized complexity, in which the interaction of elements and functional areas is based on non-random relations set by the designer in certain contexts, which continuously change, following the logic of the evolution of the task called by the operator
1 GOST R 43.4.1-2011. Informacionnoe obespechenie tehniki i operatorskoj dejatel'nosti. Sistema "Chelovek - Informacija" [Informational ensuring of equipment and operational activity. System "man - information"]. Standartinform, Moscow; 2013. (In Russ.]
2 GOST R 43.0.2-2006. Informational ensuring of equipment and operational activity. Terms and definitions. Standartinform, Moscow; 2007. (In Russ.]
3 Kramarov S.O., Mitjasova O.Yu., Khramov V.V., Temkin I.O., Groshev A.R. Modul'formirovanijageosistemy [Geosystem Formation Module]: Certificate of official registration of computer program system 2020615607, 2020. Available at: https://elibrary.ru/item.asp?id=43885288 (accessed 28.08.2020]. (In Russ.]
Vol. 16, No. 4. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern Information Technologies and IT-Education
о96 ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ ИНФОРМАЦИОННЫХ 896 ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ
The functional complexity of the ergatic system can be estimated by analogy with the cognitive complexity of a person in terms of the number and types of tasks to be solved. Its complexity (and intelligence) can be determined in relation to specific tasks to be solved, to the complexity of the software used in the control computer of the system, with the volume and degree of differentiation of the system's contacts with the environment and the operator"[13]. As a criterion of intelligence, a number of authors [23, 24] suggested using the length of the algorithm being executed and the number of cycles that allow it to be implemented. The author of this study proposes to clarify and modify this approach - to introduce a measure of the algorithm's information - the Kolmogorov complexity measure - into the quantitative assessment [20, 23]. Let «{\displaystyle P}P - a program that implements an intelligent algorithm (above the parameters fory the state of the ETS) (in any programming language) the output of which is the line ^display-style x}x, that {\displaystyle P} P is description of {\displaystyle x} x.
x=P(y) (1)
The length of the description is the length {\displaystyle P} P as line. In the course of determining the length {\displaystyle P} P the lengths of the subroutines used in P {\displaystyle P}. Then the intellectual component is calculated in terms of the length of any integer constant {\displaystyle n}n, which appears in {\displaystyle P} P {\displaystyle P} is the number of bits required for the representation {\displaystyle n}n, equal (roughly speaking) {\displaysty-le \log _{2}n}log2n» [25].
It is believed that «lambda calculus can give the simplest estimate of complexity. If the description of x is represented by the string s, then its program description can have the form: function GenerateFixedString() return s
If the description s is {\displaystyle s}, d(s) {\displaystyle d(s)} of the minimum length that is, it uses the smallest number of characters, then it is called the minimum description {\displaystyle s}s, and length d(s) {\displaystyle d(s)} {\displaystyle d(s)}, that is, the number of characters in this description - Kolmogorov complexity {\displaystyle s}s, {\displaystyle K(s)}K(s)» [26]. In other words, K(s)
The emergence of ergatic systems with artificial intelligence requires considering the interaction of the natural intelligence of the system operator with the artificial intelligence embodied in the technical part of the ergatic system. In the studies, some general definitions of intelligence and intellectual symbionts operating in the ergatic system and arising in the "process of combining artificial and natural intelligence and the environment of activity"[27] are given.
1. Intelligence is a form of active "self-organization of a complex system, involving the user immersed in the environment in creative changes. It is connected with the environment as a mechanism of its organization, which ensures the processes of self-organization of the system endowed with it.
2. Natural intelligence is organizing complexity in an organized environment, and artificial intelligence is organizing complexity in an organized environment.
3. Hybrid and diffuse intelligences are symbionts that include the
organizing and organized complexity of systems in their synergistic and symbiotic interactions as a tool for achieving the goal of an actor in an organized and organized environment"[26]. Moreover, if hybrid intelligence involves the mutual adaptation of natural and artificial intelligence, although with a flexible boundary between them, then diffuse intelligence is a synergistic union and "almost mental fusion" [27].
The concept of "symbiotic diffuse intelligence, which is a system that includes natural and artificial intelligence in their synergis-tic interaction in a complex artificial environment. The higher the level of artificial intelligence distributed in the environment of the ergatic system, the more effective, all other things being equal, the human intelligence. The properties of symbiotic diffuse intelligence depend on the ability of the user's natural intelligence to master the interface and the intellectual component of the environment"[28]. The effective interaction of natural and artificial intelligence enhances the capabilities of human intelligence in an artificial environment, but at this stage, only within certain limits provided by technology.
Methodology for improving the quality of functioning of the ergotechnical system using soft models
As mentioned above, real ergasystems are affected by NON-factors. Moreover, a significant number of them is associated with the ergatic element [29]. In the conditions of hybrid, especially diffuse intelligence in the ETS, it is necessary to use methods and models of control of the ergosystem that are adequate to "fuzzy calls" [30]. As a basic variant of this approach, a mathematical model of the ergatic element (further - EE) is developed, which implements the statement that the process of solving a problem by a person consists in the use of artificial neural networks (further - INS) with self-learning to develop optimal control by modeling it based on known solutions to typical problems. "The activity of the EE in the control circuit of the functioning of the ETS is considered as the process of converting a certain initial state of the technical system into a state that ensures the performance of functional tasks with the required quality. With this approach, the task of ensuring the required quality of ETS functioning by a human operator can be represented by a tuple Z:
Z = <P, M . M >, (2)
' акт тр ' K J
where P - the algorithm of actions for transferring the ETS from the active state to the required one; M - the current (current), i.e. the
акт
soft model of the technical state of the system available at the time under consideration; M - a soft model of the required technical
' тр 1
state of the system with attributes that characterize its normal (desirable) state" [30].
In the process of functioning of the system, a specialist (integrated -hybrid or diffuse intelligence) needs to compare the available (current) soft model of the state of the ETS, described by a fuzzy vector of its parameters, with the desired soft model. The procedure of fuzzy benchmarking is performed [31,32], on the basis of which a new, achievable soft model (ETS states) is formed (or selected, if available), which provides an effective level of quality of ETS management by the ergatic element. Examples of the implementation of the proposed approach to managing the dynamics of ETS, in rela-
Современные информационные технологии и ИТ-образование
Том 16, № 4. 2020 ISSN 2411-1473 sitito.cs.msu.ru
V. V. Khramov
RESEARCH AND DEVELOPMENT IN THE FIELD OF NEW IT AND THEIR APPLICATIONS
897
tion to monitoring objects of agriculture and forestry, mining, railway infrastructure research, and educational space management are described in detail in [7,31-33].
Conclusion
In recent years, traditional methods of artificial intelligence, such as expert systems, fuzzy systems, artificial neural networks, genetic algorithms, etc., are increasingly being combined into integrated (hybrid and, less often, diffuse) intelligent systems that allow not only to increase the efficiency of managing a wide range of national economic tasks, but also to ensure the introduction of Lean technologies, supporting the main directions of digitalization of the economy.
References
[1] Lavrov E., Pasko N. Development of Models for Computer Systems of Processing Information and Control for Tasks of Ergonomic Improvements. In: Damasevicius R., Vasiljeviené G. (ed.) Information and Software Technologies. ICIST 2018. Communications in Computer and Information Science. 2018; 920:98-109. Springer, Cham. (In Eng.) DOI: https:// doi.org/10.1007/978-3-319-99972-2_8
[2] Venda V.F. Hybrid Intelligence Systems: Evolution Psychology Informatics. Mashinostroenie Publ., Moscow; 1990. (In Russ.)
[3] Sergeev S.F. Symbionts of intellects in ergatic systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2013; (2):149-154. Available at: https:// elibrary.ru/item.asp?id=18949273 (accessed 28.08.2020). (In Russ., abstract in Eng.)
[4] Wechsler D. Wechsler Adult Intelligence Scale. 4th ed. San Antonio, TX: Pearson Assessment; 2008. (In Eng.)
[5] Khramov V.V., Kramarov S.O., Roshchupkin S.A. The Concept of Functional Connectivity of Measurements of Geo-Infor-mational Space of the Region. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2020; 16(2):407-415. (In Eng.) DOI: https://doi.org/10.25559/SITITO.16.202002.407-415
[6] Kramarov S., Khramov V. Methodology of Formation of Unite Geo-Informational Space in the Region. In: Sukhomlin V., Zubareva E. (ed.) Modern Information Technology and IT Education. SITITO 2018. Communications in Computer and Information Science. 2020; 1201:309-316. Springer, Cham. (In Eng.) DOI: https://doi.org/10.1007/978-3-030-46895-8_24
[7] Akperov I.G., Khramov V.V. Soft models for assessing the state of information ecology of the unified geoinformation space of a region. In; Conference Proceedings on Innovative technologies in science and education ("ITNO 2020"). DSTU Print, Rostov-on-Don; 2020. p. 29-33. (In Russ., abstract in Eng.) DOI: https://doi.org/10.23947/itno.2020.29-33
[8] Akperov G.I.O., Alekperov I.D.O. Intelligent Information Systems in the Digital Economy Era. IMBL, Rostov-on-Don; 2020. Available at: https://www.elibrary.ru/item.as-p?id=43829920 (accessed 28.08.2020). (In Russ., abstract in Eng.)
[9] Akperov I.G., Khramov V.V. Contour identification in the concept of TIN-models of the university information marketing space. In: Proceedings of the International Scientific and Practical Conference on "Transport: Science, Education, Production". RSTU, Rostov-on-Don; 2020. p. 16-20. Available at: https://www.elibrary.ru/item.asp?id=44058350 (accessed 28.08.2020). (In Russ., abstract in Eng.)
[10] Golubenko E.V., Khramov V.V., Romanchenko V.Yu. Satellite monitoring of territories development as an active ergo technical system: architecture and properties. In: Proceedings of the International Scientific and Practical Conference on "Transport: Science, Education, Production". RSTU, Rostov-on-Don; 2017. p. 31-35. Available at: https://elibrary. ru/item.asp?id=32625102 (accessed 28.08.2020). (In Russ., abstract in Eng.)
[11] Maus V., Giljum S., Gutschlhofer J. et al. A global-scale data set of mining areas. Scientific Data. 2020; 7: 289. (In Eng.) DOI: https://doi.org/10.1038/s41597-020-00624-w
[12] Kramarov S.O., Khramov V.V., Mityasova O.Yu. Satellite identification of mineral deposits under open pit mining. Mining Informational and Analytical Bulletin. 2019; (5):72-79. (In Russ., abstract in Eng.) DOI: https://doi. org/10.25018/0236-1493-2019-05-0-72-79
[13] Alekseev V.V., Zaitsev A.V., Lysunkin P.S. The methodology for improving the quality of ergatic element in ergotechni-cal systems based on artificial intelligence. Reliability and Quality of Complex Systems. 2018; (3):17-22. (In Russ., abstract in Eng.) DOI: https://doi.org/10.21685/2307-4205-2018-3-3
[14] Alekseeev V.V., Korystin S.I., Malyshev V.A., Sysoev V.V. Mod-elirovanie informacionnogo vozdejstviya na ehrgaticheskij ehlement v ehrgotekhnicheskih sistemah [Simulation of information on the ergatic element in ergo-technical systems]. Stensvil, Moscow; 2003. (In Russ.)
[15] Ignatyev V.V. Adaptive hybrid intellectual control systems. Izvestiya SFedU. Engineering Sciences. 2010; (12):89-94. Available at: https://elibrary.ru/item.asp?id=15553716 (accessed 28.08.2020). (In Russ., abstract in Eng.)
[16] Minitaeva A.M. Human-machine interface organization with intellectualization of person and computer system interaction. Software & Systems. 2013; (3):104-107. Available at: https://elibrary.ru/item.asp?id=21774130 (accessed 28.08.2020). (In Russ., abstract in Eng.)
[17] Khramov V.V. Generacija modelej ob'ektov intellektual'no-go prostranstva. Teorija i ispol'zovanie dlja upravlenija slozhnymi sistemami [Generation of models of objects of intelligent space. Theory and use for managing complex systems]. In: Proceedings of the International Scientific and Practical Conference on Management in Social, Economic and Technical Systems. KUADI, Kislovodsk; 2000. p. 67-68. Available at: https://elibrary.ru/item.asp?id=32737843 (accessed 28.08.2020). (In Russ.)
[18] Narinyani A.S. NE-faktory: kratkoe vvedenie [Non-factors: a brief introduction]. Novosti iskusstvennogo intellekta = News of artificial intelligence. 2004; (2):52-63. (In Russ.)
[19] Knyazeva E.N. Temporal complexity architecture. In: Arshinov V.I. (ed.) The synergetic paradigm. Synergy of innovative complexity. Progress-Tradition, Moscow; 2011. p. 66-86. (In Russ.)
Vol. 16, No. 4. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern Information Technologies and IT-Education
ООО ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ ИНФОРМАЦИОННЫХ 898 ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ
[20] Pavlov V.V., Chezhipenko V.I. The concept of modeling and analyzing the evolution of the technical state of complex technical systems at the maximum possible interval of their life cycle. Cybernetics and Computer Engineering. 2009; (157):3-16. Available at: http://dspace.nbuv.gov.ua/han-dle/123456789/7645 (accessed 28.08.2020). (In Russ.)
[21] Redko V.G. Models of adaptive behavior and problem of origin of intelligence. Mathematical Biology and Bioinformat-ics. 2007; 2(1):160-180. Available at: https://elibrary.ru/ item.asp?id=11610064 (accessed 28.08.2020). (In Russ., abstract in Eng.)
[22] Khramov V.V. Information assessment of the effectiveness of an intelligent design system in the conditions of uncertainty of the description. In: Proceedings of the International Scientific and Practical Conference on Integration of industry and university science: problems of modern machine-building. Rostov-on-Don; 2001. p. 35-36. Available at: https:// elibrary.ru/item.asp?id=36349030 (accessed 28.08.2020). (In Russ.)
[23] Lavrov E., Pasko N., Tolbatov A., Tolbatov V. Ergonomic reserves for improving reliability of data processing in distributed banking systems. In: Proceedings of 2nd International Conference on Advanced Information and Communication Technologies-2017 (AICT-2017). Lviv, Ukraine; 2017. p. 79-82. (In Eng.) DOI: https://doi.org/10.1109/ AIACT.2017.8020070
[24] Makarov I.M., Lokhin V.M., Manko S.V., Romanov P.M. Iskusst-vennyj intellekt i intellektual'nye sistemy upravlenija [Artificial Intelligence and Intelligent Control Systems]. Nauka, Moscow; 2006. (In Russ.)
[25] Kolmogorov A.N. Three approaches to the definition of the concept "quantity of information". Problemy Peredachi In-formatsii = Problems of Information Transmission. 1965; 1(1):3-11. (In Russ.)
[26] Vyugin V.V. Kolmogorovskaja slozhnost' i algoritmicheskaja sluchajnost' [Kolmogorov complexity and algorithmic randomness]. MIPT: IPPI RAS, Moscow; 2012. Available at: http://iitp.ru/upload/publications/6059/vyugin_kolm.pdf (accessed 28.08.2020). (In Russ.)
[27] Khramov V.V. Using the paradigm of self-organization to describe information processes in ergatic systems. In: Transport-2002: Proceedings of the scientific and theoretical conference. RSTU, Rostov-on-Don; 2002. Available at: https://www.elibrary.ru/item.asp?id=32653111 (accessed 28.08.2020). (In Russ., abstract in Eng.)
[28] Khramov V.V. The concept of ensuring the effectiveness of organizational and technical systems based on the bionic-in-tellectual approach. Vestnik Rostovskogo Gosudarstvennogo Universiteta Putej Soobshcheniya. 2001; (2):138-141. Available at: https://www.elibrary.ru/item.asp?id=11713661 (accessed 28.08.2020). (In Russ.)
[29] Khramov V.V. Theoretical foundations of the methodology for the synthesis of information objects ESVN. In: Proceedings of the scientific conference on Problems of ensuring the efficiency and stability of the functioning of complex technical systems. VARVSN, Serpukhov; 2002. p. 124-128. Available at: https://www.elibrary.ru/item.asp?id=32877394 (accessed 28.08.2020). (In Russ.)
[30] Khramov V.V., Gvozdev D.S. Intellektual'nye informacionnye sistemy: intellektual'nyj analiz dannyh [Intelligent Information Systems: Data Mining]. RSTU, Rostov-on-Don; 2012. Available at: https://www.elibrary.ru/item.as-p?id=32762296 (accessed 28.08.2020). (In Russ.)
[31] Khramov V.V., Tscarkov A.N. Modeling of information processes in ergatic systems based on the principles of self-organization. In: Proceedings of the scientific conference on Problems of ensuring the efficiency and stability of the functioning of complex technical systems. VARVSN, Serpukhov; 2003. p. 444-447. Available at: https://www.elibrary.ru/ item.asp?id=32760882 (accessed 28.08.2020). (In Russ.)
[32] Khramov V.V., Tscarkov A.N. Features of information metabolism in human-machine systems. In: Proceedings of the scientific conference on Problems of ensuring the efficiency and stability of the functioning of complex technical systems. VARVSN, Serpukhov; 2003. p. 437-440. Available at: https://www.elibrary.ru/item.asp?id=32759920 (accessed 28.08.2020). (In Russ.)
[33] Lindenbaum, T.M. Vvedenie v informacionnuju jekologiju: tehnologicheskie predposylki [Introduction to Information Ecology: technological prerequisites]. In: Proceedings of the International Scientific and Practical Conference on "Actual Problems and Prospects for the Development of Transport, Industry and Economy in Russia". RSTU, Rostov-on-Don; 2020. p. 136-140. (In Russ.)
Submitted 28.08.2020; approved after reviewing 15.10.2020; accepted for publication 05.12.2020.
^¡¡¡¡■¡¡е^/огШШШШШШШШЛ
Vladimir V. Khramov, Leading Research Scientist, Southern University (IMBL) (33a/47 Nagibin Ave., Rostov-on-Don 344068, Russian Federation), Ph.D. (Engineering), Associate Professor, ORCID:
http://orcid.org/0000-0003-1848-8174, vxpamov@inbox.ru
The author has read and approved the final manuscript.
Список использованных источников
[1] Lavrov, E. Development of Models for Computer Systems of Processing Information and Control for Tasks of Ergonomic Improvements / E. Lavrov, N. Pasko. - DOI 10.1007/978-3-319-99972-2_8 // Information and Software Technologies. ICIST 2018. Communications in Computer and Information Science; R. Damasevicius, G. Vasiljeviene (ed.) Springer, Cham. - 2018. - Vol. 920. - Pp. 98-109. - URL: https://link. springer.com/chapter/10.1007/978-3-319-99972-2_8 (дата обращения: 28.08.2020).
[2] Венда, В. Ф. Системы гибридного интеллекта: эволюция, психология, информатика / В. Ф. Венда. - М.: Машиностроение, 1990.
[3] Сергеев, С. Ф. Интеллектные симбионты в эргатических системах / С. Ф. Сергеев // Научно-технический вестник информационных технологий, механики и оптики.
- 2013. - № 2(84). - С. 149-154. - URL: https://elibrary. ru/item.asp?id=18949273 (дата обращения: 28.08.2020).
- Рез. англ.
Современные информационные технологии и ИТ-образование
Том 16, № 4. 2020 ISSN 2411-1473 sitito.cs.msu.ru
V. V. Khramov
RESEARCH AND DEVELOPMENT IN THE FIELD OF NEW IT AND THEIR APPLICATIONS
899
[4] Wechsler, D. Wechsler Adult Intelligence Scale / D. Wechsler
- 4th ed. - San Antonio, TX: Pearson Assessment, 2008.
[5] Храмов, В. В. Концепция функциональной связности [13] измерений геоинформационного пространства региона / В. В. Храмов, С. О. Крамаров, С. А. Рощупкин. - DOI 10.25559/SITITO.16.202002.407-415 // Современные информационные технологии и ИТ-образование. -2020. - Т. 16, № 2. - С. 407-415. - URL: https://elibrary.ru/ item.asp?id=44743636 (дата обращения: 28.08.2020).
[6] Kramarov, S. Methodology of Formation of Unite Geo-Informational Space in the Region / S. Kramarov, V. Khramov. [14]
- DOI 10.1007/978-3-030-46895-8_24 // Modern Information Technology and IT Education. SITITO 2018. Communications in Computer and Information Science; V. Sukhomlin, E. Zubareva (ed.). Springer, Cham. - 2020. - Vol. [15] 1201. - Pp. 309-316. - URL: https://link.springer.com/cha pter/10.1007%2F978-3-030-46895-8_24 (дата обращения: 28.08.2020).
[7] Акперов, И. Г. Мягкие модели оценки состояния информационной экологии единого геоинформационного [16] пространства региона / И. Г. Акперов, В. В. Храмов. - DOI 10.23947/itno.2020.29-33 // Инновационные технологии в науке и образовании («ИТНО 2020»). Сборник научных трудов VIII Международной научно-практической конференции, с применением дистанционных технологий. - Ростов-на-Дону: ООО «ДГТУ-ПРИНТ», 2020. -
С. 29-33. - URL: https://elibrary.ru/item.asp?id=44467943 [17] (дата обращения: 28.08.2020). - Рез. англ.
[8] Акперов, Г. И. О. Интеллектуальные информационные системы в эпоху цифровой экономики / Г. И. О. Акперов, И. Д. О. Алекперов, В. В. Храмов. - Ростов-на-Дону: Изд-во ЮУ (ИУБиП), 2020. - URL: https://www.elibrary.ru/ item.asp?id=43829920 (дата обращения: 28.08.2020).
[9] Акперов, И. Г. Контурная идентификация в концепции TIN-моделей информационного маркетингово- [18] го пространства вуза / И. Г. Акперов, В. В. Храмов // «Транспорт: наука, образование, производство». Труды Международной научно-практической конференции. - [19] Ростов-на-Дону: РГУПС, 2020. - С. 16-20. - URL: https:// www.elibrary.ru/item.asp?id=44058350 (дата обращения: 28.08.2020). - Рез. англ.
[10] Голубенко, Е. В. Спутниковый мониторинг развития [20] территорий как активная эрготехническая система: архитектура и свойства / Е. В. Голубенко, В. В. Храмов,
В. Ю. Романченко. - Ростов-на-Дону: РГУПС, 2017. - С. 31-35. - URL: https://elibrary.ru/item.asp?id=32625102 (дата обращения: 28.08.2020). - Рез. англ.
[11] Maus, V. A global-scale data set of mining areas / V. Maus, S. Giljum, J. Gutschlhofer [et al.]. - DOI 10.1038/s41597-020- [21] 00624-w // Scientific Data. - 2020. - Vol. 7. - Article 289.
- URL: https://www.nature.com/articles/s41597-020-00624-w (дата обращения: 28.08.2020).
[12] Крамаров, С. О. Спутниковая идентификация объектов добычи полезных ископаемых на месторождениях разрабатываемых открытым способом / С. О. Крамаров, В. [22] В. Храмов, О. Ю. Митясова. - DOI 10.25018/0236-14932019-05-0-72-79 // Горный информационно-аналитический бюллетень. - 2019. - № 5. - С. 72-79. - URL:
https://elibraryru/item.asp?id=37402276 (дата обращения: 28.08.2020). - Рез. англ.
Алексеев, В. В. Методология повышения качества эр-гатического элемента в эрготехнических системах на основе искусственного интеллекта / В. В. Алексеев, А. В. Зайцев, П. С. Лысункин. - DOI 10.21685/2307-42052018-3-3 // Надежность и качество сложных систем.
- 2018. - № 3(23). - С. 17-22. - URL: https://elibrary.ru/ item.asp?id=37144666 (дата обращения: 28.08.2020). -Рез. англ.
Алексеев, В. В. Моделирование информационного воздействия на эргатический элемент в эрготехнических системах / В. В. Алексееев, С. И. Корыстин, В. А. Малышев, В. В. Сысоев. - М.: Стенсвил, 2003. Игнатьев, В. В. Адаптивные гибридные интеллектуальные системы управления / В. В. Игнатьев // Известия ЮФУ Технические науки. - 2010. - № 12(113). - С. 89-94.
- URL: https://elibrary.ru/item.asp?id=15553716 (дата обращения: 28.08.2020). - Рез. англ.
Минитаева, А. М. Организация человеко-машинного интерфейса с учетом интеллектуализации взаимодействия человека и вычислительного комплекса / А. М. Минитаева // Программные продукты и системы. -2013. - № 3. - С. 104-107. - URL: https://elibrary.ru/item. asp?id=21774130 (дата обращения: 28.08.2020). - Рез. англ.
Храмов, В. В. Генерация моделей объектов интеллектуального пространства. Теория и использование для управления сложными системами / В. В. Храмов // Управление в социальных, экономических и технических системах. Труды межреспубликанской научной конференции. - Кисловодск: КУАООПР, 2000. - С. 67-68.
- URL: https://elibrary.ru/item.asp?id=32737843 (дата обращения: 28.08.2020).
Нариньяни, А. С. НЕ-факторы: краткое введение / А. С. Нариньяни // Новости искусственного интеллекта. -2004. - № 2. - С. 52-63.
Князева, Е. Н. Темпоральная архитектура сложности / Е. Н. Князева // Синергетическая парадигма. Синергетика инновационной сложности [отв. ред. В. И. Арши-нов и др.]. - М.: Прогресс-Традиция, 2011. - С. 66-86. Павлов, В. В. Концепция моделирования и анализа эволюции технического состояния сложных технических систем на максимально возможном интервале их жизненного цикла / В. В. Павлов, В. И. Чепиженко // Кибернетика и вычислительная техника. - 2009.
- № 157. - С. 3-16. - URL: http://dspace.nbuv.gov.ua/ handle/123456789/7645 (дата обращения: 28.08.2020). Редько, В. Г. Модели адаптивного поведения и проблема происхождения интеллекта / В. Г. Редько // Математическая биология и биоинформатика. - 2007.
- Т. 2, № 1. - С. 160-180. - URL: https://elibrary.ru/item. asp?id=11610064 (дата обращения: 28.08.2020). - Рез. англ.
Храмов, В. В. Информационная оценка эффективности интеллектуальной системы проектирования в условиях неопределенности описания / В. В. Храмов // Интеграция отраслевой и вузовской науки: проблемы совре-
Vol. 16, No. 4. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern Information Technologies and IT-Education
ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ ИНФОРМАЦИОННЫХ
ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ В В Храмов
менного машиностроения. Материалы международной научно-технической конференции. - Ростов-на-Дону: РГАСХМ, 2001. - С. 35-36. - URL: https://elibrary.ru/item. asp?id=36349030 (дата обращения: 28.08.2020).
[23] Lavrov, E. Ergonomic reserves for improving reliability of data processing in distributed banking systems / E. Lavrov, N. Pasko, A. Tolbatov, V. Tolbatov. - DOI 10.1109/ AIACT.2017.8020070 // Proceedings of 2nd International Conference on Advanced Information and Communication Technologies-2017 (AICT-2017). - Lviv, Ukraine, 2017. - Pp. 79-82. - URL: https://ieeexplore.ieee.org/ document/8020070 (дата обращения: 28.08.2020).
[24] Макаров, И. М. Искусственный интеллект и интеллектуальные системы управления / И. М. Макаров, В. М. Лохин, С. В. Манько, М. П. Романов. - М.: Наука, 2006.
[25] Колмогоров, А. Н. Три подхода к определению понятия «количество информации» / А. Н. Колмогоров // Проблемы передачи информации. - 1965. - Т. 1, № 1. - С. 3-11.
[26] Вьюгин, В. В. Колмогоровская сложность и алгоритмическая случайность / В. В. Вьюгин. - М.: МФТИ: ИППИ РАН, 2012. - URL: http://iitp.ru/upload/publications/6059/ vyugin_kolm.pdf (дата обращения: 28.08.2020).
[27] Храмов, В. В. Использование парадигмы самоорганизации для описания информационных процессов в эр-гатических системах / В. В. Храмов // Транспорт-2002.
- Ростов-на-Дону: РГУПС, 2002. - URL: https://www. elibrary.ru/item.asp?id=32653111 (дата обращения: 28.08.2020). - Рез. англ.
[28] Храмов, В. В. Концепция обеспечения эффективности организационно-технических систем на основе биони-ко-интеллектуального подхода / В. В. Храмов // Вестник Ростовского государственного университета путей сообщения. - 2001. - № 2. - С. 138-141. - URL: https:// www.elibrary.ru/item.asp?id=11713661 (дата обращения: 28.08.2020).
[29] Храмов, В. В. Теоретические основы методологии синтеза информационных объектов ЭСВН / В. В. Храмов // Проблемы обеспечения эффективности и устойчивости функционирования сложных технических систем.
- Серпухов: ВА РВСН, 2002. - С. 124-128. - URL: https:// www.elibrary.ru/item.asp?id=32877394 (дата обращения: 28.08.2020).
[30] Храмов, В. В. Интеллектуальные информационные системы: интеллектуальный анализ данных / В. В. Храмов, Д. С. Гвоздев. - Ростов-на-Дону: РГУПС, 2012. - URL: https://www.elibrary.ru/item.asp?id=32762296 (дата обращения: 28.08.2020).
[31] Храмов, В. В. Моделирование информационных процессов в эргатических системах на основе принципов самоорганизации / В. В. Храмов, А. Н. Царьков // Проблемы обеспечения эффективности и устойчивости функционирования сложных технических систем. - Серпухов: ВА РВСН, 2003. - С. 444-447. - URL: https://www.elibrary. ru/item.asp?id=32760882 (дата обращения: 28.08.2020).
[32] Храмов, В. В. Особенности информационного метаболизма в человеко-машинных системах / В. В. Храмов, А. Н. Царьков // Проблемы обеспечения эффективности
и устойчивости функционирования сложных технических систем. - Серпухов: ВА РВСН, 2003. - С. 437-440. - URL: https://www.elibraryru/item.asp?id=32759920 (дата обращения: 28.08.2020).
[33] Линденбаум, Т. М. Введение в информационную экологию: технологические предпосылки / Т. М. Линденбаум и др. // Актуальные проблемы и перспективы развития транспорта, промышленности и экономики России. Труды Международной научно-практической конференции. - Ростов-на-Дону: РГУПС, 2020. - С. 136-140.
Поступила 28.08.2020; одобрена после рецензирования 15.10.2020; принята к публикации 05.12.2020.
|об авторе:|
Храмов Владимир Викторович, ведущий научный сотрудник, ЧОУ ВО «Южный университет (ИУБиП)» (344068, Российская Федерация, г. Ростов-на-Дону, пр. М. Нагибина, д. 33А/47), кандидат технических наук, доцент, ORClD: http://orcid. ощ/0000-0003-1848-8174, vxpamov@inbox.ru
Автор прочитал и одобрил окончательный вариант рукописи.
Современные информационные технологии и ИТ-образование
Том 16, № 4. 2020 ISSN 2411-1473 sitito.cs.msu.ru