kuNiVERSLIM:
№ 2 (95)_ДД ТЕХНИЧЕСКИЕ НАУКИ_(Ьевраль. 2022 г.
ENERGY INDUSTRY
DOI - 10.32743/UniTech.2022.95.2.13086
CONSIDERATION OF THE NONLINEARITY OF THE MAGNETIZATION CURVE IN THE CALCULATION OF MAGNETIC CHAINS WITH A MOVING ELECTROMAGNETIC SCREEN
Boltayev Otabek
PhD, docent, Tashkent State Transport University, Uzbekistan, Tashkent E-mail: otash_be@mail.ru
Firuza Akhmedova
Assistant,
Tashkent State Transport University, Uzbekistan, Tashkent E-mail: _ firuza. axmedova. 83@mail.ru
Islombek Kurbanov
Assistant,
Tashkent State Transport University, Uzbekistan, Tashkent E-mail: qurbonov. islom. tdtu@gmail.com
УЧЕТ НЕЛИНЕЙНОСТИ КРИВОЙ НАМАГНИЧИВАНИЯ ПРИ РАСЧЕТЕ МАГНИТНЫХ ЦЕПЕЙ С ПОДВИЖНЫМ ЭЛЕКТРОМАГНИТНЫМ ЭКРАНОМ
Болтаев Отабек Ташмухамматович
канд. техн. наук, доцент,
Ташкентский государственный транспортный университет,
Республика Узбекистан, г. Ташкент
Ахмедова Фируза Анваровна
ассистент,
Ташкентский государственный транспортный университет,
Республика Узбекистан, Ташкент
Курбанов Исломбек Бахтиёрович
ассистент,
Ташкентский государственный транспортный университет,
Республика Узбекистан, Ташкент
ABSTRACT
In the article, it was found that using the method of quadrupole theory to take into account the nonlinearity of the magnetization curve in the calculation of magnetic chains of moving screen converters, this method allows to obtain results that are very close to practice. It is also based on the fact that it is possible to further increase the accuracy of the calculation by determining the magnetic resistances in each section of the converter magnetic circuit by the average value of the induction.
АННОТАЦИЯ
В статье определено, что использование метода четырехполюсной теории для учета нелинейности кривой намагничивания при расчете магнитных цепей преобразователей с подвижным экраном позволяет получить результаты, очень близкие к практике. Он также основан на том, что можно еще больше повысить точность расчета, определяя магнитные сопротивления в каждом сечении магнитопровода преобразователя по среднему значению индукции.
Библиографическое описание: Boltayev O., Akhmedova F., Kurbanov I.B. CONSIDERATION OF THE NONLINEARITY OF THE MAGNETIZATION CURVE IN THE CALCULATION OF MAGNETIC CHAINS WITH A MOVING ELECTROMAGNETIC SCREEN // Universum: технические науки : электрон. научн. журн. 2022. 2(95). URL: https://7universum.com/ru/tech/archive/item/13086
№ 2 (95)
A UNI
/Ш. ТЕ)
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
февраль, 2022 г.
Keywords: moving screen, magnetic system, magnetization curve, magnetic capacitance, magnetic flux, excitation coil. Ключевые слова: подвижной экран, магнитная система, кривая намагничивания, магнитная емкость, магнитный поток, обмотка возбуждения.
Introduction
By calculating the magnetic chains of the moving screen converter magnetic circuits taking into account the curvature of the magnetization curve, the results can be approximated to the results obtained on an experimental basis. The simplest method of calculating magnetic chains by considering the magnetization curve is B.K. Proposed by Bul. According to it, the calculated magnetic circuit is divided into several parts (usually 2 to 6 for magnetic chambers with a moving electromagnetic screen) and each part is described as a P- or T-shaped passive quadrupole with a permanent complex magnetic resistance. These quadrupoles will consist of Z[Lh complex magnetic resistance (W^h magnetic virginity according to the energy-information model of chains) and Y^ conductivity (magnetic
capacity according to the energy-information model of chains). The parameters of the quadrupoles are determined using the expressions given in the literature.
A newly created device protected by a patent for the invention [1] A moving screen device developed using a magnetic core is symmetrical, so it is sufficient to create an exchange circuit for a part of it.
When the electrical conductivity of the moving screen is infinitely large, the switching scheme of this magnetic chain is further simplified (Fig. 1). That is, since Z^3K ^ ro it is sufficient to perform calculations only for the left part of the magnetic chain exchange circuit. In this case, the value of the scattering magnetic fluxes of the screen is considered to be so small that it cannot be taken into account.
Figure 1. Switching circuit of the converter magnetic chain
Results and Discussion
Given that the exchange scheme of the magnetic circuit under consideration is described as T-shaped passive quadrupoles, the determination of the input and output magnitudes of these quadrupoles is carried out in the following sequence.
Based on the given — magnetic flux, the equivalent complex magnetic resistance at the first quadrupole output Z^ekv1 and the magnetic voltage Ufx1 are determined.
ZUekvl — Wuekvl
1
; и», — о?,ж
с
•uS
aS wßekv1-
moving screen and a ring core without a moving screen is determined by Zll1 and the magnetic capacitance C^S1 between these ring cores:
b-i
Where is p1 — pR1 + jpx1 specific complex mag-
Qh
netic resistance of the first section and y B1 — -t- the
si
magnetization curve of the material through the expression is determined using Figure 2; C^p1 - the magnetic capacity per unit length of the air gap between the annular cores.
The length of the first section is l1, the induction is Qh
B1 — -t- and the magnetization curve Using Figure 2,
s-
the complex magnetic resistance of a ring core with a
№ 2 (95)
A UNI
/Ш. ТЕ)
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
февраль, 2022 г.
Figure 2. Current of magnetic induction dependence of active and reactive specific magnetic resistance of 3413 steel
T from the expressions of the simon quadrupole , = C^s magnetic resistance for the first
part, taking into account the equations Zm1 is determined as follows:
Z-m1 = + 2 ) (2 ^1 + )
uekvl-
The magnetic voltage at the first quadrupole input Ufl01 and the magnetic flux Q^01 are determined using the following expressions:
Up01 — Qul^ml — Uß2>
U,01
Qß01 — y + CßSlZßekv1 + J \ —
) — Qb-
Ufl2 and after determining the values of s, the magnetic voltage Ufx02 and the magnetic flux Q^02 at the second quadrupole input are determined as follows:
U[i02 — Q<u2^m2>
q _Uj№(
4ß02 — 7 (
1 + CßS2^ßekv2 +2 CßS2^ß2 ) ;
Where is
Z-m2 — ^ + (1^ß2 + Zßekvl)
С uS2 —
7 _Uß2 _ U
¿ßekv2 — nq — 4ß2
'ß01 <U01
P2 —
Pr2 + JPx2 - the relative complex magnetic resistance
Qqu2
of the second section and y B2=-t- The magnetization
S2
curve of the material through the expression is determined using Figure 2; C[ln2 - the magnetic capacity per unit length of the air gap between the annular cores.
The total magnetic flux, scattering magnetic flux and magnetic voltage in the newly created moving screen converter magnetic circuit exchange circuit are determined as follows:
Quo = Qus + Qum> Qus = U[i02Cus>
Uuq — Uu02 + Qu0^u2
Conclusion
Given the nonlinearity of the material magnetization curve in movable screen converter magnetic chains, this method allows to obtain results that are very close to practice, although they are simpler than other methods. In the considered method it is possible to further increase the accuracy of the calculation by determining the magnetic resistances in each section of the magnetic circuit by the average value of the induction.
№ 2 (95)
UNIVERSUM:
ТЕХНИЧЕСКИЕ НАУКИ
февраль, 2022 г.
References:
1. Patent RUz (UZ) № IAP 05432. Magnitouprugiy datchik usiliy/ Amirov S.F., Turdibekov K.X., Jurayeva K.K., Boltayev O.T., Fayzullayev J.S.// 2017g. Official newsletter -2017. - №10.
2. Amirov S.F., Boltayev O.T., Akhmedova F.A. Calculation of Magnetic Chains with Mobile Screens // International Journal of Advanced Research in Science Engineering and Technology. India. - №6, Issue 5, May 2019 - pp. 9243-
3. Sulton, A., Otabek, B., Firuza, A. New created mathematical models of movable screens and a scatter parameter converters // Jour of Adv Research in Dynamical & Control Systems, Vol. 12, Special Issue-02, 2020. pp. 122-126.
4. Amirov S.F., Boltaev O.T. et al. Research of magnetic circuits of new force transducers. Automation. Modern technologies. 2020.Vol. 74. No. 1. P. 24-26.
5. Boltaev O., Ahmedova F., Nurxonov B.R. Classification of magnetic chains with moving electromagnetic screens//Internauka. 2021. № 27-2 (203). P. 55-57.
6. Amirov S.F., Boltayev O.T. Mathematical models of differential magnetic circuits of converters with movable screens and distributed parameters //Journal of Tashkent Institute of Railway Engineers. - 2019. - T. 15. - №. 3. -
7. Boltaev O.T., Mirasadov M.J., Nurkhonov B.Sh. Investigation of the static regime of magnetic circuits with movable electromagnetic shields and with distributed parameters // Universum: technical sciences. - 2021. - No. 5-5 (86). -P.
8. Bazarov M., Bedritskiy I.M., Boltaev O.T. Estimation of an error of calculations of ferromagnetic elements from inductance of dispersion// European Journal of Technical and Natural Sciences. - Austria, 2017. - № 3. - p. 47-49.
9. Boltaev O.T. Structural methods for calculating magnetic circuits with movable electromagnetic screens // X International Youth Competition of Scientific Works "Youth in Science: New Arguments". 1 March 2019. - Lipetsk, Russia, 2019. - P. 20-24.
10. Amirov S.F., Boltayev O.T. Methods of approximation of the magnetization curve (Magnitlanish egri chiziqlarini approksimatsiyalash usullari)// Problemi informatiki i energetiki. - Toshkent, 2017. - № 6. - C. 71-80.
9245.
С. 75-81.
90-94.