Научная статья на тему 'Design of microstrip patch antenna using Fennec Fox optimization with SSRR metamaterial for terahertz applications'

Design of microstrip patch antenna using Fennec Fox optimization with SSRR metamaterial for terahertz applications Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
59
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
wireless technology / gain / resonant frequency / microstrip patch antenna / MPA / square split ring resonator / SSRR / беспроводная технология / прирост / резонансная частота / микрополосковая патч-антенна / MPA / квадратный разъемный кольцевой резонатор / SSRR

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Sangeeta Kumari, Arvind Kumar, Ettiyappan Anbalagan, Kiran Kumar Thoti, Manoj Sharma

This paper presents the design of a microstrip patch antenna based on a Square Split Ring Resonator (SSRR). Wireless technology is switching from 4G to 5G due to the need to overcome limitations, such as low throughput, high latency and path loss. To increase data transfer speeds, the next generation of wireless networks uses 5G terahertz technology. The use of microstrip patch antennas in wireless technologies has increased significantly due to their low cost and simplicity of design as well as the ease of printed circuit board fabrication. However, in some cases their use is limited by low bandwidth, low gain and low throughput. To solve these problems, the Fennec Fox optimization algorithm is used. The algorithm allows you to optimize the length of the microstrip patch antenna resulting in increased gain and reduced return loss. Bakelite is used as a substrate. The width of the patch antenna is set according to the most suitable length selected. To increase the bandwidth and Voltage Standing Wave Ratio (VSWR), a square split ring resonator (SSRR) is used as a metamaterial. An evaluation of the designed microstrip patch antenna model with existing patch antennas was performed. The estimated values of the parameters of the proposed model were the following values: return loss –72.54 dB, resonant frequency 1.11 THz, achieved gain 15.25 dB, VSWR value 1.5646. The estimated values of the developed model exceed those of existing samples. Thus, the developed microstrip patch antenna using Fennec Fox optimization and square split ring resonator metamaterial shows better results in the terahertz range.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Проектирование микрополосковой патч-антенны на основе метаматериала SSRR для терагерцового диапазона с использованием алгоритма оптимизации Fennec Fox

Представлена конструкция микрополосковой патч-антенны на основе квадратного разъемного кольцевого резонатора (Square Split Ring Resonator, SSRR). Беспроводная технология связи переходит со стандарта 4G на стандарт 5G из-за необходимости снятия таких ограничений, как невысокая пропускная способность, большая задержка и потери на пути передачи данных. В следующем поколении сетей беспроводной связи для повышения скорости передачи данных применяется терагерцовая технология 5G. Применение микрополосковых патч-антенн в беспроводных технологиях значительно расширилось благодаря их низкой стоимости, простоте конструкции и процесса изготовления печатной платы. Однако в ряде случаев применение патч-антенн ограничивается малой полосой пропускания, небольшим коэффициентом усиления и низкой пропускной способностью. Для решения этих проблем используется алгоритм оптимизации Fennec Fox, который позволяет оптимизировать длину микрополосковой патч-антенны, усилить сигнал и снизить обратные потери. В качестве подложки использован бакелит. Ширина микрополосковой патч-антенны установлена в соответствии с наиболее подходящей выбранной длиной. Для увеличения полосы пропускания и коэффициента стоячей волны по напряжению (КСВН) в качестве метаматериала применен резонатор на основе SSRR. Выполнена оценка спроектированной и существующих моделей микрополосковых патч-антенн. Оценочные значения параметров предлагаемой модели составили следующие величины: обратные потери –72,54 дБ, резонансная частота 1,11 ТГц, достигнутое усиление 15,25 дБ, значение КСВН 1,5646. Полученные значения параметров разработанной модели превосходят показатели существующих образцов. Таким образом, разработанная микрополосковая патч-антенна с использованием оптимизации Fennec Fox и метаматериал а н а основе квадратного разъемного кольцевого резонатора показала лучшие результаты в терагерцовом диапазоне.

Текст научной работы на тему «Design of microstrip patch antenna using Fennec Fox optimization with SSRR metamaterial for terahertz applications»

НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ноябрь-декабрь 2023 Том 23 № 6 http://ntv.ifmo.ru/

I/ITMO SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

November-December 2023 Vol. 23 No 6 http://ntv.ifmo.ru/en/

ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2023-23-6-1205-1213

Design of microstrip patch antenna using Fennec Fox optimization with SSRR metamaterial for terahertz applications

Sangeeta Kumari1, Arvind Kumar2®, Ettiyappan Anbalagan3, Kiran Kumar Thoti4,

Manoj Sharma5

1,2 BIT Sindri, Sindri, 828123, India

3 Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 600095, India

4 University Malaysia Kelantan, Kota Bharu, 16100, Malaysia

5 Manipal University Jaipur, Jaipur, 303007, India

1 [email protected], https://orcid.org/0009-0006-8456-2167

2 [email protected]®, https://orcid.org/0000-0002-4716-3582

3 [email protected], https://orcid.org/0000-0002-5727-0605

4 [email protected], https://orcid.org/0000-0002-6678-9425

5 [email protected], https://orcid.org/0000-0003-2886-4217

Abstract

This paper presents the design of a microstrip patch antenna based on a Square Split Ring Resonator (SSRR). Wireless technology is switching from 4G to 5G due to the need to overcome limitations, such as low throughput, high latency and path loss. To increase data transfer speeds, the next generation of wireless networks uses 5G terahertz technology. The use of microstrip patch antennas in wireless technologies has increased significantly due to their low cost and simplicity of design as well as the ease of printed circuit board fabrication. However, in some cases their use is limited by low bandwidth, low gain and low throughput. To solve these problems, the Fennec Fox optimization algorithm is used. The algorithm allows you to optimize the length of the microstrip patch antenna resulting in increased gain and reduced return loss. Bakelite is used as a substrate. The width of the patch antenna is set according to the most suitable length selected. To increase the bandwidth and Voltage Standing Wave Ratio (VSWR), a square split ring resonator (SSRR) is used as a metamaterial. An evaluation of the designed microstrip patch antenna model with existing patch antennas was performed. The estimated values of the parameters of the proposed model were the following values: return loss -72.54 dB, resonant frequency 1.11 THz, achieved gain 15.25 dB, VSWR value 1.5646. The estimated values of the developed model exceed those of existing samples. Thus, the developed microstrip patch antenna using Fennec Fox optimization and square split ring resonator metamaterial shows better results in the terahertz range. Keywords

wireless technology, gain, resonant frequency, microstrip patch antenna, MPA, square split ring resonator, SSRR For citation: Kumari S., Kumar A., Anbalagan E., Kumar Thoti K., Sharma M. Design of microstrip patch antenna using Fennec Fox optimization with SSRR metamaterial for terahertz applications. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 6, pp. 1205-1213. doi: 10.17586/2226-1494-2023-23-6-1205-1213

УДК 621.396.67

Проектирование микрополосковой патч-антенны на основе метаматериала SSRR для терагерцового диапазона с использованием алгоритма оптимизации Fennec Fox

Сангита Кумари1, Арвинд Кумар2Н, Эттияппан Анбалаган3, Киран Кумар Тоти4,

Манодж Шарма5

1,2 БИТ Синдри, Синдри, 828123, Индия

3 Инженерная школа Савиты, Институт медицинских и технических наук Саветы, Ченнай, 600095, Индия

4 Государственный университет в Келантане, Кота-Бару, 16100, Малайзия

5 Университет Манипал в Джайпуре, Джайпур, 303007, Индия

© Kumari S., Kumar A., Anbalagan E., Kumar Thoti K., Sharma M., 2023

1 [email protected], https://orcid.org/0009-0006-8456-2167

2 [email protected], https://orcid.org/0000-0002-4716-3582

3 [email protected], https://orcid.org/0000-0002-5727-0605

4 [email protected], https://orcid.org/0000-0002-6678-9425

5 [email protected], https://orcid.org/0000-0003-2886-4217

Аннотация

Представлена конструкция микрополосковой патч-антенны на основе квадратного разъемного кольцевого резонатора (Square Split Ring Resonator, SSRR). Беспроводная технология связи переходит со стандарта 4G на стандарт 5G из-за необходимости снятия таких ограничений, как невысокая пропускная способность, большая задержка и потери на пути передачи данных. В следующем поколении сетей беспроводной связи для повышения скорости передачи данных применяется терагерцовая технология 5G. Применение микрополосковых патч-антенн в беспроводных технологиях значительно расширилось благодаря их низкой стоимости, простоте конструкции и процесса изготовления печатной платы. Однако в ряде случаев применение патч-антенн ограничивается малой полосой пропускания, небольшим коэффициентом усиления и низкой пропускной способностью. Для решения этих проблем используется алгоритм оптимизации Fennec Fox, который позволяет оптимизировать длину микрополосковой патч-антенны, усилить сигнал и снизить обратные потери. В качестве подложки использован бакелит. Ширина микрополосковой патч-антенны установлена в соответствии с наиболее подходящей выбранной длиной. Для увеличения полосы пропускания и коэффициента стоячей волны по напряжению (КСВН) в качестве метаматериала применен резонатор на основе SSRR. Выполнена оценка спроектированной и существующих моделей микрополосковых патч-антенн. Оценочные значения параметров предлагаемой модели составили следующие величины: обратные потери -72,54 дБ, резонансная частота 1,11 ТГц, достигнутое усиление 15,25 дБ, значение КСВН 1,5646. Полученные значения параметров разработанной модели превосходят показатели существующих образцов. Таким образом, разработанная микрополосковая патч-антенна с использованием оптимизации Fennec Fox и метаматериала на основе квадратного разъемного кольцевого резонатора показала лучшие результаты в терагерцовом диапазоне. Ключевые слова

беспроводная технология, прирост, резонансная частота, микрополосковая патч-антенна, MPA, квадратный разъемный кольцевой резонатор, SSRR

Ссылка для цитирования: Кумари С., Кумар А., Анбалаган Э., Кумар Тоти К., Шарма М. Проектирование микрополосковой патч-антенны на основе метаматериала SSRR для терагерцового диапазона с использованием алгоритма оптимизации Fennec Fox // Научно-технический вестник информационных технологий, механики и оптики. 2023. Т. 23, № 6. С. 1205-1213 (на англ. яз.). doi: 10.17586/2226-1494-2023-23-6-1205-1213

Introduction

In daily life, wireless connectivity is crucial and acts as the transmission medium for sending data or information wirelessly from one location to another [1]. This enables data interchange across Radio Frequency (RF) and microwave frequencies without using a conductor. Electromagnetic waves are the medium used in wireless communication to transport data among the sender and the recipient [2]. High-speed data transfer between various electrical devices is necessary for next-generation wireless communication [3]. Terahertz (THz) frequency band is a range of frequencies between 0.1 to 10 THz that might be used for high-speed data transfer [4]. The terahertz frequency range is currently generating a lot of attention because of its higher data rate, higher bandwidth, non-ionizing nature and excellent determination in wireless communication [5]. Its spectral range is situated between the RF and mid-infrared regions, which may accommodate bandwidths as high as hundreds of GHz.

In the future years, the THz frequency range will enable high-channel capacity, increased data speeds and excellent quality broadcast capabilities [6]. Emitting or receiving electromagnetic waves is the purpose of an antenna. Traditional microwave antennas, which are often employed in various real-world applications, lack some of the benefits that microstrip antennas can execute [7]. The most basic and widely used microstrip antennas are rectangular and circular patches. The patch antenna is a key component of

the existing wireless communication system that has been essential in this development [8]. Microstrip patch antennas (MPAs) are smaller, lighter, cheaper, easier to make and more easily integrated into wireless communication and mobile radio applications than traditional microwave antennas [9, 10]. Their primary drawbacks are reduced gain and bandwidth which may be greatly increased using various ways.

Utilizing metamaterials is one of the key techniques, an artificial material unavailable in nature [11]. Its qualities are determined by its structure which can be elliptical, rectangular, triangular, circular, or any other form, rather than by the materials it is composed [12]. The magnetic permeability, electric permittivity and index of refraction for natural materials are often positive. However, some of the properties are negative in metamaterials, and they are referred to as Negative Index Materials and Left-Handed Materials [13]. Metamaterials are used in the development of ideal lenses, wave retarders, absorbers, cloaks, and antennas [14, 15]. A parameter-based metamaterial MPA is designed to increase the terahertz resonant frequency for diverse applications. Major contributions of the designed model are:

— Designing a MPA using an optimization algorithm with Square Split Ring Resonator Metamaterial for Terahertz Applications;

— Bakelite material is employed as a substrate in the MPA for its better dielectric constant and loss tangent;

— Dimensions of the MPA are optimally selected using the Fennec Fox optimization;

— The Square Split Ring Resonator (SSRR) is used as a metamaterial to enhance the antenna gain and bandwidth.

Literature Survey

Many MPAs based on metamaterials are developed to enhance the bandwidth and gain of the antenna. Some related articles that use metamaterial MPAs have been researched and reviewed here.

Sagik et al. [16] had designed metamaterial structures by using the Artificial Neural Network (ANN) approach for optimizing the gain and directivity of a microstrip antenna. The radiation curves of the antennas can be formed by orienting them in accordance with the power densities that achieves in a particular direction which has been previously established. Using the best metamaterial structure, it was intended to enhance the gain and directivity of MPAs based on this characteristic of antennas. The developed metamaterial structures interacted with the antenna to train the ANN approach is to predict the best suitable values for the antenna gain, frequency and directivity.

Guttula et al. [17] had developed a MPA via an improved metaheuristic algorithm using an optimization algorithm. In order to support the development of the solution spaces for antenna restrictions, an alternative approach has been developed in this study. Elephant Herding Optimisation with Distinct Scaling Factor, an improved optimization method that modifies the MPA parameters having being developed. By choosing the MPA substrate thickness, patch length, width and dielectric value, the designed work aimed to attain optimum antenna gain. At last, the designed model was verified in terms of gain, cost and efficiency analysis was conducted.

Suraj et al. [18] had performed an optimized metamaterials-based WiFi antenna based on a genetic algorithm. The MPA for International Safety Management applications is described in this study and includes SSRR components at the ground plane. The antenna properties were increased as necessary by including the metamaterials that have been physically engraved into the ground without altering its radiating patch. The left-handed activity of metamaterials influenced by the direct contact of SSRR with electric fields is frequently represented as shunt inductance and series capacitance. The developed metamaterials antenna produces an increased gain while shrinking in size after a genetic algorithm is included.

Shamim et al. [19] had introduced a high-speed terahertz applications model with the miniaturized wideband MPA. This model of wireless communication MPA has a 0.72 THz resonance frequency. This designed antenna consists of an impedance bandwidth of 37.50 % and 0.72 THz centre frequency with a 0.53 to 0.84 THz frequency range. Input impedance, input loss, Voltage Standing Wave Ratio (VSWR) and radiation patterns in the E-planes and H-planes are used to demonstrate the result. The designing and simulation were done by utilizing the finite difference time domain method and a simulator based on full-wave electromagnetic with the CST Studio suite.

Singh et al. [20] had designed MPA for UltraWideband (UWB) applications with the Moth-Flame

optimization algorithm. MPAs are designed to work in dual and multi-band applications due to their inexpensive price, lightweight and simple installation. The antenna performance was enhanced, while the material cost was decreased by using the liquid crystal polymer substrate with the appropriate geometrical parameters. The MFO-optimized antenna has a small dimension of 50 x 50 mm, which enhances antenna performance. The antenna working bandwidth was 3.1 GHz, and its 20 dB Return Loss (RL) covered UWB applications. Comparing the simulation results to the preceding approaches, the designed model shows better radiation pattern, impedance bandwidth, directivity and steady gain for the entire frequency spectrum.

Different versions with varied MPAs have been developed in THz frequency that ranges for various applications based on the materials examined above. They basically chose to create an antenna with a higher size or a narrower bandwidth. Further research is required in MPA to enable data transferring at THz frequency in wireless communication. Thus, the optimized MPA is created to increase data transmission bandwidth at THz frequency.

Design of an Optimized MPA

MPAs are inexpensive with a small profile that is simple to develop and they can be integrated with electronic devices. To construct a high-performance antenna, one must understand the various antenna parameters in-depth. These parameters include the radiating patch, loss tangent, feeding method, dielectric material thickness and constant value. The material used for the substrate is positioned with the same width and length as placed between the radiating patch and ground plane.

Fig. 1 demonstrates the metamaterial-based MPA for terahertz applications. Fig. 1 illustrates the structure of an MPA which contains a radiating patch on one side and a ground plane on the other. The substrate, feed line, and radiating patch make up the layout. By using the microstrip inset method, a rectangular patch is supplied. In this model, the radiator patch is generated on a Bakelite substrate which is a material with the specified parameters such as loss tangent of 0.0002 and a relative permittivity of 4.8 intended for the development. The Fennec Fox Optimisation chooses the patch antenna ideal length and breadth for radiating. Based on the optimally selected length and width, the slot length and width and the insert feed length and width are

Fig. 1. Metamaterial-based MPA

determined for designing the metamaterial-based patch antenna. The metamaterial used in this model is a SSRR.

MPA parameters

The basic parameters used for designing the MPA are length (L), width (W) and height (H) of the substrate, length of the ground (Lg), microstrip feed width (Wp), inset feed width (Wf), inset feed length (Lf), slot length (Ls), width of the ground (Wg), slot width (Ws), and feed location (L). The patch antenna length and breadth have been determined best within these parameters corresponding to the fitness function of decreasing the resonant frequency. The resonant frequency is the frequency at which the patch receives the most power or when the feedline and patch impedances are most closely matched. It is also the juncture at which the impedance is purely resistive and inductive reactance equals the capacitive reactance.

Resonant frequency, fr =

2iVere#

(1)

Here, eref denotes the effective dielectric constant, c denotes the speed of light in free space, and L signifies the length of the patch antenna.

Equations illustrated below are used to obtain the effective length and dielectric constant.

Ere)f = ■

Er+ 1

1 / | 12Я \ + W t

-0.5

Leff = L + 2AL,

where er represents the substrate dielectric constant; the patch antenna width, length and height are denoted as W, L and H.

Width of the microstrip patch antenna, c nr

w=— -.

2/rVer+l

These parameters are determined for designing the MPA with minimal RL. The patch height is optimally selected using the Fennec Fox optimization algorithm. Fennec Fox optimization algorithm Fennec foxes are found in North Africa and Egypt's Sinai Peninsula as members of the Vulpes family of foxes [21]. Because of its huge ears, the fennec fox can be easily recognized. An omnivorous creature that consumes fruits, certain tubers, small birds, skinks and eggs. The fennec fox has two more significant qualities than its other abilities. These qualities include an effective digging ability and a means of avoiding predators. The two abilities of the fennec fox's behaviours are much more important than the rest of them. Some of these characteristics include the ability to dig deeply and the capacity to escape from predators. Fennec foxes build their nests in the sand, and they immediately dig their prey out of the sand after detecting their movements beneath because they are sensitive to the motions of tiny animals and insects. Parameter optimization for the MPA For selecting the optimal width and length of MPA, the Fennec Fox optimization algorithm is used. Some of

the steps that are considered for optimal length and width are initialization, fitness function evaluation, updating and termination.

Step 1: Initialization. The optimal values for the width and length of the MPA are selected by initializing the values ranging from 90-120 ^m. These values are initialized according to the following equation.

F = Xi, X2, X3, ..., X).

Step 2: Fitness Function. Fitness function for the optimal value selection of length for the MPA is illustrated in the below equation.

fitness = {maximizef.)} .

By maximizing the resonant frequency of the MPA using the equation (1), the length can be optimally selected.

Step 3: Updating. Similarly, until the optimal solution is found, the various length values are updated using the below equations.

Zraand:Zraan = ZL> L £ {1, 2, 3, 4, 5, N}, i = 1, 2, 3, 4, 5, ..., N

7P2 -Za,b =

za,b + r X ^aT - 1 X za,bl Ga"" < Ga;

rand-

rand.

za,b + r X (za,b - Za,b X else

Za =

ZaP2, G2 < Ga; Z, else,

where, Graan is the objective function value, zap2 and Z^ are its 6th dimension, Zraan denotes the escape of the ath Fennec Fox from the intended target position, zap2 signifies the new suggested status for the second phase of the ath Fennec Fox, GPa represents the objective function value, and I signifies the random number.

Step 4: Termination. After the attainment of best solution, the process will get terminated. Based on the optimally selected length of the MPA, the width of the MPA can be determined and both are simulated for evaluating the performance of the model.

Experimental analysis of designed MPA

MATLAB and HFSS tool are used to create the metamaterial-based MPA for evaluating this proposed model. The Finite Element Method (FEM) is the most widely used commercial FEM for electromagnetic structures in HFSS tool. To correctly optimize the antenna settings, this is particularly beneficial for antenna engineers. The Intel i5-10th Gen processor, CPU @ 2.50 GHz, NVIDIA GTX 1650 4 GB (GDDR6) GPU, 16 GB Memory (RAM), and 64-bit operating system are used to perform the testing. The designed MPA using the ANSYS HFSS tool is illustrated in Fig. 2, a.

Fig. 2, b illustrates the MPA in this model which is based on the SSRR [22] metamaterial with the 3 x 3 unit cell structure. For optimally selecting the length of the

+

2

Ground plane SSRR

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Bakelite

Fig. 2. The developed model of the MPA (a) and the design of the MPA based on the SSRR metamaterial (b)

Table 1. Parameters for designing the MPA

Parameter Dimensions, ^m

Length of the substrate L 150

Width of the substrate W 180

Height of the substrate H 10

Length of the ground Lg 150

Width of the ground Wg 180

Length of the patch Lp 90 (optimally selected)

Width of the patch Lw 120

Microstrip feed width Wp 5

Slot length Ls 40

Inset feed length Lj 98

Slot width Ws 50

Inset feed width Wf 20

Gaps between the ring gl 0.1

Gaps between the ring g2 0.2

Spacing between the rings 0.2

micro patch, the Fennec Fox optimization algorithm is used. Based on this optimally selected length, the other designing parameters for the MPA are determined.

Table 1 illustrates the derived parameters for designing the MPA with SSRR metamaterial. Analysing the MPAs

0.8 1 1.2 Freq, THz

Fig. 3. Return loss for with and without optimized parameter-based proposed patch antenna

RL, both with and without metamaterial allows for a more accurate evaluation of the intended model. While evaluating an antenna RL performance, maximum transfer of power theory and impedance matching are an essential factors. They measure the efficiency with which an antenna transfers electricity from an electrical source to an antenna. The proportion of the incident antenna power to the power pin reflected back from the source antennaprer is known as the RL.

Fig. 3 illustrates the RL of the MPA with and without optimized parameter. The metamaterial surface is built using a Split Ring Resonator in the shape of a square. The proposed SSRR is made up of two concentric square rings with an outer and inner radius square with a thickness of 5 ^m. The metallic component is produced by printing on a Bakelite substrate. The achieved RL of with and without optimized parameter for 1.04 THz and 1.11 THz are -36.50 dB and -72.54 dB, respectively.

Refractive index with real and imaginary graph of optimized parameter based patch antenna is illustrated in Fig. 4, a. The refractive index of the SSRR is negativeindex metamaterial whose refractive index for an electromagnetic wave has a negative value over some frequency range. Negative permittivity and permeability are produced by the metamsaterial as a result of the negative refractive index value. The refractive index of the proposed SSRR is -4 for the frequency 1.06 THz. Fig. 4, b illustrates the RL for proposed optimized length parameter compared with the different length parameter of the patch antenna. The proposed optimized parameter is 90, which is compared with the different parameters of the patch antenna that are 75, 80, 85, 95, 100 and 105. The attained RL for the proposed and different parameter values are 38 dB, 43 dB, 46 dB, 72 dB, 56 dB, 60 dB and 65 dB for the frequency of 1.1 THZ to 1.14 THz.

As illustrated in Fig. 5, the degree of directivity of the antenna radiation pattern is known as antenna gain. It is equivalent to the sum of the electrical effectiveness and directivity of the antenna. The maximum obtained gain antenna for with and without optimized value are 2.44 dB and 15.25 dB. Thus, from these attained gain values, the optimized parameter values of the MPA works with greater than the without optimized parameter value.

Fig. 6 shows RF electrical transmission system, the VSWR is the proportion of transmitted to reflected voltage standing waves. VSWR is the more popular term for SWR

1 1.1 Freq, THz

Freq, THz

Fig. 4. Refractive index of a patch antenna with optimized parameters (a) and comparison of return losses for patch antennas

of different lengths (b)

Fig. 5. Gain of an antenna for with (a) and without (b) optimized value

because it frequently signifies the voltage ratio. The VSWR value obtained for the proposed model at a resonance frequency of 1.11 THz equals to 1.5 and the VSWR value of 2 were determined at 0.90 and 1.25 THz, respectively.

Transmission coefficient compares the amplitude of the transmitted wave to that of the incident wave. It is described as the ratio of the amplitudes of the transmitted and incident voltage waves. Reflection coefficient compares the amplitudes of the incident and reflected waves. It is described as the ratio of the amplitude of the incoming voltage wave to that of the reflected voltage wave. In Fig. 7, the transmission and reflection coefficient of the

proposed patch antenna are illustrated. The transmission curve steepens at 1.09 THz, the same frequency at which the reflection curve peaks. This suggests that a resonance exists at 1.10 THz. The periodic arrangement of each unit cell causes it to function as a microwave resonant circuit.

MPAs are designed based on various substrate materials with different dimensions, which are illustrated in Table 2. For comparison, the proposed model is evaluated for RL, resonant frequency, gain and VSWR. The existing methods compared with the proposed model are FR4 [18], Roger RT Duroid 5880 [10], Silicon Oxide [20] and Quartz [21]. From the comparison of the proposed and existing model,

0.2 0.6 1 1.4 1.8

Freq, THz

Fig. 6. VSWR comparison for different length of the patch antenna

Table 2. Comparison of proposed and existing micro strip patch antenna

Proposed optimized patch antenna Palanivel Rajan and Vivek [23] Darboe et al. [24] Ghosh and Mitra [25] Sirmaci et al. [26]

Substrate Bakelite FR4 Roger RT Duroid 5880 Silicon Oxide Quartz

Size, mm2 0.15 x 0.18 8 x 8 6.285 x 7.235 — 0.18 x 0.212

Patch size, mm2 0.90 x 0.120 1.025 x 1.58 3.4 x 4.1 0.136 x 0.189 0.92 x 0.152

Resonant frequency, THz 1.11 0.074 0.028 0.46 1.08

RL, dB -72.54 -15 -13.48 -17.08 -55

VSWR 1.5646 1.148 1.5376 1.024 1.00

Gain, dB 15.25 10.81 6.63 9.64 3.57

the attained parameter values of the model are better than the existing antenna model.

Conclusion

Using the Ansys HFSS tool, the design and analysis of the MPA are implemented and evaluated. The bakelite material serves as the substrate for the design of the MPA and the patch antenna length is determined using the Fennec Fox optimization method. To increase the bandwidth of the developed model, the SSRR is employed as the metamaterial. The designed model is evaluated by resonant frequency, return loss, gain, and VSWR. These

evaluated values are compared with the existing techniques with different patch size and substrate, such as FR4, Roger RT Duroid 5880, Silicon Oxide and Quartz. The attained RL values of the proposed and existing model are -72.54, -15, -13.48, -17.08 and -55. Likewise, the resonant frequency, gain and VSWR of the proposed and existing model are evaluated and compared. Based on these attained values, the proposed model results in greater values than the existing designed MPA. Thus, the design of MPA using Fennec Fox optimization with SSRR metamaterial performs better than the existing metamaterial based MPA. In future, the designed MPA can reduce more RL and enhance the resonant frequency with maximum gain.

References

1. Kim G., Kim S. Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmWave antenna module on FR4 substrate. IEEE Access, 2021, vol. 9, pp. 64306-64316. https://doi. org/10.1109/access.2021.3075495

2. Acikaya F.C., Yildirim B.S. A dual-band microstrip patch antenna for 2.45/5-GHz WLAN applications. AEU-International Journal of Electronics and Communications, 2021, vol. 141, pp. 153957. https:// doi.org/10.1016/j.aeue.2021.153957

3. Davoudabadifarahani H., Ghalamkari B. High efficiency miniaturized microstrip patch antenna for wideband terahertz communications applications. Optik, 2019, vol. 194, pp. 163118. https://doi. org/10.1016/j.ijleo.2019.163118

4. Alsawaf H.A. High gain of rectangular microstrip patch array in wireless microphones applications. Lecture Notes in Networks and

Литература

1. Kim G., Kim S. Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmWave antenna module on FR4 substrate // IEEE Access. 2021. V. 9. P. 64306-64316. https://doi. org/10.1109/access.2021.3075495

2. Acikaya F.C., Yildirim B.S. A dual-band microstrip patch antenna for 2.45/5-GHz WLAN applications // AEU-International Journal of Electronics and Communications. 2021. V. 141. P. 153957. https:// doi.org/10.1016/j.aeue.2021.153957

3. Davoudabadifarahani H., Ghalamkari B. High efficiency miniaturized microstrip patch antenna for wideband terahertz communications applications // Optik. 2019. V. 194. P. 163118. https://doi. org/10.1016/j.ijleo.2019.163118

4. Alsawaf H.A. High gain of rectangular microstrip patch array in wireless microphones applications // Lecture Notes in Networks and

Systems, 2022, vol. 430, pp. 503-517. https://doi.org/10.1007/978-981-19-0825-5_54

5. Kanade T.K., Rastogi A., Mishra S., Chaudhari V.D. Analysis of rectangular microstrip array antenna fed through microstrip lines with change in width. Advances in Intelligent Systems and Computing, 2022, vol. 1354, pp. 487-496. https://doi.org/10.1007/978-981-16-2008-9_46

6. Thorat S.S., Chougule S.R. Design and investigation of compact microstrip patch array antennas for narrowband applications. Advances in Intelligent Systems and Computing, 2020, vol. 1089, pp. 105-116. https://doi.org/10.1007/978-981-15-1483-8_10

7. Gnanamurugan S., Sivakumar P. Performance analysis of rectangular microstrip patch antenna for wireless application using FPGA. Microprocessors and Microsystems, 2019, vol. 68, pp. 11-16. https:// doi.org/10.1016/j.micpro.2019.04.006

8. Mishra R., Mishra R.G., Chaurasia R.K., Shrivastava A.K. Design and analysis of microstrip patch antenna for wireless communication. International Journal of Innovative Technology and Exploring Engineering, 2019, vol. 8, no. 7, pp. 663-666.

9. Ezzulddin S.K., Hasan S.O., Ameen M.M. Microstrip patch antenna design, simulation and fabrication for 5G applications. Simulation Modelling Practice and Theory, 2022, vol. 116, pp. 102497. https:// doi.org/10.1016/j.simpat.2022.102497

10. Sandhiyadevi P., Baranidharan V., Mohanapriya G.K., Roy J.R., Nandhini M. Design of Dual-band low profile rectangular microstrip patch antenna using FR4 substrate material for wireless applications. Materials Today: Proceedings, 2021, vol. 45, pp. 3506-3511. https:// doi.org/10.1016/j.matpr.2020.12.957

11. Geetharamani G., Aathmanesan T. Design of metamaterial antenna for 2.4 GHz WiFi applications. Wireless Personal Communications, 2020, vol. 113, no. 4, pp. 2289-2300. https://doi.org/10.1007/s11277-020-07324-z

12. Lavadiya S.P., Patel S.K., Maria R. High gain and frequency reconfigurable copper and liquid metamaterial tooth based microstrip patch antenna. AEU-International Journal of Electronics and Communications, 2021, vol. 137, pp. 153799. https://doi. org/10.1016/j.aeue.2021.153799

13. Pattar D., Dongaokar P., Nisha S.L. Metamaterial for design of Compact Microstrip Patch Antenna. Proc. of the 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), 2020, pp. 1-4. https://doi.org/10.1109/b-htc50970.2020.9297830

14. Rajak N., Chattoraj N., Mark R. Metamaterial cell inspired high gain multiband antenna for wireless applications. AEU-International Journal of Electronics and Communications, 2019, vol. 109, pp. 2330. https://doi.org/10.1016Zj.aeue.2019.07.003

15. Vani H.R., Goutham M.A., Paramesha. Gain enhancement of microstrip patch antenna using metamaterial superstrate. The Applied Computational Electromagnetics Society Journal (ACES), 2019, vol. 34, no. 8, pp. 1250-1253.

16. Sagik M., Altinta§ O., Ünal E., Özdemir E., Demirci M., Çolak §., Karaaslan M. Optimizing the gain and directivity of a microstrip antenna with metamaterial structures by using artificial neural network approach. Wireless Personal Communications, 2021, vol. 118, no. 1, pp. 109-124. https://doi.org/10.1007/s11277-020-08004-8

17. Guttula R., Nandanavanam V.R., Satyanarayana V. Design and optimization of microstrip patch antenna via improved metaheuristic algorithm. Wireless Personal Communications, 2021, vol. 120, no. 2, pp. 1721-1739. https://doi.org/10.1007/s11277-021-08531-y

18. Suraj P., Behera B.R., Badhai R.K. Optimization of metamaterials-based Wi-Fi antenna using genetic algorithm. National Academy Science Letters, 2020, vol. 43, no. 4, pp. 333-337. https://doi. org/10.1007/s40009-020-00876-5

19. Shamim S.M., Uddin M.S., Hasan M.R., Samad M. Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications. Journal of Computational Electronics, 2021, vol. 20, no. 1, pp. 604-610. https://doi.org/10.1007/ s10825-020-01587-2

20. Singh A., Mehra R.M., Pandey V.K. Design and optimization of microstrip patch antenna for UWB applications using Moth-Flame optimization algorithm. Wireless Personal Communications, 2020, vol. 112, no. 4, pp. 2485-2502. https://doi.org/10.1007/s11277-020-07160-1

21. Trojovska E., Dehghani M., Trojovsky P. Fennec fox optimization: A new nature-inspired optimization algorithm. IEEE Access, 2022, vol. 10, pp. 84417-84443. https://doi.org/10.1109/ access.2022.3197745

Systems. 2022. V. 430. P. 503-517. https://doi.org/10.1007/978-981-19-0825-5_54

5. Kanade T.K., Rastogi A., Mishra S., Chaudhari V.D. Analysis of rectangular microstrip array antenna fed through microstrip lines with change in width // Advances in Intelligent Systems and Computing. 2022. V. 1354. P. 487-496. https://doi.org/10.1007/978-981-16-2008-9_46

6. Thorat S.S., Chougule S.R. Design and investigation of compact microstrip patch array antennas for narrowband applications // Advances in Intelligent Systems and Computing. 2020. V. 1089. P. 105-116. https://doi.org/10.1007/978-981-15-1483-8_10

7. Gnanamurugan S., Sivakumar P. Performance analysis of rectangular microstrip patch antenna for wireless application using FPGA // Microprocessors and Microsystems. 2019. V. 68. P. 11-16. https://doi. org/10.1016/j.micpro.2019.04.006

8. Mishra R., Mishra R.G., Chaurasia R.K., Shrivastava A.K. Design and analysis of microstrip patch antenna for wireless communication // International Journal of Innovative Technology and Exploring Engineering. 2019. V. 8. N 7. P. 663-666.

9. Ezzulddin S.K., Hasan S.O., Ameen M.M. Microstrip patch antenna design, simulation and fabrication for 5G applications // Simulation Modelling Practice and Theory. 2022. V. 116. P. 102497. https://doi. org/10.1016/j.simpat.2022.102497

10. Sandhiyadevi P., Baranidharan V., Mohanapriya G.K., Roy J.R., Nandhini M. Design of Dual-band low profile rectangular microstrip patch antenna using FR4 substrate material for wireless applications // Materials Today: Proceedings. 2021. V. 45. P. 3506-3511. https:// doi.org/10.1016/j.matpr.2020.12.957

11. Geetharamani G., Aathmanesan T. Design of metamaterial antenna for 2.4 GHz WiFi applications // Wireless Personal Communications. 2020. V. 113. N 4. P. 2289-2300. https://doi.org/10.1007/s11277-020-07324-z

12. Lavadiya S.P., Patel S.K., Maria R. High gain and frequency reconfigurable copper and liquid metamaterial tooth based microstrip patch antenna // AEU-International Journal of Electronics and Communications. 2021. V. 137. P. 153799. https://doi.org/10.1016/j. aeue.2021.153799

13. Pattar D., Dongaokar P., Nisha S.L. Metamaterial for design of Compact Microstrip Patch Antenna // Proc. of the 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC). 2020. P. 1-4. https://doi.org/10.1109/b-htc50970.2020.9297830

14. Rajak N., Chattoraj N., Mark R. Metamaterial cell inspired high gain multiband antenna for wireless applications // AEU-International Journal of Electronics and Communications. 2019. V. 109. P. 23-30. https://doi.org/10.1016/j.aeue.2019.07.003

15. Vani H.R., Goutham M.A., Paramesha. Gain enhancement of microstrip patch antenna using metamaterial superstrate // The Applied Computational Electromagnetics Society Journal (ACES). 2019. V. 34. N 8. P. 1250-1253.

16. Sagik M., Altinta§ O., Ünal E., Özdemir E., Demirci M., Çolak §., Karaaslan M. Optimizing the gain and directivity of a microstrip antenna with metamaterial structures by using artificial neural network approach // Wireless Personal Communications. 2021. V. 118. N 1. P. 109-124. https://doi.org/10.1007/s11277-020-08004-8

17. Guttula R., Nandanavanam V.R., Satyanarayana V. Design and optimization of microstrip patch antenna via improved metaheuristic algorithm // Wireless Personal Communications. 2021. V. 120. N 2. P. 1721-1739. https://doi.org/10.1007/s11277-021-08531-y

18. Suraj P., Behera B.R., Badhai R.K. Optimization of metamaterials-based Wi-Fi antenna using genetic algorithm // National Academy Science Letters. 2020. V. 43. N 4. P. 333-337. https://doi.org/10.1007/ s40009-020-00876-5

19. Shamim S.M., Uddin M.S., Hasan M.R., Samad M. Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications // Journal of Computational Electronics. 2021. V. 20. N 1. P. 604-610. https://doi.org/10.1007/ s10825-020-01587-2

20. Singh A., Mehra R.M., Pandey V.K. Design and optimization of microstrip patch antenna for UWB applications using Moth-Flame optimization algorithm // Wireless Personal Communications. 2020. V. 112. N 4. P. 2485-2502. https://doi.org/10.1007/s11277-020-07160-1

21. Trojovska E., Dehghani M., Trojovsky P. Fennec fox optimization: A new nature-inspired optimization algorithm // IEEE Access. 2022. V. 10. P. 84417-84443. https://doi.org/10.1109/access.2022.3197745

22. Siddiky A.M., Faruque M.R.I., Islam M.T., Abdullah S. A multi-split based square split ring resonator for multiband satellite applications

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

22. Siddiky A.M., Faruque M.R.I., Islam M.T., Abdullah S. A multi-split based square split ring resonator for multiband satellite applications with high effective medium ratio. Results in Physics, 2021, vol. 22, pp. 103865. https://doi.org/10.1016/j.rinp.2021.103865

23. Palanivel Rajan S., Vivek C. Analysis and design of microstrip patch antenna for radar communication. Journal of Electrical Engineering & Technology, 2019, vol. 14, no. 2, pp. 923-929. https://doi. org/10.1007/s42835-018-00072-y

24. Darboe O., Konditi D.B.O., Manene F. A 28 GHz rectangular microstrip patch antenna for 5G applications. International Journal of Engineering Research and Technology, 2019, vol. 12, no. 6, pp. 854-857.

25. Ghosh J., Mitra D. Mutual coupling reduction in planar antenna by graphene metasurface for THz application. Journal of Electromagnetic Waves and Application, 2017, vol. 31, no. 18, pp. 2036-2045. ttps:// doi.org/10.1080/09205071.2016.1277959

26. Sirmaci Y.D., Akin C.K., Sabah C. Fishnet based metamaterial loaded THz patch antenna. Optical and Quantum Electronics, 2016, vol. 48, no. 2, pp. 168. https://doi.org/10.1007/s11082-016-0449-6

Authors

Sangeeta Kumari — M.Tech, Assistant Professor, BIT Sindri, Sindri, 828123, India, https://orcid.org/0009-0006-8456-2167, sangeeta.ece@ bitsindri.ac.in

Arvind Kumar — PhD, Associate Professor, BIT Sindri, Sindri, 828123, India, sc 58367526100, https://orcid.org/0000-0002-4716-3582, arvindkr. [email protected]

Ettiyappan Anbalagan — PhD, Professor, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 600095, India, sc 58259257500, https://orcid.org/0000-0002-5727-0605, [email protected]

Kiran Kumar Thoti — PhD, Senior Lecturer, University Malaysia Kelantan, Kota Bharu, 16100, Malaysia, sc 58069030700, https://orcid. org/0000-0002-6678-9425, [email protected] Manoj Sharma — PhD, Associate Professor, Manipal University Jaipur, Jaipur, 303007, India, sc 57219291960, https://orcid.org/0000-0003-2886-4217, [email protected]

Received 26.07.2023

Approved after reviewing 12.10.2023

Accepted 10.11.2023

with high effective medium ratio // Results in Physics. 2021. V. 22. P. 103865. https://doi.org/10.1016/j.rinp.2021.103865

23. Palanivel Rajan S., Vivek C. Analysis and design of microstrip patch antenna for radar communication // Journal of Electrical Engineering & Technology. 2019. V. 14. N 2. P. 923-929. https://doi.org/10.1007/ s42835-018-00072-y

24. Darboe O., Konditi D.B.O., Manene F. A 28 GHz rectangular microstrip patch antenna for 5G applications // International Journal of Engineering Research and Technology. 2019. V. 12. N 6. P. 854857.

25. Ghosh J., Mitra D. Mutual coupling reduction in planar antenna by graphene metasurface for THz application // Journal of Electromagnetic Waves and Application. 2017. V. 31. N 18. P. 20362045. ttps://doi.org/10.1080/09205071.2016.1277959

26. Sirmaci Y.D., Akin C.K., Sabah C. Fishnet based metamaterial loaded THz patch antenna // Optical and Quantum Electronics. 2016. V. 48. N 2. P. 168. https://doi.org/10.1007/s11082-016-0449-6

Авторы

Кумари Сангита — M.Tech, доцент, БИТ Синдри, Синдри, 828123, Индия, https://orcid.org/0009-0006-8456-2167, sangeeta.ece@bitsindri. ac.in

Кумар Арвинд — PhD, доцент, БИТ Синдри, Синдри, 828123, Индия, sc 58367526100, https://orcid.org/0000-0002-4716-3582, arvindkr.ece@ bitsindri.ac.in

Анбалаган Эттияппан — PhD, профессор, Инженерная школа Савиты, Институт медицинских и технических наук Саветы, Ченнай, 600095, Индия, sc 58259257500, https://orcid.org/0000-0002-5727-0605, [email protected]

Кумар Тоти Киран — PhD, преподаватель, Государственный университет в Келантане, Кота-Бару, 16100, Малайзия, sc 58069030700, https://orcid.org/0000-0002-6678-9425, [email protected] Шарма Манодж — PhD, доцент, Университет Манипал в Джайпуре, Джайпур, 303007, Индия, sc 57219291960, https://orcid.org/0000-0003-2886-4217, [email protected]

Статья поступила в редакцию 26.07.2023 Одобрена после рецензирования 12.10.2023 Принята к печати 10.11.2023

Работа доступна по лицензии Creative Commons «Attribution-NonCommercial»

i Надоели баннеры? Вы всегда можете отключить рекламу.