Актуальт проблемы сучасно!" медицины
dose infusion during surgical anesthesia in an adult// Anesth Analg.- 2005.- Vol.100.- P.1804-1806.
14. Ngwenyama N.E., Anderson J., Hoernschemeyer D.G. et al. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in
adolescents// Paediatr Anaesth.- 2008.- Vol.18, №12.- P.1190-1195.
15. Oktar B.K., Cakir B., Mutlu N. et al. Protective role of cyclooxygenase (COX) inhibitors in burn-induced intestinal and liver damage// Burns.- 2002.- Vol.28, №3.- P.209-214.
Реферат
СИНДРОМ ИНФУЗИИ ПРОПОФОЛА У КРЫС ПРИ УСЛОВИИ КОМБИНАЦИИ С АНАЛЬГЕТИКАМИ Дмитриев Д.В.
Ключевые слова: пропофол, токсичность, синдром инфузии, анальгетики.
Исследования у 60 крыс показали, что 18-часовое введение пропофола приводит к развитию синдрома инфузии пропофола, который манифестируется нарушениями обмена липидов, поражением печени и поджелудочной железы, развитием диареи, потерей массы тела и гибелью части крыс. Токсичность пропофола усиливалась при комбинации с трамадолом и бутарфанолом и существенно снижалась при применении кеторолака.
Summary:
PROPOFOL INFUSION SYNDROME IN RATS UNDER COMBINATION WITH ANALGESICS Dmytriev D.V.
Key words: propofol, toxicity, infusion syndrome, analgetics.
The investigation carried out on 60 rats has demonstrated the 18-hour propofol administration leads to the development of propofol infusion syndrome which is manifested by the lipid metabolism disturbances, liver and pancreas impairments, diarrhea, body weight loss and death of some rats. Propofol toxicity increases under the combination with tramadol and butarphanol and considerably decreases under the ketorolac administration.
UDC 611.136.46+611.136.5
CONCEPTUAL MODELS OF TREE-SHAPE ARTERIAL BED STRUCTURE.
Dovgiallo Yu. V., Beshulia O. O., Tomash D. S. M.Gorky Donetsk National Medical University, Donetsk
Three conceptual models of tree-shape arterial bad structure were described. These models deflect the contemporary data about the structure of arteries. These models allow to renovate arterial bad till the level of microcirculatory vessels using only one index - diameter of the segment, which starts the arterial bad. Practically, these data can be used for quantitative description of invisible parts of functionally — different organs arterial bad.
Key wards: arterial bed, mathematic model, quantitative description
Intensive development of theoretical medicine and surgical science require not only qualitative revising of the actual material, but also its creative comprehension. What can we say about "normal construction" of arterial bed? Can we predict an outcome of operation on the vascular bed? These and not only these questions, concerning the arteries remain undecided. And large vessels, and the microcirculatory bed they are enough described in available literature while about "intermediate" section of the arterial bed we, practically, have not information.
Now, modern digital technologies which allow during the lifetime visualization of the arterial bed to open the new possibilities for diagnostic of its pathology [1,2].
The knowledge of the arteries and their branches construction quantitative regularities will help to diagnose and prevent many dangerous diseases of the vascular bed [3].
It is necessary to add that "mathematical theory" is the most suitable form of knowledge organizations, the base of the scientific achievements.
Purpose. To study existable mathematical models of the tree - shape arterial bed structure.
Our study is based on the available literatural origins of the native and foreign authors.
As to tree-shape arterial bed, at present, majority of the authors, who study the problem, consider that it presents itself fractal or pseudofractal system. Such approach allows to restore it completely till the level of the microcirculatory bed, using only initial sections of arterial tree, knowing main mor-phofunctional principles of its construction. The most spreading and popularity have got three conceptual models of the tree-shape arterial bed: segmental, dichotomical and trunkal.
Segmental model [4]. In this case as the main morpho-functional unit considered an arterial segment and the arterial bed was described like a construction which is formed by individual segments, which form the rows-levels of branching out. Herewith, under an arterial segment implied a division of the arterial bed which is located between the nearest branching.
For formal quantitative description of the arterial
BICHMK yKpaiucbKoi'Medunuoi' cmoMamo^ozinuoi' aKadeMii'
bed were used the following factors:
1. i - a serial number of branching level, newly formed row of arterial segments;
2. D - a diameter of the maternal segment, residing on initial level of the dividing;
3. dmax - a diameter of the daughter branch having greater diameter;
4. dmin - a diameter of the daughter branch having smaller diameter;
5. L - a length of the segment, distance between the nearest branching;
6. CM - a factor of the duplication - an amount of the newly formed segments.
7. FF - shape factor D/L;
8. K - dmin/D - a factor of branching
9. K1 - dmax/dmin -a factor of skewness.
Empirically installed factors: CM, FF, K and K1
were used as the base of the mathematical model, allowing completely restore the arterial tree till the level of microcirculatory bed using only one factor: Do - a diameter of the segment, which begins the arterial bed.
It was offered and considered two variants to models. The first variant was founded on suggestion that the maternal segment is divided on equal (having equal diameters) daughter branches. The second variant provided the not equal.
In accordance to the first variant amount of the vessels on each level of the dividing (Ni) was calculated on formula:
Ni= CMi,
where CM - a factor of the duplication (is considered as constant for given type of an arterial tree), i - a serial number of branching level, which has value from 1 till ln(Df/Do)/lnK
where Df - a terminal diameter, till which the dividing of the arterial bed goes on, Do - an initial diameter, K - an attitude of the daughter segment diameter to the maternal segment diameter (is considered as constant for given type of arterial tree).
The diameter of the segment on each level is defined by correlation:
Di=Di-1 *K
The length of the segment was founded as: Li= DixFF, where FF - a factor of the segments shape, which is equal the attitude of their diameter to the length . The second variant of the model differs from the first that after the dividing of the maternal segment on equal branches with diameter dmin (K=dmin/D), diameter one of they was multiplied on factor K1=dmax/dmin that allowed to reflect not equal dividing. Calculations in this case were produced for "lesser" and "greater" branches twice.
The main defect of this model is that it does not allow to take into account the corners between the daughter branches. The last fact greatly limits its usage as exploratory instrument.
The dichotomical model. In this instance, arterial bed is described as structure, which consist of interconnected dichotomical bifurcations.
Arterial dichotomy is the more complex constructive element of the system, than the segment, and consist of maternal vascular segment, two (or several) daughter branches and the point of branching itself (the dichotomy, trihotomy, quadritomy and etc.) [5].
To realize of the model, except factors, specified in the segmental model, were used the following:
1. v[ - a factor of the branching (area ratio) from equation: ^=(dmax2 + dmin2)/D2
2. y - a coefficient of skewness (asymmetry ratio) from equation: y=(dmin/dmax)2;
3. 3. -£, value of degree from equation D^ =dmax^ + dmin^ (Murray C. D.)
For the first time, problem of the arterial branching functional anatomy was formulated in 1878 by the German anatomist and embryologist Villghelm Rhoux [5]. Using their own observations he came to the conclusion that the shape of the arterial bifurcation looks like the shape of stream liquid, flowing out from the hole of the tube. They were for the first time installed relationship between value of the arterial dichotomy branching corner and diameters of the maternal stem and its daughter branches. The discovered relationships of the arterial dichotomies construction he has formulated in the manner of rules, having got in special literature name "rules of Rhoux".
1. If the artery is divided into two equal branches they arise under the equal angle to the maternal stem.
2. If one of two branches is smaller than another, the thicker branch, or continuation of the main artery, forms with the main stem the smaller angle, than the smaller branch.
3. All branches, which so small that they practically do not reduce the main stem, arise from it under big angle.
Trunkal model [6]. In this instance, arterial bed is considered as a system which consists of interconnected stems-arteries. Herewith, under the artery is meant the linear construction, consisting of daughter segments with the bigger diameters, from the point till the level of the microcirculatory bed.
Актуальт проблемы сучасно! медицины
consisting of daughter segments with the bigger diameter, from the given point till the level of micro-circulatory bed.
The author on big quantity of experimental material installed the equations of regression of the dependencies between: dmax - Di, dmin - Di that Lv -Di for functionally different internal organs. dmax=0,88Dj 151 R2=0,8339 dmin=0,0772e2 3763Di R2=0,5427 LV=158,85D|-18,873 R2=0,8362,
Where R2 - level of approximation validity
Thus, presented conceptual models reflect the current concepts on construction of the tree-type part of arterial bed stucture. Practically, these mathematical models may be used for recovering and quantitative description of the arterial tree of functionally - different organs.
Literature
1. Этюды современной ультразвуковой диагностики / Гуч А.А., Дынник О.Б., Сухарев И.И. и др. - К.: Ук-рмед, 2000. - Вып. 1. Исследование брюшной аорты, сосудов таза и нижних конечностей. Новые технологии в ультразвуке. - 192 с.
2. Quantitative analysis of reconstructed 3-D coronary arterial tree and intracoronary devices / S. Y. Chen, J. D. Carroll, J. C. Messenger, G. Cumming // IEEE Trans. Med. Imaging. - 2002. - Vol. 21, № 7. - P. 724 - 740
3. Марстон А. Сосудистые заболевания кишечника. -M.: Медицина, 1998. - 304с.
4. Зенин O.K., Гусак В.К., Кирьякулов Г.С. Артериальная система человека в цифрах и формулах.-Донецк: «Донбасс», 2002. - 196 с.
5. Розен Р. Принцип оптимальности в биологии. - М.: Мир, 1969. - 231 с.
6. Зенин O.K. Морфофункциональные принципы организации артериального русла большого круга кровообращения: Дис...докт. мед. наук: 14.03.01. -К., 2005. - 468 с.
Реферат
КОНЦЕПТУАЛЬНЫЕ МОДЕЛИ СТРОЕНИЯ ДРЕВОВИДНОЙ ЧАСТИ АРТЕРИАЛЬНОГО РУСЛА Довгялло Ю.В., Бешуля О.А., Томаш Д.С.
Ключевые слова: артериальное русло, математическая модель, количественное описание
Описаны три концептуальные модели древовидной части артериального русла, которые отражают современные представления о строении артерий. Эти модели позволяют восстановить артериальное дерево до уровня микроциркуляторного русла по одному показателю - диаметру сегмента, которым начинается русло. Практически, эти данные можно использовать для количественного описания невидимых отделов артериального русла функционально-различных органов.
Реферат
КОНЦЕПТУАЛЬН1 МОДЕЛ1 БУДОВИ ДЕРЕВ0П0Д1БН01 ЧАСТИНИ АРТЕР1АЛЬНОГО РУСЛА Довгялло Ю.В., Бешуля О.О., Томаш Д.С.
Кпючов1 слова: артер1альне русло, математична модель, юлькюне описания
Були описаш три концептуальш модел1 деревопод1бноТ частини артер1ального русла, як1 вщдзерка-люють сучасш уяви про будову артерш. Ц1 модел1 дозволяють вщновити артер1альне дерево до р1вня м1кроциркуляторного русла, використовуючи один показник - д1аметр сегмента, яким починаеться русло. Практично ц1 дан1 можливо використовувати для ктькюного описування невидимих в1дд1л1в apTepi-ального русла функцюнально-р1зномаштних opraHiB.
4 Б 6
Fig. 2. Schematic presentations of the arterial bed section. Note: segment of the 1st level of branching: 0-1; segment of the 2nd level of branching: 1-2 and 1-3; segment of the 3rd level of branching: 2-4, 2-5, 3-6, 3-7; the segments of the1st generation: 01, 1-3, 3-7; the segments of the 2nd generation: 12, 2-4, 3-6; the segment of the 3rd generation: 2-5 Formally, quantitative description of the arterial bed were used the following factors:
1. Gr - a number of generation - a serial number of the newly formed group of arteries, which the given segment belong to; herewith, under the "artery" implied the linear construction, consisting of daughter segments with the bigger internal diameters (unless it is executed one of the conditions: D/dmax<3, dmax#dmin or dmax>0,1, that artery ends);
2. i - a serial number of branching level of newly formed arterial segments row;
3. D - diameter of the maternal segment, residing on initial level of the dividing;
4. dmax - a diameter of the daughter branch having the greater diameter;
5. dmin - a diameter of the daughter branch having the smaller diameter;
6. L - a length of the segment, distance between the nearest branching;
7. Lv - a length of the artery, linear construction,