Научная статья на тему 'Current Methods for the Assessment of Oxygen Status and Biotissue Microcirculation Condition: Diffuse Optical Spectroscopy (Review)'

Current Methods for the Assessment of Oxygen Status and Biotissue Microcirculation Condition: Diffuse Optical Spectroscopy (Review) Текст научной статьи по специальности «Медицинские технологии»

CC BY
385
93
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
functional bioimaging / tissue oxygen status / microcirculation / hypoxia / diffuse optical spectroscopy / reconstructive operations / diabetes mellitus

Аннотация научной статьи по медицинским технологиям, автор научной работы — V. V. Beschastnov, М G. Ryabkov, I. V. Pavlenko, М V. Bagryantsev, I. L. Dezortsev

The problem of studying the oxygen status and biotissue microcirculation is of special interest for many directions in medical science since one of the causes of hypoxia development as a typical pathophysiological process is a microcirculatory “failure” associated with the impairment of normal anatomy of the capillary wall, changes in the rheological blood properties, acceleration or slowdown of the blood flow. Current imaging techniques enable the researchers to study the processes of biosystem vital activity at various levels: from organs and tissues to the substance molecular composition. Methods of functional bioimaging implemented into clinical practice provide the opportunity of watching online the processes of substance movement in the body, monitoring blood flow parameters, assessing hypoxia level, characterizing metabolism in greater detail, and, at the same time, correcting timely pathological conditions. The main advantages and disadvantages of bioimaging examination methods such as BOLD functional magnetic resonance tomography, positron emission tomography, optical imaging, laser Doppler flowmetry, and transcutaneous oximetry are considered in the present review. Special attention is paid to diffuse optical spectroscopy as a noninvasive method of lifetime study of substance content in biotissues. The principle of diffuse optical spectroscopy is based on the ability of tissue chromophores (oxyhemoglobin, deoxyhemoglobin, fatty acids, collagen) to absorb diffusely scattered light of a definite wavelength. Their concentrations are calculated with the allowance for the absorption coefficients of chromophores. Diffuse optical spectroscopy is being introduced in clinical practice to diagnose the degree of tumor malignization, evaluate vascularization in reconstructive operations, diagnose hypoxic tissue conditions, monitor intraoperatively blood flow parameters, measure hypoxia levels in diabetes mellitus. It provides the possibility to define and make clear indications to skin plastic surgery and, conceivably, to develop new methods of skin plasty.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Current Methods for the Assessment of Oxygen Status and Biotissue Microcirculation Condition: Diffuse Optical Spectroscopy (Review)»

Current Methods for the Ass and Biotissue Microcirculation Diffuse Optical Spectroscopy (Review)

DOI: 10.17691/stm2018.10.4.22 Received February 2, 2018

V.V. Beschastnov, MD, DSc, Consulting Professor, Surgical Unit1; WI.G. Ryabkov, MD, DSc, Consulting Professor, Surgical Unit1; I.V. Pavlenko, Resident, Surgical Unit1;

WI.V. Bagryantsev, Resident, Surgical Unit1;

I.L. Dezortsev, MD, PhD, Head of the First Surgical Unit2;

V.V. Kichin, Resident, Surgical Unit1;

WI.S. Baleyev, Resident, Surgical Unit1;

А.V. Maslennikova, MD, DSc, Professor, Oncology Department3;

А.G. Orlova, PhD, Senior Researcher, Department of Radiophysical Methods in Medicine4;

WI.S. Kleshnin, Researcher, Department of Radiophysical Methods in Medicine4;

I.V. Turchin, PhD, Head of the Department of Radiophysical Methods in Medicine4

1Municipal Hospital No.30, 85а Beryozovskaya St., Nizhny Novgorod, 603157, Russia;

2N.N. Semashko Regional Clinical Hospital, 190 Rodionova St., Nizhny Novgorod, 603093, Russia;

3Privolzhsky Research Medical University, 10/1 Minin and Pozarsky Square, Nizhny Novgorod, 603005, Russia;

"Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanovа St., Nizhny Novgorod, 603950, Russia

The problem of studying the oxygen status and biotissue microcirculation is of special interest for many directions in medical science since one of the causes of hypoxia development as a typical pathophysiological process is a microcirculatory "failure" associated with the impairment of normal anatomy of the capillary wall, changes in the rheological blood properties, acceleration or slowdown of the blood flow. Current imaging techniques enable the researchers to study the processes of biosystem vital activity at various levels: from organs and tissues to the substance molecular composition. Methods of functional bioimaging implemented into clinical practice provide the opportunity of watching online the processes of substance movement in the body, monitoring blood flow parameters, assessing hypoxia level, characterizing metabolism in greater detail, and, at the same time, correcting timely pathological conditions.

The main advantages and disadvantages of bioimaging examination methods such as BOLD functional magnetic resonance tomography, positron emission tomography, optical imaging, laser Doppler flowmetry, and transcutaneous oximetry are considered in the present review. Special attention is paid to diffuse optical spectroscopy as a noninvasive method of lifetime study of substance content in biotissues.

The principle of diffuse optical spectroscopy is based on the ability of tissue chromophores (oxyhemoglobin, deoxyhemoglobin, fatty acids, collagen) to absorb diffusely scattered light of a definite wavelength. Their concentrations are calculated with the allowance for the absorption coefficients of chromophores. Diffuse optical spectroscopy is being introduced in clinical practice to diagnose the degree of tumor malignization, evaluate vascularization in reconstructive operations, diagnose hypoxic tissue conditions, monitor intraoperatively blood flow parameters, measure hypoxia levels in diabetes mellitus. It provides the possibility to define and make clear indications to skin plastic surgery and, conceivably, to develop new methods of skin plasty.

Key words: functional bioimaging; tissue oxygen status; microcirculation; hypoxia; diffuse optical spectroscopy; reconstructive operations; diabetes mellitus.

Introduction

Currently, the diagnosis of pathological conditions, prophylactic examinations, and research works are impossible without the application of imaging techniques. The traditional thinking paradigm relied on the methods allowing the assessment of anatomical changes in the human body (structural visualization). A fundamentally

Corresponding author: Iliya V. Pavlenko, e-mail: [email protected]

new opportunity appeared with technical advances: presently, methods providing the assessment of the tissue functional state have come into existence. This opportunity could not until recently be realized due to a multicomponent chemical composition and complex arrangement of tissue structure and, therefore, the danger to impair the finely adjusted biological system which may respond to the action done [1-4]. With

sensitivity which is realized owing to the differences in the absorption spectra of tissue chromophores. Besides, some chromophores fluoresce rather intensively increasing essentially the contrast and, consequently, molecular sensitivity.

It should be kept in mind that cellular and subcellular resolution in optical microscopy is possible only at small depths [12] (Figure 1).

A fundamental research task facing optical bioimaging is a real-time visualization of functional activity of the living biological systems at the tissue, cellular, and subcellular levels and its applied purpose is creation of new methods of diagnosis and control of physiological and pathological processes.

Methods of blood flow assessment

Among the typical pathological states, hypoxia is of special interest since the impairment of delivery and utilization of oxygen by the tissues determines the course of a great number of diseases such as tumorous processes, diabetes mellitus complications, trophic ulcers. Hypoxia is a state of oxygen deficit in the body, separate organ, or tissue either due to its insufficient supply from the outside or impairment of biological oxidation process at the cellular level [13].

A key value for the evaluation of the oxygen supply to the biological tissues is the information about the state of the vascular and microcirculatory bed.

Digital systolic pressure measurement, determination of the ankle-brachial pressure index, computer capillaroscopy, X-ray contrast angiography, magnetic resonance angiography, multispiral computer tomography are widely used for blood flow and microcirculation assessment in clinical settings which give an idea about the condition of the circulatory bed up to the digital artery level. Ultrasound examination of the vascular bed (Doppler ultrasound and segmental Doppler ultrasound, ultrasound angioscanning) also evaluates only macrovascular component of tissue blood supply.

Functional magnetic resonance tomography, PET and single-photon emission CT with contrast agents are not available for a wide application because of their high cost. PET and fMRT are capable of identifying the zones of necrotized and viable tissues, however their resolution does not permit capillary visualization, the equipment does not meet the requirement of portability, low cost, and could not be used for repeatable procedures [14, 15].

X-ray contrast angiography, the most informative noninvasive examination method in the current clinical practice requires the introduction of foreign substances into the circulatory bed. Modern angiography is not capable to visualize the human and animal capillary bed, and during large vessel

/////////////////////^^^^

the advent of the methods based on the computer processing of data on propagation and interaction of radiation of different nature with biological media, it became possible to form a new direction in the diagnosis of tissue and organ state: functional imaging, which enables the evaluation of the metabolism level, hemodynamics, changes of its biochemical composition.

Functional imaging teczhniques

Positron emission tomography (PET), functional magnetic resonance tomography (fMRT), and optical bioimaging techniques (optical coherence tomography, OCT, and diffuse optical spectrometry, DOS) are referred to the functional imaging techniques.

The diagnostic potential of PET is high and allows the study of quite different processes such as metabolism, substance transport, ligand-receptor interactions, gene expression, etc., however this method is technically complicated, bears a large radiation load, and its diagnostic power is largely determined by the range of available labeled chemical compounds — radiopharmaceuticals [5].

fMRT is a variant of magnetic resonance tomography. It is an actively developing method of neurovisualization which is used for measurements of hemodynamic reactions caused by the activity of the brain or spinal marrow. It is based on the association between the brain blood flow and neuron activity [5-8].

Optical bioimaging implies a set of methods using different effects of light interaction (scattering, absorption, fluorescence, optoacoustic and acousto-optic effects) with biological tissues [9-11]. These effects may be multiply enhanced by the introduction of additional contrast agents [12]. A distinctive feature of the biotissue optical imaging is a high molecular

Cells

Vessels

mM

jM

nM

Micro-CT

MRT

Optical

microscopy macroscopy

_L

_L

0.01

0.1

Structures

CT

Structures

Enzymes

SPECT

>scopyfll|™ RecePtors

1 10

Spatial resolution (mm)

Figure 1. Comparison of molecular sensitivity of different imaging techniques:

CT — computer tomography; MRT — magnetic resonance tomography; SPECT — single-photon emission computed tomography; PET — positron emission tomography [12]

9 =

CD

a

o

x 53

(JO

CD 3 GÇ

S

I

!

S

Q

!

Q

g

s p

: 00 -1

cq' 3 .—K

CD

.—K ^

cn Ç0.

0 i—K

c ><

0 O

CD —h

cn "O

O

cr

CD

—,

0)

Q.

0)'

.—K

0'

---------

0)

^

Q.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Q.

=fi

a

CO

CD

><

CO

0

0)

s

CD

CD

Q.

c5'

,—K

0)

^

Q.

—h

O

—s

O

O

^

1—t-

a

0

c

CO

„—.

cr

0)

3

-0.

^

a

CL

CD

3

0

Q.

a

0)

,—K

CD

Q.

„—.

O

■—■

0)

^

Q.

"O

c

CO

CD

Q.

„—.

cd (a

S -

" (D

to O

CD

3

CD

o

—h C (/)

3 o

CD o

-o

co £

^ Ô' CD fi>

CD

(/) T3

^ (D

CO O

o

en >5 cd -

o

"O

0) ^

Q.

CO O

0) E) a

CD

W i—t-

o'

I—t-

3'

CD

Q. CD "O

CD ^

Q. CD

Intensity (relative units)

Intensity (relative units)

Intensity (relative units)

E O"

3 0

03 E

3 3

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

CO CL

s

CD 1—t- O

CD

CL 3-

__1 CD

OJ 3

OJ 0

1 OJ CQ

CJ1 O

O"

I- 3'

03

CO CO

CD

^ CO

O O T3 3- E 3 1—t-

T3 CD

CD CL

—h O

O ~1

S E

3 1—t-

CD N

1—t- CD

•< CL

CL O CD

CD CO 3

03

3

0 1—t- 3' CO

03_

CO

o

03 3

3 o

CO

p -o E. P

(D i^. CO

o'

O" 03

o

7T CQ

T3 03

CD i—t-co'

CO e CD CO

O"

03

a- o.

CD q5' 3 a"

CQ CD i— CD

03 CO CQ

o 3

CL ÇD.

^ O O 5 ^

CO O =!" 3" E 03 O 3 f± CQ CD

CD CO

Q. 03 O 3 Q.

3 =7 "O 3

o -Q

3.S

CO

CD g

Q- 4

o

X

g 5

CD 2. 3 03

■o ni 51 a o

CD

.Q E CD CO i—t-

o'

o <

CL CD CO

CL 03 ■ <-t-03

: o o

CQ CD

CT CD CO

al

CD CO

CD T3 CD 03 i—t-CD Q.

2 3= =

O

O _Q

03

CL CO

2=8 CD O

a w

T3

1' «3 -a S,

CD ^

s|

3 o

3 —■ o

II

=h CD

O C? 03

=3" O

o

o =-

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Q h: CD

03

■§(8 B- «

03 T3

O

^ -1 -■ CD S

» 01 i

CO ^

e

CD CD

CD « « ff

o

g Q-| g

03 CO Q. O

CQ 03

03 Q. CO

O

~~ O O

cq' q5

o =r 3- j-

CD O CD

Q3

CD

Q. CD ÇD

* O

? S

K)

cr CO

<' Si O „

_. r\i TT1

= S 8

5T

a & m =P

O „ ■ CD O

55 § & 3

1—t- 03

cq' 1—t-

03 0'

1—t- 3

0'

3 0

CO —H

03 1—t-

3-

ro ro

E

CO

3' H

CQ 3-

ro

O CO

O

0) 3'

T3

0 ro

0 CO

3 1—t-

CO

co' 03

1—t- 3

co CL

3' 0

0

3 3

ro 3

03 ro

CO

E 0

03'

3

CQ

CO 03

T3 <

ro 03

a oT

3 O"

ro

3' 1—t- s

ro 03

3

CO

0 —H

3 -c 73

S, <B g

3 g

I-cd^ o 5' S S

ci. 3 ^ ^

O CO 3-3-

CD a

3 S CQ W ,_, 3

ro 3 I CD 01

03 O"

co o

-3

I—t-

o'

5 ' 3 CO

it& 3 =r S CO CD CD

<'3 »

03 Q.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

O =S: -h O _

<-i- 9. CQ' =r

CD g f"

-a o SaH §- 2. S'

cq a-

5' o m Q- — a 5' n 03' CQ

O T3 CD

CD CO

o

Q.

U)

2. Q.

CD

5' 3=

« CD 03

Q.

o

Q. C

o

CD Q.

3

CO o w' §

03 CD

3 a

ïâ I 3 S'?

3 o ta U)

(Q

U) U)

O

X <

(Q O

U)

r-t-

s>

Q. 3- O

03 Q CO

03

03 3

O CD

CD § CO

o _.

CD 3

3

T3 o

8 s

^ o

CT CD

CD zs'

»—t" _

o fl>

CD | -ë

o 5'

CD

CD

CD

O CD W -,

® 3 s--»

lilûio ÇD W CD

03

N>

CD 3-

I

OJ

J^ ^

o o

Q.

S CD

3

03

CD

a

CO

S". 03 CO — CO -r

Q. 3

3- S- CD

o

03

I—t-

o'

CO <■ 03 - 03.

CL CD

=: — i-t- CO 03

S

CD O <*>

3 5'

« s f—t- ill. CD Q

CO

- 3 « c§ o o

s g;

■ CO zs

o o X o

3

CQ o CD CD

a a n

CD 5' o

O — (D

X o =R

^ -■ Q-

CD S §

o o

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

CQ 3" o

O o ^

g- 3 03

P O CT

-a co

S ° -a

CD CD 5-

" O 3

-h O

CD

03 CO CO CD CO CO

< 3

03 CD CO 3 O

¡§"N3

I a

I 8

03 CD

3 ZS

5' W

< 9- w'

03

cr ro

CD 00 CL ^

»■Ï

3 S

CD <

CD

2 w

CD ■

CO'

03 > 3

T3 03 CD

T3 55 T3

Sa

3 s

q o

o

° f;'

-8 §

^ o

M S

5' < —

d Ô5 ÇD

^ C CL

o w

% K 3

— O

03

o =r

CO CD

O 03

03 _

CD 3

c CO

CD T3 CL 03

O

— 03

CD

O CL —

CD

cd a

g 5-

CQ 3 CD

— CD

^ CO

ci> 2

CD 2

03

o

03 o o

=î E CO

= F" <P o

~ CD

3. ° § 3'

— co "§

CD ë - O o

2 O CD o

o

O

O —. —■ CO

O 03

^FT=,

03 03

CL

CO

CO (Q 3

03 03 o CO

3" O O 3 3 CO

CD 3 3 Q. Q. CO

CL — —1>

cr 03

s

03

Ï 3 S 03 < CQ

CD

CO CO E

N CD 03 _.

3 o

CL 9: CD 3 T3 03

I—t- -!

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3-><

K) 3 3

O CQ I 03

l\3 ^

W CD c/) ^^

X CD O 3'

S (Û C ro

< Q. ® CD CD

3- O

CD T3 _

"< CD =ii

_ Q. CD

CL rt-

° 03 3

g â®

- 3

"D ® r-

^ o Q

2 o

l-S n

CL 0_ =;■

CD o O

□.co E.

■a ^ 0

3->< -

3 s

O S,

Q. rt-« W' CO CT E 03 CD

CD £

^ 8

CL gg

T3 CO "a CL CD ' CO

1—t-

CD 03

3

CL 03

3 ?r

1—t--r 3 T3 CL

CD C^- 3 CQ ro 1—t-3- ro T3 ro 3

u CO CL

< 0 3 ro

co' 0' 3 ro 3' 0 CQ 3 3 1—t-

ro T3

X 03 3-ro 3- < 03

3. 3' 0 s 1—t- CO 0 Q.

03 3 3-

1—t-0' T3 —r 1—t-3- oT 1—t-

3 0 ro 03 1—t-

CQ < 03 0'

<■ CO ro'

ro 0 CQ a

0 0

3 03 3

T3 3- >< CO 0 ro

3' —H 3

CL __ 03 0

=5 0 E CO

CD -o a CD CD 1—t-

3' CL 03 0 3"

o* 3 CO o_ 0 0 0 E

3 03 1—t- 0 3 3' ro

ro 03 CO

0' ! 3 0'

3 CL 3

CO

CO

CD D" CO —

CQ

CD

rt- CD 03 03

CO

a &

CO 3

3 CD

cn =i. „

-o 3 a

° CD 3-CL M CD

03

1—t-

a

^ 3

9 a

i « CD c

>< CD

S °

3 CD

CL

CD CD

g a

X CO

g Ô 3 o

O CL

<9. -H o = 5'

3 CQ

0 =r ë-

0 03 CD

= S- co Q3 5'

CQ 3 rt.

CD 3-

3 ^ CD

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- o

2-1. ? £ ®

"IS

A O S

S <D 5'

1 O 3

01 g-

^ 3' o

03

-I

CD -g

<

°L CO E O CD 03 Ft O CD

3" CQ CD _. 3

=r Q.

8 Ô-

3 CD -g 05

â3!

^ CQ

CL CD CD Ni X M

CL-03-CD ii

CO ,_,

O

3: f Z I

CD CO

CO ' T3 CD O

CD CD

Q. rt-

ET W

CO E

8 I

2 o cd -a

— 03 CQ —

3- _

- 3

o 9

03

O EÏ-.

03 o Ô 3 E

M 03

ÎÏ- 3

CD CL

03

^"cS

2 05"

T3 =T 03

O Ci.

3 o

o: g

CD

03 CQ CD

3- 3

03 03 p+ rt-

_ o'

s s

CL CD

~ 3

3- CD

Û S 3 w

CD

CD ^ CO ^ CO CD

O T3

s-o

03 =R — E

a- w

o ® 3

03 _.

CQ o

5' °L

CQ

CO

S" "O 2 CD

a

o

T3

o

03

^0-9

K)

L ®

0 ^ o CD

CD O

03 3 CL

8 ® 3 -o

CO

co a

5' 00

a §

o ■ H

J± 03 o

—H

03 -, 3 CD CL — 03 O" 03 =i

c/5

03 T3

o

3 _

o s< CO CD

o

CO

_ o

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

CD o CO T3

~ w o

3 CD

o

o a

U)

o o ■o

r-t-Ô M

U)

■o

o o

r-t-

o

U) o o

■o

<

« 8

CQ oi

ri. 3 03

o —' —' >— ^ 2, CQ CD CD

3

CD 3- CO

Ra

CO 1—t- 3- S

03 .0 T3 1—t- 3"

3' 0

CO X 0

^ T3 =r 03' X

0 CO CQ

^—1 CO ro CD

T3 ro a 3

3-0 03

CD <■ CD

CO ro 00

0 ro 3 O

3 03 I-

0 O

ro ro CO —H S

3 73

03 'Tn _H

CQ 3' CQ E 0 3- "D m H

s 03 CO s

1—t- , f—»-

=r œ "T1 =T

0 X •< 1 —h E ai 0 INJ

CQ O __

CD 3 O 1—t- CO 0

1 CO ro 3 =T 3 0 T3 ro

CO Q! co

3' 03

<■ 3

ro CL

0 —H 3 <

1—t- ro

3- co

CD 1—t-

~ ' cq'

03

CO 1—t-

1—t- 0

03 1—t- 3

ro co

__1 rt-'

01 c/5'

1 3

CD 0 1—t-

0

— 03

3 < T3 03

ro co O"

1—t- ro

cq'

03 0

1—t- —H

0' _

3 0

co 3

CQ

0 1—t-

—H ro

ro 3

3

CL O 1—t- 3 0

=r 3

ro <-»-'

0

E ^

3 3

1 CQ

3 CD T3

CD 2 O

3- 3 <■

O —- Q-

Q. 3 CD

CO 03

« O t-

3; 3 g

O__03

N 03

o

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

03 _ „

3 CD 5'

<■ Q. =>

E CQ T3

03 3

— 03 CD

N' — CO

® rf 3

=t ° i-

^cE'

CO ,_,

fl) W

^ I CD

03 OJ g

^ 3" co ■f CD

CD

CD

O

I!

IIS is s

93

?

I

CZ)

the quality of the optical contact with the tissue, etc.). The application of amplitude-modulated (Figure 2 (c)) [56] or pulsed (Figure 2 (d)) [57] probe radiation makes it possible to restore indices of absorption and light transport scattering in the tissue according to the time characteristics of the registered radiation (the form of the diffusely scattered impulse or the phase shift of the measured signal) at the fixed distance between the source and light receiver, and simplifies the calibration requirements. However DOS systems with time resolution are more complicated and expensive since they need application of special sources and radiation receivers.

To calculate tissue optical properties, spatially structured illumination of the examined object can be employed and the distribution of the diffuse scattering over the area of interest may be registered [58, 59]. This approach provides contact-free diagnosis but limits the examination depth to 5-10 mm while for contact methods the diagnostic depth may reach 60-80 mm. It is important to note that physical parameters of diffusely scattered light may be more conveniently measured in the reflective geometry when the radiation source and receiver are situated from the same side of the biotissue [60], but investigations of large specimens or at a depth exceeding 40-50 mm require projection geometry of measurements when the light source and receiver are located on different sides of the object [61].

To calculate the component composition of the tissue by the light absorption index, the known table values of the coefficients of absorption of the main chromophores: oxyhemoglobin, deoxyhemoglobin, water, fats, collagen (Figure 3) [62] are used. And for the correct isolation of each chromophore, the spectral intensity of the diffusely scattered light should be measured at different

Figure 3. Absorption spectra for the main biological chromophores:

green — melanin; red — oxyhemoglobin; dark blue — deoxyhemoglobin; blue — water; yellow — lipids [12]

wavelengths of the probe radiation. Spectral resolution of the measurements may be obtained using a set of narrowband light sources at different wavelengths [63, 64] or one broadband radiation source and a spectrometer as a receiver of the diffusely scattered light [65]. The most effective approach is the combination of several methods. For example, a broadband source of the probe radiation may be used together with several narrowband amplitude-modulated or pulsed light sources of different wavelengths and register diffusely scattered radiation with several receivers [66].

Due to its specificity (a large distance between the source and light receiver), DOS techniques have low spatial resolution (1-10 mm), however this drawback may be overcome by using hybrid approaches combining optical molecular sensitivity and high spatial resolution of other imaging techniques: US [67], CT or MRT [68]. Presently, first commercial optoacoustic devices have already appeared providing visualization of 3D distribution of tissue chromophores (iThera Medical, Germany; TomoWave Laboratories, USA; VisualSonics, Canada, and others) with the disadvantage of being too sophisticated and expensive.

Areas of clinical applications of diffuse optical spectroscopy. The analysis of the literature data shows that DOS becomes a powerful tool in biomedical investigations of pathological states such as malignant neoplasms, circulatory bed pathology, and skin plastic reconstructions. The majority of publications describe its application for breast tumor detection and monitoring of their treatment, for brain activity studies, functional imaging of the skin and muscular tissue condition in various pathologies.

Vascularization assessment during of organ and tissue reconstruction. DOS can visualize arteries in angiosurgical and plastic operations [69, 70]. In the recent literature, a great number of reports describe successful results of DOS monitoring of superficially located skin fascial flaps used in breast reconstruction with tissue oxygenation assessment to the depth of 5-12 mm [71-74]. This method has been shown to detect abnormal blood supply to the flap and feeding pedicle prior to the first clinical manifestations [75]. In some works, it is underlined that application of DOS for tissue oximetry may give variable values therefore it is important to evaluate the dynamics of the indices rather than the absolute figures [76, 77]. In the work by Malykhina et al. [78] where this method was used to assess the viability of the skin flap in a free plastic surgery on microvascular anastomoses, the conclusion has been drawn that the oxygenation indices of the microsurgically transplanted flaps below 70% must be interpreted only in comparison with the indices in the control area and not in the compromised one which is topographically most similar to the recipient zone. Based on the conducted studies the authors believe that DOS enables the differentiation of arterial and venous character of perfusion impairments though the

////////////////m^^

186 СТМ J 2018 J vol. 10 J No.4 V.V. Beschastnov, М.G. Ryabkov, I.V. Pavlenko, М.V. Bagryantsev, I.L. Dezortsev, V.V. Kichin.....I.V. Turchin

Figure 4. Results of mammography and DOS breast examination in a patient with the diagnosis of breast cancer

DOS image dimension — 50^40 mm; the arrow points to the tumor zone

capabilities of this method are limited by hematoma formation and excessive flap edema. Of special importance is the conclusion of the authors about the necessity of interpreting these measurements on the basis of the dynamics of their changes in comparison with the contralateral side and absolute values. Besides, image reconstruction of the diffuse optical spectroscopy is a complicated mathematical nonlinear reverse problem the solution of which needs exclusion of background noise, consideration of light scattering and various measurement errors [79-81].

Assessment of breast neoplasms. DOS has the most significant clinical value for screening, diagnosis, and treatment monitoring of breast neoplasms. This method gives valuable functional information about pathophysiological characteristics of the tumor (metabolic activity, angiogenesis, blood flow condition) [82]. Malignant neoplasms are more vascularized relative to the surrounding normal tissues which changes their optical properties [83]. Hypoxia is a characteristic feature of malignant tumors determining tumor response to the treatment and influencing the prognosis [84].

Maslennikova et al. [85] show in their study the possibility of using DOS for differentiation between the tumor tissue and surrounding normal tissues by the level of blood oxygenation and by the content of oxy- and deoxyhemoglobin. In the tumor zone, the concentration of oxy- and deoxyhemoglobin appeared to be higher than in the surrounding normal tissues while the level of blood oxygenation was lower relative to them. Besides, in the projection of the tumor center, the reduction of the oxyhemoglobin was observed while its level grew along the periphery. The authors have noted that the

distribution of the examined compound concentrations significantly differed in each clinical case. In the other research [86] in which the value of DOS in the diagnosis of breast pathology was compared with MRT, the results were comparable.

Examples of images characterizing the distribution of scattering coefficients, content of oxy-, deoxy-, and total hemoglobin, and the level of blood oxygenation in the tumor and normal breast tissue obtained by DOS technique are presented in Figure 4.

The differential diagnosis between malignant and benign breast tumors (content of water, oxy- and deoxyhemoglobin) became one of the main directions of using DOS in oncology [87, 88]. In recent years, it was suggested to use variants of DOS to predict individual reaction of neoplasms to therapy and prognosticate treatment efficacy [89-91].

Tissue hypoxia diagnosis. DOS is an indirect method of assessing the tumor oxygen status. Findings of the investigations comparing the application of DOS and standard methods of oxygenation measurement (polarography, immunohistochemical assay with a hypoxia marker) showed that the DOS technique allows the correct determination of the oxygenation level in the biological tissues and revealing tissue mechanisms of the emerging changes [92-94].

The work [95] was devoted to the study of the possible interconnection between the data acquired with the help of US-controlled DOS and the concentration level of hypoxia-induced factor (HIF-1a) and CD34 in confirmed breast cancer. Immunohistochemical examination of HIF-1a and CD34 revealed differences in the total hemoglobin concentration and microvessel density

between the HIF-1a positive and negative groups. The conclusion was drawn that HIF-1a may promote tumor angiogenesis and, in that way, increase blood supply and hemoglobin concentration, and DOS can indirectly reflect the angiogenic activity of breast cancer.

In the work [96], the authors investigated the possibility of using DOS for tumor deoxyhemoglobin and oxyhemoglobin mapping in patients in vivo. Since these chromophores react differently at various wavelengths, four laser diodes with 740, 780, 808, and 830 nm wavelengths were used. To verify the accuracy of the oxygenation assessment, foci of different sizes located at various depths were chosen as the diagnostic targets. The absolute deviations between the indices of tissue saturation with hemoglobin obtained from the chromophore absorption maps and oxygen measurements performed by means of pO2 electrode were below 8% over the measured range of oxygen saturation. The authors consider proven the possibility of using DOS for determination of tissue saturation with deoxyhemoglobin and oxyhemoglobin in breast cancer.

Intraoperative monitoring of blood flow parameters. Application of DOS during minimally invasive surgical interventions to prevent damage to the important anatomical structures is suggested in the work [97]. In the experiments on pigs, the authors have demonstrated the possibility to assess blood flow indices for intraoperative identification of the retroperitoneal space vessels during laparoscopic maneuvers in the abdominal cavity and retroperitoneal space.

Blood supply in diabetes. Of real interest is the investigation in which the authors studied the capabilities of DOS for the assessment of blood supply disorders in the lower extremities in diabetic patients [98]. Perfusion activity was compared in healthy volunteers, patients with atherosclerosis of lower extremity vessels, and with diabetic angiopathy. Significant differences connected with the concentration of oxy- and deoxyhemoglobin in the tissue was found in all three groups. In the research [99], it has also been proved that the total hemoglobin content decreases and oxygenation level increases in the limb tissues of the diabetic patients compared to the healthy tissues.

To monitor the processes of reparative regeneration of diabetic ulcers in the experiments on animals (rats), the methodology of DOS application in the near infrared range (680-830 nm) has been developed [100]. Differences in skin defect healing in the control (healthy animals) and the main diabetic group have been noted.

Interesting data are presented in the work by Zhao et al. [101]. The authors acquired in vivo images of human lower extremities and forearms during DOS in the infrared spectrum to assess their anatomical and functional indices. They managed to visualize some blood vessels during the investigation. Besides, based on the analysis of the concentration of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin in the forearm, information was obtained about the changes in the

volumetric blood flow, oxyhemoglobin concentration in the arteries, and, what is of great interest for us, the hypoxia condition in the appropriate muscles was diagnosed concurrently.

Conclusion

Diffuse optical spectroscopy favorably differs from other methods of vascular bed visualization in that it allows the diagnosis of hemodynamics state and also the assessment of the efficiency of oxygen utilization by the tissues. The capability of diffuse optical spectroscopy to evaluate the tissue hypoxic status, which is a crucially important pathogenical link of the pathological states such as tumor processes and diabetes mellitus, opens new opportunities for the application of this method. In oncology, DOS is a promising method for differential diagnosis of tumor processes. Making angioplastic operations in patients with obliterating diseases of lower extremity vessels, diffuse optical spectroscopy will enable precise definition of indications, the volume, and efficacy of operative intervention. DOS is also perspective in defining and specifying indications to skin plastic surgery and, conceivably, in developing new methods of skin plasty.

Study funding. The work was supported by the Russian Science Foundation (project No.16-32-60093).

Conflicts of interest. The authors have no conflicts of interest.

References

1. Kopitsyn D.S., Beskorovaynyi A.V., Kotelev M.S., Novikov A.A., Ivanov E.V., Vinokurov E.V. Optical bioimaging techniques for cancer research. Bashkirskiy khimicheskiy zhurnal 2013; 4: 64-71.

2. Meleshina A.V., Cherkasova E.I., Sergeeva E.A., Kleshnin M.S., Turchin I.V., Kiseleva E.V., Dashinimaev E.V., Shirmanova M.V., Lukyanov S.A., Zagaynova E.V. The study of the interaction of mesenchymal stem cells and the tumor using the methods of fluorescent bioimaging. Sovremennye tehnologii v medicine 2012; 4: 7-16.

3. Meleshina A.V., Cherkasova E.I., Shirmanova M.V., Khrapichev A.A., Dudenkova V.V., Zagaynova E.V. Modern techniques for stem cells in vivo imaging (review). Sovremennye tehnologii v medicine 2015; 7(4): 174-188, https://doi.org/10.17691/stm2015.7A24.

4. Kozubek M. Challenges and benchmarks in bioimage analysis. Adv Anat Embryol Cell Biol 2016; 219: 231-262, https://doi.org/10.1007/978-3-319-28549-8_9.

5. Karsy M., Gillespie D.L., Horn K.P., Burrell L.D., Yap J.T., Jensen R.L. Correlation of glioma proliferation and hypoxia by luciferase, magnetic resonance, and positron emission tomography imaging. Methods Mol Biol 2018; 1742: 301-320, https://doi.org/10.1007/978-1-4939-7665-2_26.

6. Wicks E.C., Menezes L.J., Barnes A., Mohiddin S.A., Sekhri N., Porter J.C., Booth H.L., Garrett E., Patel R.S., Pavlou M., Groves A.M., Elliott P.M. Diagnostic accuracy and prognostic value of simultaneous hybrid

//////////////////////^^^^

188 СТМ J 2018 J v0l. 10 J N0.4 V.V. Beschastnov, M.G. Ryabkov, I.V. Pavlenko, M.V. Bagryantsev, I.L. Dezortsev, V.V. Kichin.....I.V. Turchin

18F-fluorodeoxyglucose positron emission tomography/ magnetic resonance imaging in cardiac sarcoidosis. Eur Heart J Cardiovasc Imaging 2018; 19(7): 757-767, https://doi. org/10.1093/ehjci/jex340.

7. Kremneva E.I., Konovalov R.N., Krotenkova M.V. Functional magnetic resonance imaging. Annaly kliniceskoj i eksperimental'noj nevrologii 2011; 5(1): 30-34.

8. Seliverstova E.V., Seliverstov Yu.A., Konovalov R.N., Illarioshkin S.N. Resting-state fMRI: new possibilities for studying physiology and pathology of the brain. Annaly kliniceskoj i eksperimental'noj nevrologii 2013; 7(4): 39-44.

9. Shakhova N.M., Balalaeva I.V., Gelikonov V.M., Gelikonov G.V., Zagaynova E.V., Kamenskiy V.A., Orlova A.G., Sergeeva E.A., Turchin I.V. Multiscale optical bioimaging: use in biomedicine and development prospects. Al'manakh klinicheskoy meditsiny 2008; 17-1: 121-124.

10. Duvansky V.A., Knyazev M.V., Osin V.L., Kraev G.P. Technologies of optical bioimaging in the visualization of gastrointestinal neoplasias. Lazernaya meditsina 2016; 20(3): 103-104.

11. Marques D., Miranda A., Silva A.G., Munro P.R.T., De Beule P.A.A. On the influence of lipid-induced optical anisotropy for the bioimaging of exo- or endocytosis with interference microscopic imaging. J Microsc 2018; 270(2): 150-155, https://doi.org/10.1111/jmi.12668.

12. Turchin I.V. Methods of biomedical optical imaging: from subcellular structures to tissues and organs. Uspekhi fizicheskih nauk 2016; 186(5): 550-567, https://doi. org/10.3367/ufnr.2015.12.037734.

13. Malyshev I.Yu., Monastyrskaya E.A., Smirin B.V., Manukhina E.B. Hypoxia and nitric oxide. Vestnik Rossiyskoy akademii meditsinskikh nauk 2000; 9: 44-48.

14. Reginelli A., lacobellis F., Berritto D., Gagliardi G., Di Grezia G., Rossi M., Fonio P., Grassi R. Mesenteric ischemia: the importance of differential diagnosis for the surgeon. BMC Surg 2013; 13(Suppl 2): S51, https://doi. org/10.1186/1471-2482-13-s2-s51.

15. Bashirov R.A., Malov A.A., Ziganshina L.F., Khaliullina K.K. Radionuclide assessment of skeletal muscles in patients with chronic artery insufficiency of the lower extremities. Prakticheskaya meditsina 2016; 4-1(96): 44-47.

16. Jia Y., Wang R.K. Optical micro-angiography images structural and functional cerebral blood perfusion in mice with cranium left intact. J Biophotonics 2011; 4(1-2): 57-63, https:// doi.org/10.1002/jbio.201000001.

17. Asai K., Nakamura H., Watabe T., Nishida T., Sakaguchi M., Hatazawa J., Yoshimine T., Kishima H. X-ray angiography perfusion imaging with an intra-arterial injection: comparative study with 15O-gas/water positron emission tomography. J Neurointerv Surg 2017; 10(8): 780-783, http:// dx.doi.org/10.1136/neurintsurg-2017-013487.

18. Johns C.S., Swift A.J., Hughes P.J.C., Ohno Y., Schiebler M., Wild J.M. Pulmonary MR angiography and perfusion imaging — a review of methods and applications. Eur J Radiol 2017; 86: 361-370, https://doi.org/10.1016/j. ejrad.2016.10.003.

19. Gallis K., Kasprzak P.M., Cucuruz B., Kopp R. Evaluation of visible spinal arteries on computed tomography angiography before and after branched stent graft repair for thoracoabdominal aortic aneurysm. J Vasc Surg 2017; 65(6): 1577-1583, https://doi.org/10.1016/jJvs.2016.10.118.

20. de Bruin A.F., Kornmann V.N., van der Sloot K., van Vugt J.L., Gosselink M.P., Smits A., Van Ramshorst B.,

Boerma E.C., Noordzij P.G., Boerma D., van Iterson M. Sidestream dark field imaging of the serosal microcirculation during gastrointestinal surgery. Colorectal Dis 2016; 18(3): 103-110, https://doi.org/10.1111/codi.13250.

21. van Elteren H.A., Ince C., Tibboel D., Reiss I.K., de Jonge R.C. Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging. J Clin Monit Comput 2015; 29(5): 543-548, https://doi.org/10.1007/s10877-015-9708-5.

22. Bajory Z., Szabo A., Deak G., Varga R., Pajor L. Orthogonal polarization spectral imaging: a novel tool for examination of microcirculatory changes in the testis. J Androl 2012; 33(3): 499-504, https://doi.org/10.2164/ jandrol.111.013599.

23. van Zijderveld R., Ince C., Schlingemann R.O. Orthogonal polarization spectral imaging of conjunctival microcirculation. Graefes Arch Clin Exp Ophthalmol 2014; 252(5): 773-779, https://doi.org/10.1007/s00417-014-2603-9.

24. Kawada K., Hasegawa S., Wada T., Takahashi R., Hisamori S., Hida K., Sakai Y. Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis. Surg Endosc 2017; 31(3): 1061-1069, https://doi.org/10.1007/s00464-016-5064-x.

25. Lim C., Malek A., Martins R., Petillon S., Boulate G., Hentati H., De'Angelis N., Brunetti F., Salloum C., Laurent A., Compagnon P., Azoulay D. Real-time assessment of intestinal viability using indocyanine green fluorescent imaging (with video). J Visc Surg 2015; 152(1): 71-72, https://doi. org/10.1016/j.jviscsurg.2014.09.008.

26. Raabe A., Beck J., Seifert V. Technique and image quality of intraoperative indocyanine green angiography during aneurysm surgery using surgical microscope integrated near-infrared video technology. Zentralbl Neurochir 2005; 66(1): 1-8, https://doi.org/10.1055/s-2004-836223.

27. Moon H.S., Joo S.P., Seo B.R., Jang J.W., Kim J.H., Kim T.S. Value of indocyanine green videoangiography in deciding the completeness of cerebrovascular surgery. J Korean Neurosurg Soc 2013; 53(6): 349-355, https://doi. org/10.3340/jkns.2013.53.6.349.

28. Dashti R., Laakso A., Niemela M., Porras M., Hernesniemi J. Microscope-integrated near-infrared indocyanine green videoangiography during surgery of intracranial aneurysms: the Helsinki experience. Surg Neurol 2009; 71(5): 543-550, https://doi.org/10.1016Zj.surneu. 2009.01.027.

29. Mavlikeev M.O., Titova A.A., Gudz D.O., Deev R.V. Modern methods for angiogenesis assessment in clinical practice. Nauka molodykh — Eruditio Juvenium 2017; 5(1): 110-123.

30. Wang Z., Cai Y., Liang Y., Zhou X., Yan S., Dan D., Piero R. Bianco, Lei M., Yao B. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function. Biomed Opt Express 2017; 8(12): 5493-5506, https:// doi.org/10.1364/boe.8.005493.

31. Washington C.W., Zipfel G.J., Chicoine M.R., Derdeyn C.P., Rich K.M., Moran C.J., Cross D.T., Dacey R.G. Jr. Comparing indocyanine green videoangiography to the gold standard of intraoperative digital subtraction angiography used in aneurysm surgery. J Neurosurg 2013; 118(2): 420-427, https://doi.org/10.3171/2012.10.jns11818.

32. Alander J.T., Kaartinen I., Laakso A., Patila T., Spillmann T., Tuchin V.V., Venermo M., Valisuo P. A review

of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012; 2012: 940585, https://doi. org/10.1155/2012/940585.

33. Dong L., Zhang X., Liang F., Yu X., Yang T., Li L. Prognostic value of oxygen challenge test for patients with cardiogenic shock receiving extracorporeal membrane oxygenation. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2017; 29(12): 1102-1106.

34. Raposio E., Bertozzi N., Moretti R., Grignaffini E., Grieco M.P. Laser Doppler flowmetry and transcutaneous oximetry in chronic skin ulcers: a comparative evaluation. Wounds 2017; 29(7): 190-195.

35. Trinks T.P., Blake D.F., Young D.A., Thistlethwaite K., Vangaveti V.N. Transcutaneous oximetry measurements of the leg: comparing different measuring equipment and establishing values in healthy young adults. Diving Hyperb Med 2017; 47(2): 82-87.

36. Khripun A.I., Shurygin S.N., Priamikov A.D., Mironkov A.B., Abashin M.V. Intestinal microcirculation in health and in acute impairment of mesenteric blood flow. Angiol Sosud Khir 2010; 16(3): 34-38.

37. Kouadio A.A., Jordana F., Koffi N.J., Le Bars P., Soueidan A. The use of laser Doppler flowmetry to evaluate oral soft tissue blood flow in humans: a review. Arch Oral Biol 2018; 86: 58-71, https://doi.org/10.1016/jarchoralbio.2017.11.009.

38. Binzoni T., Martelli F. Study on the mathematical relationship existing between single-photon laser-Doppler flowmetry and diffuse correlation spectroscopy with static background. J Opt Soc Am A Opt Image Sci Vis 2017; 34(12): 2096-2101, https://doi.org/10.1364/josaa.34.002096.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

39. Hsiu H., Hu H.F., Tsai H.C. Differences in laser-Doppler indices between skin-surface measurement sites in subjects with diabetes. Microvasc Res 2018; 115: 1-7, https://doi. org/10.1016/j.mvr.2017.07.004.

40. Ehling J., Lammers T., Kiessling F. Non-invasive imaging for studying anti-angiogenic therapy effects. Thromb Haemost 2013; 109(3): 375-390, https://doi.org/10.1160/th12-10-0721.

41. Quaranta M., Borisov S.M., Klimant I. Indicators for optical oxygen sensors. Bioanal Rev 2012; 4(2-4): 115-157, https://doi.org/10.1007/s12566-012-0032-y.

42. Keller A. Noninvasive tissue oximetry for flap monitoring: an initial study. J Reconstr Microsurg 2007; 23(212): 189-197, https://doi.org/10.1055/s-2007-974655.

43. Rao R., Saint-Cyr M., Ma A.M., Bowling M., Hatef D.A., Andrews V., Xie X.J., Zogakis T., Rohrich R. Prediction of postoperative necrosis after mastectomy: a pilot study utilizing optical diffusion imaging spectroscopy. World J Surg Oncol 2009; 7(1): 91, https://doi.org/10.1186/1477-7819-7-91.

44. Zimnyakov D.A., Tuchin V.V. Optical tomography of tissues. Quantum Electronics 2002; 32(10): 849-867, https:// doi.org/10.1070/qe2002v032n10abeh002307.

45. Durduran T., Choe R., Baker W., Yodh A. Diffuse optics for tissue monitoring and tomography. Rep Prog Phys 2010; 73(7): 076701, https://doi.org/10.1088/0034-4885/73/7/076701.

46. Konovalov A., Genina E., Bashkatov A. Diffuse optical mammotomography: state-of-the-art and prospects. Journal of Biomedical Photonics & Engineering 2016; 2(2): 020202-1, https://doi.org/10.18287/jbpe16.02.020202.

47. Chen W., Wang X., Wang B., Wang Y., Zhang Y., Zhao H., Gao F. Lock-in-photon-counting-based highly-sensitive and large-dynamic 164 imaging system for continuous-wave diffuse optical tomography. Biomed Opt Express 2016; 7(2): 499-511, https://doi.org/10.1364/boe7.000499.

48. Pham T., Hornung R., Ha H., Burney T., Serna D., Powell L., Brenner M., Tromberg B. Noninvasive monitoring of hemodynamic stress using quantitative near-infrared frequency-domain photon migration spectroscopy. J Biomed Opt 2002; 7(1): 34-44, https://doi.org/10.1117/1.1427046.

49. Yamada Y., Okawa S. Diffuse optical tomography: present status and its future. Optical Review 2014; 21(3): 185205, https://doi.org/10.1007/s10043-014-0028-7.

50. Ban H.Y., Schweiger M., Kavuri V.C., Cochran J.M., Xie L., Busch D.R., Katrasnik J., Pathak S., Chung S.H., Lee K., Choe R., Czerniecki B.J., Arridge S.R., Yodh A.G. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry. Med Phys 2016; 43(7): 4383-4485, https://doi. org/10.1118/1.4953830.

51. Liu Y., Su J., Lin Z.-J., Teng S., Rhoden A., Pantong N., Liu H. Reconstructions for continuous-wave diffuse optical tomography by a globally convergent method. Journal of Applied Mathematics and Physics 2014; 2(5): 204-213, https:// doi.org/10.4236/jamp.2014.25025.

52. Kienle A., Lilge L., Patterson M., Hibst R., Steiner R., Wilson B. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl Opt 1996; 35(13): 2304-2314, https://doi.org/10.1364/ ao.35.002304.

53. Potlov A.Yu. An algorithm for localization of optical structure disturbances in biomedical objects using time-resolved diffuse optical tomography. Inzhenernyy vestnik Dona 2016; 2. URL: http://ivdon.ru/uploads/article/pdf/IVD_36_ Potlov.pdf_3366240381.pdf.

54. Proskurin S.G. Using late arriving photons for diffuse optical tomography of biological objects. Quantum Electronics 2011; 41(5): 402-406, https://doi.org/10.1070/ qe2011v041n05abeh014597.

55. Nichols M.G., Hull E.L., Foster T.H. Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems. Appl Opt 1997; 36(1): 93-104, https://doi. org/10.1364/ao.36.000093.

56. Pham T., Coquoz O., Fishkin J., Anderson E., Tromberg B. Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy. Rev Sci Instrum 2000; 71(6): 2500-2513, https://doi.org/10.1063/1.1150665.

57. Taroni P., Comelli D., Farina A., Pifferi A., Kienle A. Time-resolved diffuse optical spectroscopy of small tissue samples. Opt Express 2007; 15(6): 3301-3311, https://doi. org/10.1364/oe.15.003301.

58. O'Sullivan T.D., Cerussi A.E., Cuccia D.J., Tromberg B.J. Diffuse optical imaging using spatially and temporally modulated light. J Biomed Opt 2012; 17(7): 071311, https://doi.org/10.1117/1.jbo.17.7.071311.

59. Gibson A., Dehghani H. Diffuse optical imaging. Philos Trans A Math Phys Eng Sci 2009; 367(1900): 3055-3072, https://doi.org/10.1098/rsta.2009.0080.

60. Kleshnin M., Orlova A., Kirillin M., Golubiatnikov G., Turchin I. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy. SPIE Proceedings Diffuse Optical Spectroscopy and Imaging VI 2017, https://doi.org/10.1117/12.2284378.

61. Orlova A.G., Turchin I.V., Plehanov V.I., Shakhova N.M., Fiks I.I., Kleshnin M.I., Konuchenko N.Yu., Kamensky V.A. Frequency-domain diffuse optical tomography with single

//////////////////////^^^^

190 CTM J 2018 J vol. 10 J No.4 V.V. Beschastnov, M.G. Ryabkov, I.V. Pavlenko, M.V. Bagryantsev, I.L. Dezortsev, V.V. Kichin.....I.V. Turchin

source-detector pair for breast cancer detection. Laser Phys Lett 2008; 5(4): 321-327, https://doi.org/10.1002/lapl.200710131.

62. Fat. Hemoglobin. Melanin. URL: http://omlc.org/spectra/ index.html.

63. Shah N., Cerussi A., Eker C., Espinoza J., Butler J., Fishkin J., Hornung R., Tromberg B. Noninvasive functional optical spectroscopy of human breast tissue. Proc Natl Acad Sci USA 2001; 98(8): 4420-4425, https://doi.org/10.1073/ pnas.071511098.

64. Uddin K.M.S., Mostafa A., Anastasio M., Zhu Q. Two step imaging reconstruction using truncated pseudoinverse as a preliminary estimate in ultrasound guided diffuse optical tomography. Biomed Opt Express 2017; 8(12): 5437-5449, https://doi.org/10.1364/boe.8.005437.

65. Kleshnin M.S., Orlova A.G., Kirillin M.Yu., Golubyatnikov G.Yu., Turchin I.V. Method of measuring blood oxygenation based on spectroscopy of diffusely scattered light. Quantum Electronics 2017; 47(4): 355-360, https://doi. org/10.1070/qel16284.

66. Bevilacqua F., Berger A., Cerussi A., Jakubowski D., Tromberg B. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods. Appl Opt 2000; 39(34): 6498-6507, https://doi. org/10.1364/ao.39.006498.

67. Esenaliev R.O., Karabutov A.A., Oraevsky A.A. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J Sel Top Quantum Electron 1999; 5(4): 981-988, https://doi.org/10.1109/2944.796320.

68. Carpenter C.M., Pogue B.W., Jiang S., Dehghani H., Wang X., Paulsen K.D., Wells W.A., Forero J., Kogel C., Weaver J.B., Poplack S.P., Kaufman P.A. Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size. Opt Lett 2007; 32(8): 933-935, https://doi. org/10.1364/ol.32.000933.

69. Bentz B.Z., Wu T.C., Gaind V., Webb K.J. Diffuse optical localization of blood vessels and 3D printing for guiding oral surgery. Appl Opt 2017; 56(23): 6649-6654, https://doi. org/10.1364/ao.56.006649.

70. Payette J.R., Kohlenberg E., Leonardi L., Pabbies A., Kerr P., Liu K.Z., Sowa M.G. Assessment of skin flaps using optically based methods for measuring blood flow and oxygenation. Plast Reconstr Surg 2005; 115(2): 539-546, https://doi.org/10.1097/01.prs.0000148415.54546.ca.

71. Colwell A.S., Wright L., Karanas Y. Near-infrared spectroscopy measures tissue oxygenation in free flaps for breast reconstruction. Plast Reconstr Surg 2008; 121(5): 344e-345e, https://doi.org/10.1097/prs.0b013e31816b11e5.

72. Colwell A.S., Craft R.O. Near-infrared spectroscopy in autologous breast reconstruction. Clin Plast Surg 2011; 38(2): 301-307, https://doi.org/10.1016/jcps.2011.03.014.

73. Lin S., Nguyen M., Chen C., Colakoglu S., Curtis M., Tobias A.M., Lee B.T. Tissue oximetry monitoring in microsurgical breast reconstruction to decrease flap loss. Plast Reconstr Surg 2011; 127(3): 1080-1085, https://doi. org/10.1097/prs.0b013e31820436cb.

74. Repez A., Oroszy D., Arnez Z.M. Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. J Plast Reconstr Aesthet Surg 2008; 61(1): 71-77, https://doi.org/10.1016/jbjps.2007.04.003.

75. Whitaker I.S., Pratt G.F., Rozen W.M., Cairns S.A., Barrett M.D., Hiew L.Y., Cooper M.A., Leaper D.J. Near infrared spectroscopy for monitoring flap viability following

breast reconstruction. J Reconstr Microsurg 2012; 28(3): 149154, https://doi.org/10.1055/s-0031-1296030.

76. Scheufler O., Exner K., Andresen R. Investigation of TRAM flap oxygenation and perfusion by near-infrared reflection spectroscopy and color-coded duplex sonography. Plast Reconstr Surg 2004; 113(1): 141-152, https://doi. org/10.1097/01.prs.0000095940.96294.a5.

77. Heise H.M., Lampen P., Stucker M. Reflectance spectroscopy can quantify cutaneous haemoglobin oxygenation by oxygen uptake from the atmosphere after epidermal barrier disruption. Skin Res Technol 2003; 9(4): 295-298, https://doi.org/10.1034/j.1600-0846.2003. 00036.x.

78. Malykhina I.F., Nerobeyev A.I., Dobrodeyev A.S., Verbo Ye.V., Garelik Ye.I., Salikhov K.S. Tissue oximetry: monitoring of microsurgical freetissue transfers for head and neck reconstruction. Voprosy rekonstruktivnoy i plasticheskoy khirurgii 2015; 2(53): 11-24.

79. Cong W., Intes X., Wang G. Optical tomographic imaging for breast cancer detection. J Biomed Opt 2017; 22(9): 1-6, https://doi.org/10.1117/1.jbo.22.9.096011.

80. Potlov A.Yu., Frolov S.V., Proskurin S.G. Localization of inhomogeneities in diffuse optical tomography based on late arriving photons. Optics and Spectroscopy 2016; 120(1): 9-19, https://doi.org/10.1134/s0030400x1601015x.

81. Konovalov A.B., Vlasov V.V., Kalintsev A.G., Kravtsenyuk O.V., Lyubimov V.V. Time-domain diffuse optical tomography using analytic statistical characteristics of photon trajectories. Quantum Electronics 2006; 36(11): 1048-1055, https://doi.org/10.1070/qe2006v036n11abeh013302.

82. Yazdi H.S., O'Sullivan T.D., Leproux A., Hill B., Durkin A., Telep S., Lam J., Yazdi S.S., Police A.M., Carroll R.M., Combs F.J., Stromberg T., Yodh A.G., Tromberg B.J. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy. J Biomed Opt 2017; 22(4): 45003, https://doi.org/10.1117/1.jbo.22.4.045003.

83. Boas D.A., Brooks D.H., Miller E.L., DiMarzio C.A., Kilmer M., Gaudette R.J., Zhang Q. Imaging the body with diffuse optical tomography. IEEE Signal Processing Magazine 2001; 18(6): 57-75, https://doi.org/10.1109/79.962278.

84. Maslennikova A.V., Orlova A.G., Pryanikova T.I., Kostenikov N.A., Vinogradova Yu.N., Denisenko A.N. Clinical significance and methods of diagnosis of tumor-induced hypoxy. Voprosy onkologii 2011; 57(4): 413-420.

85. Maslennikova A.V., Golubyatnikov G.Yu., Orlova A.G., Plekhanov V.I., Artifeksova A.A., Shakhova N.M., Kamensky V.A., Turchin I.V. Non-invasive optical method for evaluating the oxygen status in breast neoplasms. Opukholi zhenskoy reproduktivnoy sistemy 2010; 1: 5-10.

86. Ruiz J., Nouizi F., Cho J., Zheng J., Li Y., Chen J.H., Su M.Y., Gulsen G. Breast density quantification using structured-light-based diffuse optical tomography simulations. Appl Opt 2017; 56(25): 7146-7157, https://doi.org/10.1364/ ao.56.007146.

87. Cerussi A., Shah N., Hsiang D., Durkin A., Butler J., Tromberg B.J. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 2006; 11(4): 044005, https://doi.org/10.1117/1.2337546.

88. Zhu Q., Huang M., Chen N., Zarfos K., Jagjivan B., Kane M., Hedge P., Kurtzman S.H. Ultrasound-guided optical

tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases. Neoplasia 2003; 5(5): 379388, https://doi.org/10.1016/s1476-5586(03)80040-4.

89. Cerussi A.E., Tanamai V.W., Hsiang D., Butler J., Mehta R.S., Tromberg B.J. Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy. Philos Trans A Math Phys Eng Sci 2011; 369(1955): 4512-4530, https://doi.org/10.1098/ rsta.2011.0279.

90. Jiang S., Pogue B.W., Kaufman P.A., Gui J., Jermyn M., Frazee T.E., Poplack S.P., DiFlorio-Alexander R., Wells W.A., Paulsen K.D. Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment. Clin Cancer Res 2014; 20(23): 6006-6015, https://doi.org/10.1158/1078-0432.ccr-14-1415.

91. Anderson P.G., Kalli S., Sassaroli A., Krishnamurthy N., Makim S.S., Graham R.A., Fantini S. Optical mammography in patients with breast cancer undergoing neoadjuvant chemotherapy. Acad Radiol 2017; 24(10): 1240-1255, https:// doi.org/10.1016/j.acra.2017.03.020.

92. Maslennikova A.V., Orlova A.G., Golubiatnikov G.Y., Kamensky V.A., Shakhova N.M., Babaev A.A., Snopova L.B., Ivanova I.P., Plekhanov V.l., Prianikova T.I., Turchin I.V. Comparative study of tumor hypoxia by diffuse optical spectroscopy and immunohistochemistry in two tumor models. J Biophotonics 2010; 3(12): 743-751, https://doi.org/10.1002/ jbio.201000060.

93. Orlova A.G., Maslennikova A.V., Golubyatnikov G.Y., Kamensky V.A., Shakhova N.M., Plekhanov V.l., Turchin I.V., Snopova L.B., Ivanova I.P., Babaev A.A., Pryanikova T.l. Noninvasive estimation of the oxygen status of experimental tumors by diffuse optical spectroscopy. Biophysics 2011; 56(2): 304-308, https://doi.org/10.1134/s0006350911020230.

94. Orlova A.G., Kirillin M.Yu., Volovetsky A.B., Shilyagina N.Yu., Sergeeva E.A., Golubiatnikov G.Yu., Turchin I.V. Diffuse optical spectroscopy monitoring of oxygen state and hemoglobin concentration during SKBR-3 tumor model growth. Laser Physics Letters 2016, 14(1): 015601, https://doi.org/10.1088/1612-202x/aa4fc1.

95. Niu S., Zhu Q., Jiang Y., Zhu J., Xiao M., You S., Zhou W., Xiao Yu. Correlations among ultrasound-guided diffuse optical tomography, microvessel density, and breast cancer prognosis. J Ultrasound Med 2017; 37(4): 833-842, https://doi.org/10.1002/jum.14416.

96. Biswal N.C., Xu Y., Zhu Q. Imaging tumor oxyhemoglobin and deoxyhemoglobin concentrations with ultrasound-guided diffuse optical tomography. Technol Cancer Res Treat 2011; 10(5): 417-429, https://doi.org/10.7785/ tcrt.2012.500219.

97. Piao D., Ramadan M., Park A., Bartels K.E., Patel S.G. Freehand diffuse optical spectroscopy imaging for intraoperative identification of major venous and arterial vessels underlying peritoneal fat: an in vivo demonstration in a pig model. J Biomed Opt 2017; 22(10): 1-4, https://doi. org/10.1117/1.jbo.22.10.100503.

98. Khalil M.A., Kim H.K., Kim I.K., Flexman M., Dayal R., Shrikhande G., Hielscher A.H. Dynamic diffuse optical tomography imaging of peripheral arterial disease. Biomed Opt Express 2012; 3(9): 2288-2298, https://doi.org/10.1364/ boe.3.002288.

99. Sujatha N., Anand B.S.S., Nivetha K.B., Narayanamurthy V.B., Seshadri V., Poddar R. Assessment of microcirculatory hemoglobin levels in normal and diabetic subjects using diffuse reflectance spectroscopy in the visible region — a pilot study. Journal of Applied Spectroscopy 2015; 82(3): 432-437, https://doi.org/10.1007/s10812-015-0125-9.

100. Papazoglou E.S., Weingarten M.S., Zubkov L., Zhu L., Tyagi S., Pourezaei K. Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes. Biomed Instrum Technol 2007; 41(1): 83-87, https://doi.org/10.2345/0899-8205(2007)41[83:nidoti]2. 0.co;2.

101. Zhao H., Gao F., Tanikawa Y., Homma K., Yamada Y. Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue. Appl Opt 2005; 44(10): 1905-1916, https:// doi.org/10.1364/ao.44.001905.

//////////////////////^^^^

192 CTM J 2018 J v0l. 10 J N0.4 V.V. Beschastnov, M.G. Ryabkov, I.V. Pavlenko, M.V. Bagryantsev, I.L. Dezortsev, V.V. Kichin.....I.V. Turchin

i Надоели баннеры? Вы всегда можете отключить рекламу.