Научная статья на тему 'Concentrations of water and thionyl chloride complexes and clusters: hydrolysis products in the gas phase'

Concentrations of water and thionyl chloride complexes and clusters: hydrolysis products in the gas phase Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
86
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CONCENTRATION OF WATER CLUSTERS / THIONYL CHLORIDE / GАS-РHАSЕ HУDRОLУSIS / КОНЦЕНТРАЦИИ КЛАСТЕРОВ ВОДЫ / ТИОНИЛХЛОРИД / ГАЗОФАЗНЫЙ ГИДРОЛИЗ

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Zasovskaya M.A.

The presence of water complexes and clusters in hydrolysis and hydration reactions implies complex multi-step processes involving various mechanisms. The concentration of neutral and charged complexes and clusters in the reaction mixture affects the rate and mechanism of hydrolysis. Therefore, the aim of this work was to calculate the concentrations of the complexes and clusters involved in gas-phase hydrolysis of thionyl chloride, as well as to establish the most probable reaction channels. Based on the thermodynamic data obtained by the B3LYP/6-311++G(2d,2p), MP2/aug-cc-pVTZ and G4 methods of quantum chemical modelling, the gas-phase concentrations of the complexes and clusters of water and thionyl chloride, as well as the hydrolysis products of the latter, were calculated. The structures of water complexes of composition (H2O)n (n = 1-5,8) were identified and optimised. Acyclic structures of the (H2O)4 and (H2O)5 complexes were identified in the gas phase having concentrations different from those calculated in cyclic complexes. Calculated concentrations of charged complexes and clusters (H+)∙(H2O)n and (H2O)n·(OH-) Cl-(H2O)n, SOCl+(H2O)n, (SOCl2(H2O)n)are negligible. Therefore, the assumption concerning the hydrolysis of formed or existing ionic particles in the gas phase inside water clusters can be excluded. Concentrations of SOCl2(H2O)n and HCl (H2O)n neutral clusters range from 1014 to 101 molecules/cm3, depending on the number of water molecules in a cluster. SOCl2(H2O) and HCl(H2O) are characterised by the highest concentration. A calculation of SOCl2(H2O)n cluster concentrations was performed under the assumption that the concentration of thionyl chloride is equal to the concentration of saturated water vapour, which is quite possible near industrial facilities for the production of high-capacity current sources. The most probable channels for hydrolysis are presented by reactions of complexes and clusters having the highest concentrations. These reactions of (H2O)n and SOCl2(H2O)n neutral clusters are in a good agreement with the results of previous work.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Концентрации нейтральных и заряженных комплексов и кластеров воды, тионилхлорида и продуктов его гидролиза в газовой фазе

Участие в реакциях гидролиза и гидратации комплексов и кластеров воды предполагает протекание сложных многостадийных реакций по различным механизмам. Концентрация нейтральных и заряженных комплексов и кластеров в реакционной смеси влияет на скорость и механизм гидролиза. Поэтому целью данной работы является расчет концентраций комплексов и кластеров участвующих в газофазном гидролизе тионилхлорида и установление наиболее вероятных каналов реакции. На основе термодинамических данных, полученных методами квантово-химического моделирования B3LYP/6-311++G(2d,2р), MP2/aug-cc-pVTZ и G4 были рассчитаны концентрации комплексов и кластеров воды, тионилхлорида, а также продуктов его гидролиза в газовой фазе. Оптимизированы структуры комплексов воды состава (H2O)n, n=1-5,8. Найдены ациклические структуры комплексов (H2O)4 и (H2O)5 в газовой фазе, рассчитаны их концентрации, которые отличны от концентраций циклических комплексов. Рассчитанные концентрации заряженных комплексов и кластеров (H+)∙(H2O)n и (H2O)n·(OH-) Cl-(H2O)n, SOCl+(H2O)n, (SOCl2(H2O)n)несущественны, поэтому предположение о гидролизе ионных частиц, образующихся или существующих в газовой фазе внутри кластеров воды может быть исключено. Концентрации нейтральных кластеров SOCl2(H2O)nи HCl(H2O)nсоставляют от 1014 до 101 молекул/см3, в зависимости от числа молекул воды в кластере, наибольшей концентрацией обладают SOCl2(H2O) и HCl(H2O). Расчет концентраций кластеров SOCl2(H2O)nпроводился в предположении, что концентрация тионилхлорида равна концентрациям насыщенного пара воды, что вполне возможно вблизи промышленных объектов по производству высокоёмких источников тока. Наиболее вероятными каналами гидролиза являются реакции с комплексами и кластерами, концентрации которых являются самыми высокими, это реакции нейтральных кластеров (H2O)nи SOCl2(H2O)n, что совпадает с результатами предыдущей работы.

Текст научной работы на тему «Concentrations of water and thionyl chloride complexes and clusters: hydrolysis products in the gas phase»

Оригинальная статья / Original article УДК 543.42.546.791

DOI: http://dx.doi.org/10.21285/2227-2925-2019-9-2-170-175

Concentrations of water and thionyl chloride complexes and clusters: hydrolysis products in the gas phase

© Maria A. Zasovskaya

Ukhta State Technical University, Ukhta, Komi Republic, Russian Federation

Abstract: The presence of water complexes and clusters in hydrolysis and hydration reactions implies complex multi-step processes involving various mechanisms. The concentration of neutral and charged complexes and clusters in the reaction mixture affects the rate and mechanism of hydrolysis. Therefore, the aim of this work was to calculate the concentrations of the complexes and clusters involved in gas-phase hydrolysis of thionyl chloride, as well as to establish the most probable reaction channels. Based on the thermodynamic data obtained by the B3LYP/6-311++G(2d,2p), MP2/aug-cc-pVTZ and G4 methods of quantum chemical modelling, the gas-phase concentrations of the complexes and clusters of water and thionyl chloride, as well as the hydrolysis products of the latter, were calculated. The structures of water complexes of composition (H2O)n (n = 1-5.8) were identified and optimised. Acyclic structures of the (H2O)4 and (H2O)5 complexes were identified in the gas phase having concentrations different from those calculated in cyclic complexes. Calculated concentrations of charged complexes and clusters (H+)(H2O)n and (H2O)n (OK) Ci(H2O)n, SOCl+(H2O)n, (SOCl2(H2O)n)~ are negligible. Therefore, the assumption concerning the hydrolysis of formed or existing ionic particles in the gas phase inside water clusters can be excluded. Concentrations of SOCl2(H2O)n and HCl (H2O)n neutral clusters range from 1014 to 101 molecules/cm3, depending on the number of water molecules in a cluster. SOCl2(H2O) and HCl(H2O) are characterised by the highest concentration. A calculation of SOCl2(H2O)n cluster concentrations was performed under the assumption that the concentration of thionyl chloride is equal to the concentration of saturated water vapour, which is quite possible near industrial facilities for the production of high-capacity current sources. The most probable channels for hydrolysis are presented by reactions of complexes and clusters having the highest concentrations. These reactions of (H2O)n and SOCl2(H2O)n neutral clusters are in a good agreement with the results of previous work.

Keywords: concentration of water clusters, thionyl chloride, gas-phase hydrolysis

Information about the article: Received June 20, 2018; accepted for publication June 7, 2019; available online June 28, 2019.

For citation: Zasovskaya M.A. Concentrations of water and thionyl chloride complexes and clusters: hydrolysis products in the gas phase. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology]. 2019, vol. 9, no. 2, pp. 170-175. (In Russian). DOI: 10.21285/2227-2925-2019-9-2-170-175

Концентрации нейтральных и заряженных комплексов и кластеров воды, тионилхлорида и продуктов его гидролиза в газовой фазе

© М.А. Засовская

Ухтинский государственный технический университет, г. Ухта, Республика Коми, Российская Федерация

Резюме: Участие в реакциях гидролиза и гидратации комплексов и кластеров воды предполагает протекание сложных многостадийных реакций по различным механизмам. Концентрация нейтральных и заряженных комплексов и кластеров в реакционной смеси влияет на скорость и механизм гидролиза. Поэтому целью данной работы является расчет концентраций комплексов и кластеров участвующих в газофазном гидролизе тионилхлорида и установление наиболее вероятных каналов реакции. На основе термодинамических данных, полученных методами квантово-химического моде-

лирования B3LYP/6-311++G(2d,2p), MP2/aug-cc-pVTZ и G4 были рассчитаны концентрации комплексов и кластеров воды, тионилхлорида, а также продуктов его гидролиза в газовой фазе. Оптимизированы структуры комплексов воды состава (H2O)n, n=1-5,8. Найдены ациклические структуры комплексов (H2O)4 и (H2O)5 в газовой фазе, рассчитаны их концентрации, которые отличны от концентраций циклических комплексов. Рассчитанные концентрации заряженных комплексов и кластеров (H+)(H2O)n и (H2O)n(OK) СГ(H2O)n, SOCl+(H2O)n, (SOCl2(H2O)n)- несущественны, поэтому предположение о гидролизе ионных частиц, образующихся или существующих в газовой фазе внутри кластеров воды может быть исключено. Концентрации нейтральных кластеров SOCl2(H2O)n и HCl(H2O)n составляют от 1014 до 101 молекул/см3, в зависимости от числа молекул воды в кластере, наибольшей концентрацией обладают SOCl2(H2O) и HCl(H2O). Расчет концентраций кластеров SOCl2(H2O)n проводился в предположении, что концентрация тионилхлорида равна концентрациям насыщенного пара воды, что вполне возможно вблизи промышленных объектов по производству высокоёмких источников тока. Наиболее вероятными каналами гидролиза являются реакции с комплексами и кластерами, концентрации которых являются самыми высокими, это реакции нейтральных кластеров (H2O)n и SOCl2(H2O)n, что совпадает с результатами предыдущей работы.

Ключевые слова: концентрации кластеров воды, тионилхлорид, газофазный гидролиз

Информация о статье: Дата поступления 20 июня 2018 г.; дата принятия к печати 7 июня 2019 г.; дата онлайн-размещения 28 июня 2019 г.

Для цитирования: Засовская М.А. Концентрации нейтральных и заряженных комплексов и кластеров воды, тионилхлорида и продуктов его гидролиза в газовой фазе // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9, N 2. С. 170-175. DOI: 10.21285/2227-2925-2019-9-2-170-175

INTRODUCTION

The gas-phase hydrolysis of thionyl chloride comprises a source of contamination of technological materials whose products degrade the quality of manufactured products, such as high-capacity current sources.

Currently, the main volume of thionyl chloride is observed in the production of lithium batteries. These batteries are used in the aviation, aerospace and military industries, where the highest level of energy efficiency is required. Therefore, in order to avoid degradation, the adverse reaction of hydrolysis of thionyl chloride in the gas phase must be eliminated. In order to determine the limits of purification from hydrolysis products required for high-tech industries, knowledge of the thermodynam-ic parameters of the complexes and clusters of thionyl chloride with water, as well as the hydrolysis constants within these complexes, is required.

Participation of complexes and water clusters in hydrolysis and hydration reactions implies complex multi-step processes involving various mechanisms. The concentration of neutral and charged complexes and clusters in the reaction mixture affects the rate and mechanism of hydrolysis [1-4].

There are few studies of the kinetics and thermodynamic characteristics of SOCl2 gas-phase hydrolysis. The most reliable experimental data on the kinetics of this process were obtained in experimental studies [5, 6]. In the works [7-9], a theoretical study of the reaction mechanism was carried out. A comparison of the calculated rate constants with empirical data showed that, regardless of theoretical approach used for the calculations, the theoretical results differ significantly from the obtained experimental values.

In the work [10], the thermodynamic parame-

ters of the formation of neutral and charged complexes and clusters of water, thionyl chloride and the products of its hydrolysis in the gas phase were studied in order to estimate the probability of reactions involving these particles. Assumptions about different conformations of complexes and water clusters were provided in [11-16]. Using thermody-namic parameters, it becomes possible to calculate the concentrations of neutral and charged complexes and clusters of water, thionyl chloride and the products of its hydrolysis in the gas phase, which, in turn, will make it possible for the probable channels of gas-phase hydrolysis of thionyl chloride to be specified.

Based on the foregoing, the aim of the present work is to calculate the concentrations of neutral and charged complexes and clusters of water, thionyl chloride and the products of its hydrolysis in the gas phase, as well as to estimate the probability of reactions involving these particles and compare the result with the data obtained in the previous work.

RESULTS AND DISCUSSION

Based on the thermodynamic parameters of the formation of neutral and charged clusters [10], their absolute concentrations were calculated. If the converted fraction is small, the standard equilibrium constant for the formation reaction of the water clusters from monomers nH2O ^ (H2O)n, can be represented as follows:

n P(H20)n/P°

K--n '

(p(H2O)/P° )

where P is the standard pressure.

Hence, the relative pressure of the clusters in the gas phase (i.e. the fraction of clusters relative to the monomer) is expressed by the following equation:

P(H2O)n / P (H2O) = K0(P (H2O) / P0)n-1

The standard constant can be expressed in terms of the Gibbs energy of the reaction. Then the fraction of clusters is

xn =

= P(H2O)n / P(H2O)

and can be expressed as

-A,G0/RT 0 n-1

■e r (P (H2O)/ P0 ) '.

Since pressure values are included in expressions as a ratio, any units of expression can be used, for example, mmHg: P 0= 760 mmHg, P(H2O) = 24 mmHg (pressure of saturated water vapour at 298.15 K).

The absolute concentration of clusters was calculated based on the following ratio:

[(H2O)n] = Xn[H2O] = xnP(H2O)/RT =

= Xn • ((P (H2 O)/P°)/ RT)P°=

= xn[H2O = Xn(P(H2O)/Pp)C0,

where C0 = P0/RT = 40.34 molecules/m3 = 2.43 • 1019 molecules/cm3.

When comparing the obtained concentrations of water clusters, the concentrations of dimers and trimers were found to be in satisfactory agreement with the works of Dunn and Kathmann [11, 12]. Besides the known cyclic conformations [12], for tetramer and pentamer, (n-1)-cyclic structures, presented by the cluster structure of n molecules that form cycles of n-1 molecules, were studied using three methods (B3LYP/6-311++G(2d,2p),

MP2/aug-cc-pVTZ and G4). Figure shows the obtained structures of tetramer and pentamer.

The concentrations of (n-l)-cyclic clusters differ from the ones of cyclic clusters reported in [11, 12]. Tetramer concentration values given in the above-mentioned works are the same and comprise 1011 molecules/cm3 and the pentamer concentration yields 108 and 1010 molecules/cm3 for Kathmann and Dunn, respectively.

In our case, in accordance with thermodynamic data [10] for acyclic structures (H2O)4 and (H2O)5, concentrations of the acyclic tetramer and pentamer are 2.8107 and 0.03 molecules/cm3, respectively (Table). The cyclic structures of the (H2O)4 and (H2O)5 clusters, optimised by us, are similar to the structures of these compounds presented in [12]. Calculation of concentrations for these structures, as well as for dimer and trimer, are given in table.

(H2O)4

(H2O)5

Fig. (n - 1)-Cyclic structures of (H2O)4 and (H2o)5 clusters optimised at MP2/aug-cc-pVTZ level

Рис. (п-1)-Циклические структуры кластеров (H2O)4 и (H2O)5, оптимизированные на уровне MP2/aug-cc-pVTZ

1

Gibbs free energies (kJmoi ), equilibrium constants and concentrations of clusters (H2O)n, n = 1-5.8 calculated by the G4 and B3LYP/6-311++G(2d,2p) methods (are specified in parentheses)

Свободные энергии Гиббса (кДжмоль ), константы равновесия и концентрации кластеров (И2й)п, п=1-5,8, рассчитанные методами G4 и B3LYP/6-311++G(2d,2p) (в скобках)

x

n

Cluster ArG Ko K, molecules/cm3

(H2O)2 (H2O)3 (H2O)4 (H2O)5 (H2O)8 14.8 (12.4) 24.2 (21.1) 29.2 (33.5) 30.5 (52.9) (54.4) 2.510-3 (7.810-3) 5.610-5 (2.010-4) 7.610"6 (1.8-10"0) 4.510"6 (5.4-10 ) (2.910-10) 5.91013 (1.91014) 4.31010 (1.51011) 1.8108 (2.8107) 3.4106 (4.1102) (6.910-3)

Calculation of clusters formed according to the scheme M + nH2O ^ M (H2O)n,

where M = SOCh, HCl, H+, OH-, Cl- and SOCl+, was carried out as follows:

Kc = [M(H2O)n]/([M][H2O])n;

к0-

P(M(H2O)n)/P

(p(M)/P0 )(P(H2O)/P0 у

Hence the equation

0 P(M(H2O)n)

K =-2-X

P(M)

0n

v P(H2O) j

where P and P (H2O) are known. Let's express the equilibrium constant K0 in terms of Gibbs energy, then the equation for the fraction of clusters takes the form:

(M(H2O)n)

-ArG0/RT o n

■e r (P(H2O)/P0)".

The absolute concentration of clusters was calculated based on the following ratio:

[M(H2O)n] = Xn[M] = XnP(M)/RT =

= xn((P(M)/P0)/ RT)P0=

= Xn[H2O = Xn(P(M)/P0)C0,

where C0 = P/RT = 40.34 molecules/m3 = 2.43 • 1019 molecules/cm3.

The concentration of charged clusters, calculated according to these formulas, is rather large, but, due to the fact that the formation of H+, OH-, Cl- and SOCl+ ions from neutral clusters is a very unprofitable process, their concentrations should be negligible. Therefore, the concentrations of these ions were calculated on the basis of the following reaction:

(k+m+1)H2O ^ (H+) (H2O)m+(H2O)k (Otf).

The equilibrium constant expressed in terms of concentrations for a given reaction:

кс =

\_(H+ )(H2O)n ] X \_(H2O)k (OH-)]

[H2O]

k+m+1

If only one dissociation reaction takes place and the concentration of dissociated water molecules is [X], then

KC =

[X]

2

[H2O]

k+m+1 '

K

(px/p° í

(P (H2O) /P )

0 k+m+1

From here we obtain

K01/2

PX/P

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0

(P(H2O)/P )

0 .(k+m+1)/2 ■

The fraction of ionic clusters relative to water monomers

x = PX/(P(H2O); x = (K0)1/2(P(H2O)/ Pf+m+1)/2-1 = = (K0) (P(H2O)/ Pf+m-1)1/2t

к

0

-Ar G0/RT

After substitution, we obtain the formula for finding the fraction of clusters:

x = eñr G/(2RT)(P(H20)/R°)(k+m-1)/2

The obtained fractions of charged clusters are very small, confirming our findings that formation of (H+) (H2O)m and (H2O)k (OH~) clusters is improbable.

The calculation of the concentration of SOCl2(H2O)n and HCl(H2O)n neutral clusters was made under the assumption of concentrations SOCl2 and HCl being equal to the concentrations of saturated water vapour. On this basis, the concentrations of the SOCl2(H2O)n and HCl(H2O)n clusters range from 1014 to 101 molecules/cm , depending from the number of water molecules in the cluster. Notably, the highest concentrations are characteristic of SOCl2(H2O) and HCl(H2O), however, with an increase in number of water molecules in the cluster their concentration decreases.

CONCLUSION

On the basis of the calculated concentrations obtained, the participation of charged clusters (H+) (H2O)m and (H2O)k (OH-), as well as Cl-(H2O)n, SOCl+(H2O)n and (SOCl2(H2O)n)-clusters, can also be concluded to be improbable in the hydrolysis reaction of thionyl chloride. Therefore, the assumption of hydrolysis of ionic particles, formed or existing in the gas phase inside water clusters (under micro-solvation conditions), can be excluded as the explanation of the high rate of hydrolysis of thionyl chloride and, accordingly, of the discrepancy of theoretical values from those obtained experimentally [5, 6].

Reactions with complexes and clusters with the highest concentrations are the most probable. These clusters are (H2O)n u SOCl2(H2O) with

e

SOCl2(H2O)n cluster concentrations being calculated under the assumption that the concentration of thionyl chloride is equal to the concentration of saturated water vapour, which is quite possible near industrial facilities for the production of high-capacity current sources.

Based on the calculated concentrations obtained, we can assume that the most probable channels of hydrolysis are channels presented by the reactions of neutral clusters (H2O)n and SOCl2(H2O)n, which is in a good agreement with the results of [10].

1. Szczesniak M.M., Scheiner S., Bouteiller Y. Theoretical study of H2O-HF and H2O-HCl: Comparison with experiment. Journal of Chemical Physics. 1984, vol. 81, no. 11, pp. 5024-5030.

2. Chaban G.M., Gerber R.B., Janda K.C. The transition from hydrogen bonding to ionization in (HCl)n(NH3)n and (HCl)n(H2O)n clusters: consequences for anharmonic vibrational spectroscopy. Journal of Physical Chemistry. A. 2001, vol. 105, pp. 8323-8332.

3. Ignatov S.K., Sennikov P.G., Ault B.S., Bagatur'yants A.A., Simdyanov I.V., Razuvaev A.G., Klimov E.Ju., Gropen O. Water Complexes and Hydrolysis of Silicon Tetrafluoride in the Gas Phase: An ab InitioStudy. Journal of Physical Chemistry. A. 1999, vol. 103, no. 41, pp. 8328-8336.

4. Yeung C.S., Ng P.S., Guan X., Phillips D.L. Water-Assisted Dehalogenation of Thionyl Chloride in the Presence of Water Molecules. Journal of Physical Chemistry. A. 2010, vol. 114, pp. 4123-4130.

5. Johnson T.J., Disselkamp R.S., Su Y.-F., Fellows R.J., Alexander M.L., Driver C.J. Gas-phase Hydrolysis of SOCl2. Journal of Physical Chemistry. A. 2003, vol. 107, no. 32, pp. 6183-6190. DOI: 10.1021/jp022090v

6. Driver C.J., Johnson T.J., Su Y.-F., Alexander M.L., Fellows R.J., Magnuson J., Disselkamp R.S., Roberts B.A. The Impact of Humidity, Temperature and Ultraviolet Light on the Near-Field Environmental Fate of Pinacolyl Alcohol, Methyl Iodide, Methyl-phosphonic Dichloride (DCMP) and Thionyl Chloride Using an Environmental Wind Tunnel. Humidity. Waschington: PNNL-14172, 2003, 70 p.

7. Ignatov S.K., Sennikov P.G., Razuvaev A.G., Schrems O. Ab-initio and DFT Study of the Molecular Mechanisms of SO3 and SOCl2 Reactions with water in the Gas Phase. Journal of Physical Chemistry. A. 2004, vol. 108, pp. 3642-3649.

8. Zasovskaya M.A., Ignatov S.K., Molecular pathways of SOCl2 hydrolysis within mono- and dia-

REFERENCES

qua complexes. A quantum chemical study. Computational and Theoretical Chemistry. 2015, vol. 1069, pp. 56-65.

9. Zasovskaya M.A., Ignatov S.K. Potential energy surface of the SOCl2+2H2O system. Izvestiya Komi nauchnogo tsentra Ural'skogo otdeleniya RAN. 2015, no. 2 (22), pp. 12-18. (In Russian)

10. Zasovskaya M.A., Ignatov S.K. Complexes and clusters of water, thionil chloride and products of its hydrolysis in a gas phase. Thermodynamic characteristics. Izvestiya vuzov. Prikladnaya khimiya i Biotekhnologiya. 2017, vol. 7, no. 1, pp. 40-49. (In Russian) DOI: 10.21285/2227-2925-2017-7-1-40-49.

11. Dunn M.E., Pokon E.K., Shields G.C. Thermodynamics of Forming Water Clusters at Various Temperatures and Pressures by Gaussian-2, Gaussian-3,Complete Basis Set-QB3, and Complete Basis Set-APNO Model Chemistries; Implications for Atmospheric Chemistry. J. Am. Chem. Soc. 2003, vol. 126, pp. 2647-2653.

12. Kathmann Sh.M., Schenter G.K., Garrett B.C. Understanding the sensitivity of nucleation kinetics: A case study on water. Journal of Chemical Physics. 2002, vol. 116, pp. 5046-5057.

13. Domnguez A., Niehaus T.A., Frauenheim T. Accurate Hydrogen Bond Energies within the Density Functional Tight Binding Method. Journal of Physical Chemistry. A. 2015, vol. 119, pp. 3535-3544.

14. Yoskioki S.J. Application of the independent molecule model to the calculation of free energy and rigid-body motions of water hexamers. Journal of Molecular Graphics and Modelling. 2003, vol. 21, no. 6, pp. 487-498.

15. Saykally R.J., Wales D.J. Pinning Down the Water Hexamer. Science. 2012, vol. 336, pp. 814-815.

16. Bartolotti L.J., Rai D., Kulkarni A.D., Gejji S.P., Pathak R.K. Water clusters (H2O)n [n = 9-20] in external electric fields: exotic OH stretching frequencies near breakdown. Computational and Theoretical Chemistry. 2014, vol. 1044, pp. 66-73.

БИБЛИОГРАФИЧЕСКИМ СПИСОК

1. Szczesniak M.M., Scheiner S., Bouteiller Y. Theoretical study of H2O-HF and H2O-HCl: Comparison with experiment // The Journal of Chemical Physics. 1984. Vol. 81. No. 11. P. 5024-5030.

2. Chaban G.M., Gerber R.B., Janda K.C. The transition from hydrogen bonding to ionization in (HCl)n(NH3)n and (HCl)n(H2O)n clusters: consequences for anharmonic vibrational spectroscopy // J. Phys. Chem. A. 2001. Vol. 105. P. 8323-8332.

3. Ignatov S.K., Sennikov P.G., Ault B.S., Ba-

gatur'yants A.A., Simdyanov I.V., Razuvaev A.G., Klimov E.Ju., Gropen O. Water Complexes and Hydrolysis of Silicon Tetrafluoride in the Gas Phase: An ab InitioStudy // The Journal of Physical Chemistry A. 1999. Vol. 103. No. 41. P. 8328-8336.

4. Yeung C.S., Ng P.S., Guan X., Phillips D.L. Water-Assisted Dehalogenation of Thionyl Chloride in the Presence of Water Molecules // The Journal of Physical Chemistry A. 2010. Vol. 114. P. 4123-4130.

5. Johnson T.J., Disselkamp R.S., Su Y.-F.,Fel-

lows R.J., Alexander M.L., Driver C.J. Gas-phase Hydrolysis of SOCl2 // J. Phys. Chem. A. 2003. Vol. 107. No. 32. P. 6183-6190. DOI: 10.1021/jp 022090v

6. Driver C.J., Johnson T.J., Su Y.-F., Alexan-derM.L., Fellows R.J., Magnuson J., Disselkamp R.S., Roberts B.A. The Impact of Humidity, Temperature and Ultraviolet Light on the Near-Field Environmental Fate of Pinacolyl Alcohol, Methyl Iodide, Methylphosphonic Dichloride (DCMP) and Thionyl Chloride Using an Environmental Wind Tunnel. Humidity. Waschington: PNNL-14172, 2003. 70 p.

7. Ignatov S.K., Sennikov P.G., Razuvaev A.G., Schrems O. Ab-initio and DFT Study of the Molecular Mechanisms of SO3 and SOCl2 Reactions with water in the Gas Phase // J. Phys. Chem. A. 2004. Vol. 108. P. 3642-3649.

8. Zasovskaya M.A., Ignatov S.K., Molecular pathways of SOCl2 hydrolysis within mono- and diaqua complexes. A quantum chemical study // Computational and Theoretical Chemistry. 2015. Vol. 1069. P. 56-65.

9. Засовская М.А., Игнатов С.К. Поверхность потенциальной энергии системы SOCl2+2H2 // Известия Коми научного центра Уральского отделения РАН. 2015. N 2 (22). С. 12-18.

10. Засовская М.А., Игнатов С.К. Комплексы и кластеры воды, тионилхлорида и продуктов его гидролиза в газовой фазе. Термодинамические характеристики // Известия вузов. Прикладная

Contribution

Maria A. Zasovskaya carried out the experimental work, on the basis of the results summarized the material and wrote the manuscript. Maria A. Zasovskaya has exclusive author's rights and bears responsibility for plagiarism.

Conflict of interests

The author declares no conflict of interests regarding the publication of this article.

AUTHORS' INDEX

Maria A. Zasovskaya, СЕЭ Ph.D. (Chemistry), Associate Professor, Head of the Department of Chemistry, Ukhta State Technical University, e-mail: aspect51@yandex.ru

химия и биотехнология. 2017. Т. 7. N 1. С. 40-49. DOI: 10.21285/2227-2925-2017-7-1 -40-49.

11. Dunn M.E., Pokon E.K., Shields G.C. Thermodynamics of Forming Water Clusters at Various Temperatures and Pressures by Gaussian-2, Gaussian-3,Complete Basis Set-QB3, and Complete Basis Set-APNO Model Chemistries; Implications for Atmospheric Chemistry // J. Am. Chem. Soc. 2003. Vol. 126. P. 2647-2653.

12. Kathmann Sh.M., Schenter G.K., Garrett B.C. Understanding the sensitivity of nucleation kinetics: A case study on water // The Journal of Chemical Physics. 2002. Vol. 116. P. 5046-5057.

13. Domnguez A., Niehaus T.A., Frauenheim T. Accurate Hydrogen Bond Energies within the Density Functional Tight Binding Method // The Journal of Physical Chemistry. A. 2015. Vol. 119. P.3535-3544.

14. Yoskioki S.J. Application of the independent molecule model to the calculation of free energy and rigid-body motions of water hexamers // Journal of Molecular Graphics and Modelling. 2003. Vol. 21. No. 6. P. 487-498.

15. Saykally R.J., Wales D.J. Pinning Down the Water Hexamer // Science. 2012. Vol. 336: P. 814-815.

16. Bartolotti L.J., Rai D., Kulkarni A.D., Gejji S.P., Pathak R.K. Water clusters (H2O)n [n = 9-20] in external electric fields: exotic OH stretching frequencies near breakdown // Computational and Theoretical Chemistry. 2014. Vol. 1044. P. 66-73.

Критерии авторства

Засовская М.А. выполнила экспериментальную работу, на основании полученных результатов провела обобщение и написала рукопись. За-совская М.А. имеет на статью авторские права и несет ответственность за плагиат.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

СВЕДЕНИЯ ОБ АВТОРАХ

Засовская Мария Александровна, [>3

к.х.н., доцент, заведующая кафедрой химии, Ухтинский государственный технический университет, e-mail: aspect51@yandex.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.