Научная статья на тему 'CONVENTIONAL AND NONCONVENTIONAL METHODS OF SYNTHESIS AND GROWTH-STIMULATING ACTIVITY OF 3-CHLORO-N,N-DIETHYL-N-(2-(MESITYLAMINO)-2-OXOETHYL)PROPAN-1-AMINIUM IODIDE'

CONVENTIONAL AND NONCONVENTIONAL METHODS OF SYNTHESIS AND GROWTH-STIMULATING ACTIVITY OF 3-CHLORO-N,N-DIETHYL-N-(2-(MESITYLAMINO)-2-OXOETHYL)PROPAN-1-AMINIUM IODIDE Текст научной статьи по специальности «Химические науки»

CC BY
30
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
TRIMECAINE / IONIC COMPOUND / MICROWAVE IRRADIATION / ULTRASOUND ACTIVATION / SWEET SORGHUM / GERMINATION

Аннотация научной статьи по химическим наукам, автор научной работы — Dauletbakov A.A., Belyankova E.O., Tursynbek S.Y., Anapiyayev B.B., Zolotareva D.S.

Synthesis of 3 - chloro - N,N - diethyl - N -(2 - (mesitylamino) - 2 - oxoethyl)propan - 1 - aminium iodide (1) was performed by via N - alkylation in conventional conditions and using microwave irradiation and ultrasound activation. The synthesized ionic compound was characterized using IR, 1H and 13C NMR, growth - stimulating activity had been tested for ten varieties and hybrids of sweet sorghum seeds.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CONVENTIONAL AND NONCONVENTIONAL METHODS OF SYNTHESIS AND GROWTH-STIMULATING ACTIVITY OF 3-CHLORO-N,N-DIETHYL-N-(2-(MESITYLAMINO)-2-OXOETHYL)PROPAN-1-AMINIUM IODIDE»

Chemical Journal of Kazakhstan ISSN 1813-1107, eISSN 2710-1185

Volume 3, Number 75 (2021), 58 - 66

https://doi.org/10.51580/2021-1/2710-1185.39

UDC 54.057,547.5

CONVENTIONAL AND NONCONVENTIONAL METHODS OF SYNTHESIS AND GROWTH-STIMULATING ACTIVITY OF 3-CHLORO-N,N-DIETHYL-N-(2-(MESITYLAMINO)-2-OXOETHYL)PROPAN-1-AMINIUM IODIDE

A.A. Dauletbakov12 , E.O. Belyankova1, S.Y. Tursynbek1, B.B. Anapiyayev2, D.S. Zolotareva1'2, A.Yu. Ten1', A.G. Zazybin12

1Kazakh-British Technical University, Department of Chemical Engineering, Almaty, Kazakhstan 2School of Chemical & Biochemical Engineering, Satbayev University, Almaty, Kazakhstan 3JCS «A.B. Bekturov Institute of Chemical Sciences» Almaty, Kazakhstan E-mail: dayletbakovanuar@gmail. com

Abstract: Synthesis of 3-chloro-N,N-diethyl-N-(2-(mesitylamino)-2-oxoethyl)propan-1-aminium iodide (1) was performed by via N-alkylation in conventional conditions and using microwave irradiation and ultrasound activation. The synthesized ionic compound was characterized using IR, 1H and 13C NMR, growth-stimulating activity had been tested for ten varieties and hybrids of sweet sorghum seeds.

Key words: trimecaine, ionic compound, microwave irradiation, ultrasound activation, sweet sorghum, germination.

1. Introduction

The conventional methods (CM) of synthesis which heat the reactions mixture with traditional equipment, like are heater, sand baths, oil baths and heating mantles, are not optimal in terms of the yield of reaction, but due to the hot surface on the reaction vessel result in decomposition of reactants, products and solvents over time [1]. One of the efficient synthetic tools which is getting more useful nowadays is microwaves (MW) irradiation [2]. The first publication about using microwave promotion in organic chemistry was reported by Gedye et al. [3]. The using of ultrasonic (US) activation can decrease the reaction times, that gives high yields, raised selectivity, and pure products in various synthetic

Citation: Dauletbakov A.A., Belyankova E.O., Tursynbek S.Y., Anapiyayev B.B., Zolo-

tareva D.S., Ten A.Yu., Zazybin A.G. Conventional and nonconventional methods of synthesis and growth-stimulating activity of 3-chloro-n,n-diethyl-n-(2-(mesitylamino)-2-oxoethyl)propan-1-aminium iodide. Chem. J. Kaz., 2021, 3(75), 58-66. DOI: https://doi.org/10.51580/2021-1/2710-1185.39

organic chemistry applications [4,5]. US has been used to speed up are many types of synthetically valuable organic reactions [6,7].

Sorghum (Sorghum bicolor (L.)) is the very important in the global like a food and feed crop. Sorghum - is the 5th most important grain crop, after maize, wheat, rice, and barley in the World [8]. Sorghum and sweet sorghum are becoming increasingly useful in the production of biofuels, many types of food, sugar, etc. [9], but will require increased land use to make the low cost of biomass production cost-effective, and will largely depend on the use of perennial plants to ensure resistance [10]. To use the high level of germination control of perennial sorghum plants [11] and early progress in the functional genomics of perennial plants [12] make it promise as a crop to production of biofuels, sugar and et al. Sweet sorghum with a high sugar content may be especially promising.

To stimulate germination and increase the productivity of sorghum different growth regulators as gibberellic acid, ethephon and chlormequat are used [13]. Recently it was found that some of the compounds exhibiting mielostimulating activity [14,15] also show growth stimulating activity [16], moreover, most of these ionic compounds were found to be non-toxic towards A. Fischeri which make them promising sustainable and environmentally friendly growth stimulants. Herein we report about the synthesis and growth regulating activity of new ionic compound obtained via N-alkylation of trimecaine.

2. Results and discussion

Compared with the conventional method, the using of MW and US is a convenient method in organic synthesis, the appreciation has increased significantly in recent years in a trying to understand the mechanism of action. A lot of applications in organic synthesis has made MW and US attractive to many researchers, and they are increasingly being used in organic synthesis. These nonconventional methods have proven to be a good tool for obtaining high yields and decreasing reaction time. The results of the alkylation reaction carried out in this work under various reaction conditions confirmed the trends in the literature, and the results obtained with mean yield were collected and presented in table 1.

Table 1 - The parameters of reaction

Synthesis/reaction conditions Time/min Yield, %

Conventional method 720-760 18.6

US activation 180-200 16.2

MW activation 60-80 26.5

The highest isolated yield is formed under MW irradiation in the shortest time, while in CM the reaction time was twelve times greater with a lower yield. US activation showed almost the same results, but the reaction rate was faster. To study the effect of synthesized ionic compound to germination energy and germination capacity of sweet sorghum seeds, experiments were carried out with

1 solution (concentration 10-3 and 10-2 %). The mean value of the results of 1 on the effect of germination energy and capacity of sweet sorghum seeds with control (water), including standard deviation (SD) is presented in Table 2.

Table 2 - The results of 1 effect on germination energy and capacity of sweet sorghum seeds (concentration of solutions are 10-2 and 10-3 %; root length and shoot length in cm)

№ Genotype Germination energy, % 4th day Germination capacity, % 9th day

Length of root (SD ±0.02) Length of shoot (SD ±0.01) % (SD ±3.2) Length of root (SD ±0.3) Length of shoot (SD ±0.2) % (SD ±2.5)

Control (water)

1 Kiz-9 2015 0.1 0.1 10 3.5 2.5 20

2 Kiz-9 2013 0.3 0.2 50 2.1 2.3 50

3 Kiz-8 2014 (19.5 cm) 0.2 0.1 30 2.1 3.2 40

4 Kiz-9 2014 (18.5 cm) 1.2 0.4 35 3.2 3.5 35

5 Victoria-4 2017 (28.5 cm) - - - - - -

6 Kaz-16 2013 1.0 1.0 80 1.7 2.1 80

7 Kaz-20 2013 - - - - - -

8 Victoria-4 2014 (20 cm) 1.5 1.0 55 3.2 4.5 55

9 Black top 2015 0.1 0.1 10 1.3 4.7 55

10 Hybrid 1 2015 0.7 1.0 40 5.0 4.5 45

Tr.CH2I-CH2-CH2Cl (0.01%)

1 Kiz-9 2015 0.2 0.2 15 3.2 4.7 40

2 Kiz-9 2013 1.2 0.7 65 3.0 2.7 70

3 Kiz-8 2014 (19.5 cm) 0.3 0.4 35 3.2 3.7 45

4 Kiz-9 2014 (18.5 cm) 1.4 0.5 55 3.7 3.6 60

5 Victoria-4 2017 (28.5 cm) - - - - - -

6 Kaz-16 2013 0.7 0.7 80 6.0 3.2 85

7 Kaz-20 2013 - - - - - -

8 Victoria-4 2014 (20 cm) 2.0 1.6 95 4.7 3.2 95

9 Black top 2015 0.7 0.6 30 2.0 5.0 80

10 Hybrid 1 2015 0.7 0.4 40 5.5 5.7 50

Tr.CH2I-CH2-CH2Cl (0.001%)

1 Kiz-9 2015 0.7 0.5 35 5.2 5.0 50

2 Kiz-9 2013 0.9 0.7 80 2.5 2.1 80

3 Kiz-8 2014 (19.5 cm) 0.9 0.4 45 6.7 6.7 60

4 Kiz-9 2014 (18.5 cm) 1.1 0.5 55 6.1 4.2 60

5 Victoria-4 2017 (28.5 cm) - - - - - -

6 Kaz-16 2013 0.7 0.7 80 4.5 6.0 90

7 Kaz-20 2013 - - - - - -

8 Victoria-4 2014 (20 cm) 2.2 1.2 100 4.5 4.1 100

9 Black top 2015 0.2 0.1 30 5.5 4.1 75

10 Hybrid 1 2015 0.6 0.5 30 2.5 7.4 40

The germination energy in control (water) was 10 % while in ionic compound solution (10-2) 15 % and solution with lower concentration (10-3) 35 % in genotype of Kiz-9 2015. The research has shown that a solution of ionic compound affects not only seed germination, but also the germination energy, enhancing the processes of gemmogenesis (the process of shoot growing) and the intensity of rhizogenesis (the process of root system formation). Both solutions with different concentrations of ionic compound showed a high intensity of rhizogenesis in genotypes Kiz-9 2013 and Kiz-8 2014 compared to the control. The germination energy and capacity including intensity of rhizogenesis and gemmogenesis was higher with solution of ionic compound in all genotypes compared to the control. The influence of ionic compounds solution on rhizogenesis of Kiz-9 2015, Kiz-9 2013, Kiz-8 2014 (19.5 cm), Kiz-9 2014 (18.5 cm) is shown in Figure 1.

8 -

7

Kiz-9 2015 Kiz-9 2013 Kiz-8 2014 (19.5cm) Kiz-9 2014 (18.5cm)

■ Control 0.01 0.001

Figure 1 - The effect of growth stimulants to intensity of rhizogenesis.

The germinated sweet sorghum seed of Kiz-9 2015 had the length of shoot twice greater in synthesized ionic compound solutions than in control, as well as in genotype Kiz-8 2014 (19.5 cm) shoot length in control was 3.2 cm when it was 6.7 cm in 10-3 % solution. The dilute solution of compound 1 showed the highest intensity to the rhizogenesis of Kiz-9 2014 (18.5 cm).

3. Conclusion

Using the nonconventional methods such as MW and US activation, ionic compound 3-chloro-N,N-diethyl-N-(2-(mesitylamino)-2-oxoethyl)propan-1 -aminium iodide was synthesized with a higher isolated yield 26.5% in shorter time 60-80 min compared with conventional method. The product with the highest isolated yield is formed under MW irradiation, in a very short time, while in CM the yield was lower and reaction time was twelve times greater. The synthesized ionic compound better affected the germination energy and capacity for all types of sweet sorghum seeds compared with control. The germination energy in

control was 55 % while in ionic compound solution (10-2) it was 95 % and solution with lower concentration (10-3) showed 100 % germination energy for genotype of Victoria-4 2014 (20 cm). The solution of 1 with a lower concentration better stimulated sweet sorghum seeds than concentrated solution and water.

4. Experimental part

1. Materials, methods and instruments. The melting point of ionic compound was measured in open capillary tube on an OptiMelt (Stanford Research System). The 1H- and 13C-NMR spectra were recorded using a NMReady 60 MHz spectrometer at 25 or 30 oC by using CDCl3 as a solvent. IR spectra was recorded on a spectrometer «Nicolet 5700 FT-IR» using KBr pellets. The progress of reactions and purity of products were checked using the TLC method on silica gel plates (Sigma Aldrich®, Germany) with iodine vapors development. The diethylether : ethanol mixtures (4:1 V/V and 5:1VV) were used as eluents. The TLC spots on the developed plates were observed in UV light (X = 254 nm). All the reactants and solvents from Sigma Aldrich®. An ultrasonic probe from Cole Parmer (50-60Hz, 0-240 W) and a domestic microwave generator (0-800 W) were used for the reaction. The separation and purification of substances was carried out by crystallization from appropriate solvents.

Trimecaine free base - 2-diethylamino-N-(2,4,6-trimethylphenyl)acetamide -was synthesized from commercially available hydrochloride by neutralization, conditions and methods discussed in [17]. The equation of synthesis 1 from trimecaine base is given in Figure 2.

(1)

Figure 2 - Synthesis of 3-cMoro-N,N-die1hyl-N-(2-(mesi1ylamino)-2-oxoe1:hyl)propan-1 -aminium iodide ( 1 )

Synthesis of ionic compound was performed in the classical conditions and using microwave, ultrasound activation. The reaction time of trimecaine base with 1-chloro-3-iodopropane in conventional conditions (reflux in acetonitrile) and using ultrasound and microwave activation presented in Table 1 ( Trimecaine: 1-chloro-3-iodopropane mole ratio is 0.01:0.011). After the completion of

the process, the volume of the solution was halved by evaporation and cooled. The resulting isolated product was separated and purified by crystallization, and the purity of the product was checked by TLC using a mixture of diethyl ether and ethanol (5:1) as eluent.

2. Spectral and other data for the 1. Into the 100 ml flask 15 ml of aceto-nitrile was added and 0.01 mol of trimecaine base was dissolved. Thereafter the solution of 0.011 mol of 3-chloro-1-iodopropane was added and the resulted solution was kept under the reflux in conventional method (78-82 oC). The same mixture of solution were used in nonconventional methods and the reaction mixture was placed in a US reactor and the contents reacted under US conditions characterized by the following parameters: US = 240 W at 30-40 °C, while the same type reaction mixture was placed in a MW reactor and the contents reacted under MW conditions at 80 W.

The 1 was separated as pale-yellow crystals after crystallization process. M.p. 148-150°C. IR (KBr), cm-1: 3183 (N-H) 1691 (C=O amide), 1473 (Caromatic Caromatic ). 13C NMR (CDCl3, 25 oC) 5, ppm: 162.81 (s, C=O); 138.90 (s, CH3); 134.89 (s, Caromatic-NH); 128.09 (s, Q^c); 67.2 (s, CO-CH2-N); 52.3 (s, N -CH2-CH3); 21.03 (s, C aromatic -CH3); 20.03 (s, C aromatic CH3); 8.09 (s,N+-CH2-CH3); 58.56 (s, N-C^^-C^d); 24.85 (s, N+-CH2-CH2-CH2Cl); 46.13 (s, N+-CH2-CH2-CH2Cl). :H NMR (CDCl3, 25 oC) 5, ppm: 13.07 (s, N-H); 6.87 (s, aromatic); 3.95 (s, CO-CH2-N+); 3.69, 3.47 (N+-CH2-CHз); 3.65 (N+-CH2-CH2-CH2Cl); 2.26 (N+^-CHrC^Cl); 3.62 (N+^-C^-CH^Cl); 2.51 (s, C aromatic CH3); 2.39 (s, C aromatic CH3); 1.54, 1.51 (t, N -CH2-CH3). Calculated for C18HзoNOClI, %: C, 49.25; H, 6.84; N, 3.19; I, 28.96; Cl, 8.08. Found %: C, 50.06; ^ 6.93.

The synthesized 1 was tested for germination energy and capacity with ten varieties and hybrids of sweet sorghum seeds, such as Kiz-9 2015, Kiz-9 2013, Riz-8 2014 (19.5m ^z-9 2014 (18.5m Victoria-4 2017 (28.5m ^z-16 2013, ^z-20 2013, Victoria-4 2014 (20m, Black top 2015, Hybrid 1 2015. For this goal, 10-2 and 10-3 % (by mass) solutions were prepared with the synthesized ionic compound. All dishes and other accessories were sterilized and kept in a laboratory oven 120 °C for 40 min. Varieties and hybrids of sweet sorghum seeds were sterilized with 90% ethanol for 6-8 min and washed three times with distilled water. For each assay, 10 Petri dishes were taken for control and 50 dishes (20 seeds per dish) for each ionic compound solution. The seeds were planted immediately after storage at a given temperature. The seeds were placed so that they did not touch each other or the walls. The filter paper under the seeds was moistened with water for control and solutions of ionic compounds for testing. The samples prepared in this way were placed in a light-proof cabinet with a temperature of 22 to 25 °C. The germination energy and germination were evaluated in accordance with the standard. The germinated seeds were counted twice, that is, four and nine days after planting. For each batch of 100 seeds, the normally sprouted seeds are counted, considering the initial and final calculations. If the germination results of individual batches did not exceed the standard

deviation, the batches were considered comparable. The result was the determination of the arithmetic mean with an accuracy of 1%.

Acknowledgements: This Research has been funded by the Ministry of Education and Science of the Republic of Kazakhstan (Grants No. AP08857345 and AP08857516).

Conflict of Interest: The authors declare that they have no competing interests.

Information about authors:

Dauletbakov A.A. - PhD student; e-mail: dayletbakovanuar@gmail.com; ORCID ID: 0000-0003-1941-6121

Belyankova Y.O. - PhD student; e-mail: belyankovae@gmail.com; ORCID ID: 0000-0002-7418-0564

Tursynbek S.Y. - MS student; e-mail: erzhanovnasss@gmail.com

Anapiyayev B.B. - professor; e-mail: anapiyayev@gmail.com; ORCID ID: 00000002-3130-0212

Zolotareva D.S. - scientific researcher; e-mail: zolotareva.2909@mail.ru; ORCID ID: 0000-0002-4809-2616

Ten A.Yu. - scientific researcher; e-mail: ten-assel@mail.ru; ORCID ID: 0000-0003-1815-932X

Zazybin A.G. - professor; e-mail: azazybin@yahoo.com; ORCID ID: 0000-00026244-9327

References

1. Shah J.J., Krishnapriya Mohanraj. Comparison of Conventional and Microwave-assisted Synthesis of Benzotriazole Derivatives. Indian J Pharm Sci., 2014, 76, 46-53.

2. Adam D. Out of the kitchen. Nature, 2003, 421(6923), 571-572. DOI: 10.1038/421571a

3. Gedye R., Smith F., Westaway K. et al., The use of microwave ovens for rapid organic synthesis. Tetrahedron Letters, 1986, 27(3), 279-282. https://doi.org/10.1016/S0040-4039(00)83996-9

4. Ghahremanzadeh R., Fereshtehnejad F., Mirzaei P., Bazgir A. Ultrasound-assisted synthesis of 2,2'-(2-oxoindoline-3,3-diyl)bis(1H-indene-1,3(2H)-dione) derivatives. Ultrasonics Sonoche-mistry, 2011, 18(1), 415-418. https://doi.org/10.1016Zj.ultsonch.2010.07.010

5. Kowsari E., Mallakmohammadi M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrasonics Sonochemistry, 2011, 18(1), 447-454. DOI: 10.1016/j.ultsonch.2010.07.020

6. Suslick K.S. Sonochemistry. Science, 1990, 247(4949), 1439-1445. DOI: 10.1126/science.247.4949.1439

7. Fillion H., Luche J. L. Synthetic Organic Sonochemistry. Plenum Press, New York, NY, USA, 1998.

8. http://www.fao.org/in-action/inpho/crop-compendium/cereals-grains/en/

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9. Farrell A.E., Plevin R.J., Turner B.T., Jones A.D., O'Hare M., Kammen D.M. Ethanol can contribute to energy and environmental goals. Science, 2006, 311(5760), 506. DOI: 10.1126/science.1121416

10. Wagoner P. Perennial grain development: past efforts and potential for the future. Critical Reviews in Plant Sciences, 1990, 9(5), 381. https://doi.org/10.1080/07352689009382298

11. Hu F.Y., Tao D.Y., Sacks E. et al. Convergent evolution of perenniality in rice and sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7), 4050. DOI: 10.1073/pnas.0630531100

12. Kresovich S., Barbazuk B., Bedell J. A. et al. Toward sequencing the Sorghum genome A U.S. National Science Foundation-sponsored workshop report. Plant Physiology, 2005, 138 (4), 1898. DOI: 10.1104/pp. 105.065136

13. Willian Rodrigues Macedo, Diego Kitahara Araujo, Valdinei Moreira Santos, Paulo Roberto de Camargo e Castro, Gisele Machado Fernandes. Plant growth regulators on sweet sorghum: physiological and nutritional value analysis. Comunicata Scientiae, 2017, 8(1), 170-175. DOI: https://doi.org/10.14295/cs.v8i1.1315

14. Yu V., Ten A., Baktybayeva L. et al., Synthesis and biological evaluation of 1.3.8-Triazaspiro[4.5]decane-2,4-dione derivatives as myelostimulators. Journal of Chemistry, 2018, 2018(9). DOI: https://doi.org/10.1155/2018/7346835

15. Baktybayeva L., Yu V., Zazybin A., Zolotareva D., Dauletbakov A. Activation of Leukopoiesis in Rat Blood with Trimecaine-Based Ionic Compounds. BioMed Res. Int., 2020, 2020, 1-7. DOI: 10.1155/2020/7636290

16. Zazybin A., Yu V., Anapiyayev B. et al. Plant growthstimulator. Patent No. RK 2018/0722.2, 2019.

17. Dauletbakov A.A., Belyankova E.O., Zolotareva D.S., Yu V.K., Zazybin A.G. Synthesis of ionic compounds based on trimecaine in classical condition and using alternative methods. Chemical Journal of Kazakhstan, 2020, 1. P. 115-124.

Тушндеме

3-ХЛОРО-Ч^-ДИЭТИЛ-^(2-(МЕТИЛАМИНО)-2-ОКСОЭтаП) ПРОПАН-1-АММОНИЙ ИОДИД1 СИНТЕЗ1НЩ ДЭСТYРЛI ЖЭНЕ ДЭСТYРЛI ЕМЕС ЭД1СТЕР1 МЕН вСУ- СТИМУЛЯТОРЛЬЩ БЕЛСЕНД1Л1Г1

А.А. Даулетбаков1'2 , Е.О. Белянкова1, С.Ы. ТурсынбеК, Б.Б. Анапияев2, Д. С. Золотарева1'2, А.Ю. Тен1'3, А.Г. Зазыбин1'2

'АК, "Казацстан-Британ техникалыцyHueepcumemi", "Химиялъщ инженерия" гътлыми-бшм беру орталыгы, Алматы, Казахстан

2 К.И. Сэтбаев атъшдагы Казац улттыц техникалыц зерттеу yHueepcumemi, Химиялъщ жэне биологиялыц технологиялар институты, Алматы, Казацстан 3АК "А.Б. Бектуров атындагыХимия гылымдары институты", Алматы, Казацстан

E-mail: dayletbakovanuar@gmail. com

3-хлор-Ы^-диэтил-Ы-(2- (мезитиламино)-2-оксоэтил) пропан-1-аминий иоди-дшщ CTffre3i калыпты жагдайда N-алкилдеу аркылы жэне микротолкынды сэуле-лену мен ультрадыбыстьщ активтендiрудi колдану аркылы жузеге асырылды. Син-тезделген иондык косылыс И^, 1Н жэне 13С ЯМР квмегiмен сипатталды, есу-стиму-ляторлык белсендшп тэттi к^май т^кымдарынын он сорттары мен будандарында сыналды. Микротолкынды жэне ультрадыбыстык активация сиякты дэстYрлi емес эдiстердi колдану аркылы, 3-хлор-Ы^-диэтил-Ы-(2-(мезитиламино)-2-оксоэтил)про-пан-1-аминий иодидi синтезi, эдеттегi эдiске караганда кыска мерзiмде жогары шы-гымда нэтиже кврсеттi. Ен жогары шыгым, вте кыска уакыт iшiнде микротолкынды активтендiрудi колдана отырып алынды, ал классикалык жагдайда шыгым темен, ал реакция уакыты он екi есе кеп болды. Синтезделген иондык косылыс бакылаумен салыстырганда тэттi к¥май т^кымдарынын барлык тYрлерiне ену жэне есу энер-гиясына жаксы эсер етт!

ТYЙiндi сездер: тримекаин, иондык косылыстар, микротолкынды жэне ультра-дыбысты активтендiру, тэттi к¥май, есу белсендiлi.

Резюме

ТРАДИЦИОННЫЕ И НЕТРАДИЦИОННЫЕ МЕТОДЫ СИНТЕЗА И РОСТСТИМУЛИРУЮЩАЯ АКТИВНОСТЬ 3-ХЛОРО^^-ДИЭТИЛ-^(2-(МЕСИТИЛАМИНО)-2-ОКСОЭТИЛ) ПРОПАН-1-ИОДИДА АММОНИЯ

А.А. Даулетбаков1'2 , Е.О. Белянкова1, С.Ы. ТурсынбеК, Б.Б. Анапияев2, Д. С. Золотарева1'2, А.Ю. Тен1'3, А.Г. Зазыбин1'2

1АО «Казахстанско-Британский технический университет» Научно-образовательный центр «Химическая инженерия», Алматы, Казахстан 2Казахский национальный исследовательский технический университет имени К. И. Сатпаева, Институт химических и биологических технологий, Алматы, Казахстан

3АО «Институт химических наук имени А.Б. Бектурова», Алматы, Казахстан E-mail: dayletbakovanuar@gmail. com

Синтез 3 -хлор-^^диэтил-^(2-(мезитиламино)-2-оксоэтил)пропан-1 -аминия иодида осуществляли путем N-алкилирования в обычных условиях и с использованием микроволнового излучения и ультразвуковой активации. Синтезированное ионное соединение охарактеризовано с помощью ИК, 1Н и 13С ЯМР, рост-стимули-рующая активность проверена на десяти сортах и гибридах семян сладкого сорго. Используя нетрадиционные методы, такие как микроволновую и ультразвуковую активацию было синтезировано ионное соединение 3-хлор-^^диэтил-^(2-(мези-тиламино)-2-оксоэтил)пропан-1-аминий иодид с более высоким выделенным выходом за более короткое время по сравнению с обычным методом. Продукт с наивысшим изолированным выходом был получен с использованием микроволновой активации за очень короткое время, в то время как в классических условиях выход был ниже, а время реакции было в двенадцать раз больше. Синтезированное ионное соединение лучше влияло на энергию прорастания и всхожесть ко всем видам семян сладкого сорго по сравнению с контролем.

Ключевые слова: тримекаин, ионное соединение, микроволновое излучение, активация ультразвуком, сладкое сорго, проращивание.

i Надоели баннеры? Вы всегда можете отключить рекламу.