DOI: 10.6060/ivkkt.20216411.6401 УДК: 541.49:546.47:546.76:546.74
КОМПЛЕКСООБРАЗОВАНИЕ В СИСТЕМЕ ЦИНК(П)-ХРОМ(Ш)-НИКЕЛЬ(Н)-ГЛИЦИН-ВОДА
Н.Б. Березин, В.В. Чевела, Ж.В. Межевич, В.Ю. Иванова
Николай Борисович Березин *, Жанна Витальевна Межевич*
Кафедра технологии электрохимических производств, Казанский национальный исследовательский технологический университет, ул. К. Маркса, 68, Казань, Российская Федерация, 420015 E-mail: [email protected] *, [email protected]
Владимир Всеволодович Чевела, Валентина Юрьевна Иванова
Кафедра неорганической химии, Казанский (Приволжский) федеральный университет, ул. Кремлевская,
18, Казань, Российская Федерация, 420008
E-mail: [email protected], [email protected]
Актуальность исследования комплексообразования в рассматриваемой системе связана с развитием роли гетероядерных соединений в процессах электрохимического получения сплавов. Согласно известным представлениям, в гетероядерных соединениях в связывающую орбиталь больший вклад вносит более электроотрицательный атом, а в разрыхляющую - орбиталь менее электроотрицательного атома. Это способствует сближению потенциалов восстановления ионов металлов, находящихся в таком соединении и получению электрохимического сплава. Кроме того, известно, что увеличение эффективного радиуса комплексных ионов, что характерно для гетероядерных соединений, уменьшает энергию активации их электрохимического восстановления. Целью работы является получение данных по комплексообразованию в системе Zn(П)-Сr(Ш)-Ж(П)-гли-цин-вода, составу и устойчивости гетероядерных соединений. Установлению состава образующихся комплексов в исследуемой системе предшествовало получение данных по комплексообразованию каждого из указанных элементов в индивидуальных растворах. Ранее установлено, что в системе Zn(II)-Cr(Ш)-глицин- вода при рН 1,0 - 3,5 преобладают ге-тероядерные формы [CrZn(HGly)4Gly4]+и [CrZn(HGly)2Gly6], при рН 2,2 - 4,0 возрастает доля накопления [CrZnGly8]3'. Для установления состава образующихся комплексов применяли рН- метрическое титрование и метод ядерной магнитной релаксации (ЯМР) протонов в сочетании с математической обработкой результатов (программа CPESSP). Установлено образование гетероядерных комплексов [CrNiZn(HGly)4Gly4]3+, [CrNiZn(HGly)2Gly6]+, рассчитаны их константы образования и доли накопления (HGly - глицин). Результаты работы использованы при разработке электролитов для процесса электрохимического легирования цинковых покрытий одновременно хромом и никелем.
Ключевые слова: комплексные гетероядерные соединения, цинк(П), хром(Ш), никель(П), глицин, рН-метрическое титрование, ядерная магнитная релаксация протонов, программа CPESSP
COMPLEXATION IN THE SYSTEM ZINC (II)-CHROME (III)-NICKEL (II)-GLYCINE-WATER N.B. Berezin, V.V. Chevela, Zh.V. Mezhevich, V.Yu. Ivanova
Nikolay B. Berezin *, Zhanna V. Mezhevich*
Department of Technology of Electrochemical Production, Kazan National Research Technological University, K. Marx st., 68, Kazan, 420015, Russia E-mail: [email protected] *, [email protected]*
Vladimir V. Chevela, Valentina Yu. Ivanova
Department of Inorganic Chemistry, Kazan Federal University, Kremlevskaya st., 18, Kazan, 420008, Russia E-mail: [email protected], [email protected]
The relevance of studying complexation in the system under consideration is associated with the development of the role of heteronuclearcompounds in the processes of electrochemical production of alloys. According to the known concepts, in heteronuclear compounds, the more electronegative atom makes a greater contribution to the bonding orbital, and the orbital of the less electronegative atom, to the antibonding one. This contributes to the convergence of the reduction potentials of metal ions present in such a compound and the production of an electrochemical alloy. In addition, it is known that an increase in the effective radius of complex ions, which is characteristic of heteronuclear compounds, decreases the activation energy of their electrochemical reduction. The aim of this work is to obtain data on complexation in the system Zn (II)-Cr (III)-Ni (II)-glycine-water, composition and stability of heteronuclear compounds. The establishment of the composition of the complexes formed in the system under study was preceded by the acquisition of data on the complexation of each of the indicated elements in individual solutions. It was previously established that in the Zn(II)-Cr (III)-glycine-water system in the pH range 1.0-3.5, heteronuclear forms [CrZn(HGly)4Gly4]+ and [CrZn(HGly)2Gly6] prevail, at pH 2.2 - 4.0, the share of [CrZnGly8]3' accumulation increases. To establish the composition of the resulting complexes, we used pH metric titration and the method of nuclear magnetic relaxation (NMR) ofprotons in combination with mathematical processing of the results (CPESSP program). The formation of heteronuclear complexes [CrNiZn(HGly)4Gly4]3+, [CrNiZn(HGly)2Gly6]+ was established, their formation constants and the fraction of accumulation (HGly - glycine) were calculated. The results of the work were used in the development of electrolytes for the process of electrochemical alloying of zinc coatings simultaneously with chromium and nickel.
Key words: complex heteronuclear compounds, zinc (II), chromium (III), nickel (II), glycine, pH-met-ric titration, protons nuclear magnetic relaxation, CPESSP program
Для цитирования:
Березин Н.Б., Чевела В.В., Межевич Ж.В., Иванова В.Ю. Комплексообразование в системе цинк(П)-хром(Ш)-ни-кель(11)-глицин-вода. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 11. С. 44-49
For citation:
Berezin N.B., Chevela V.V., Mezhevich Zh.V., Ivanova V.Yu. Complexation in the system zinc (II)-chrome (III)-nickel (II)-glycine-water. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 11. P. 44-49
INTRODUCTION
The study of complexation processes, despite significant advances in this area, is an urgent task and the subject of modern research [1-5]. In particular, obtaining data on complexation in the volume of electrolyte and on the electrode surface is the fundamental basis for effective regulation of the processes of electro-deposition of alloys and the kinetics of reactions [6]. The choice of the object of research is associated with electrochemical problems, in particular with the development of an electrolyte and a mode of obtaining corrosion-resistant zinc coatings alloyed with various metals [7-10] based on the study of complexation processes.
It is known that complexation affects not only the stage of reagent transport to the reaction zone, but also the characteristics of the energy barrier of electron transfer. Steric effects are also important in charge transfer across the electrode-electrolyte interface. The stated considerations are confirmed by electrodeposi-tion of zinc-chromium alloy [6].
It was previously established that in the Zn (II) -Cr (III) - glycine - water system at pH 1.0-3.5, heteronuclear forms [CrZn(HGly)4Gly4]+ and [CrZn(HGlyhGly6]~ prevail, and at pH 2.2-4.0 - complex [CrZnGly8]3- [6].
The choice of glycine as a complexing agent is due to the fact that, being a bidentate ligand, it can form heteronuclear compounds in solutions, and besides, it has surface-active and buffer properties and is effectively used in electrochemical processes [11-17].
MATERIALS AND METHODS
The experimental technique and data processing are given in [18, 19].
The study of complexation was carried out using pH-metric titration and magnetic-relaxation method using the CPESSP program [18-20].
When using pH-metric titration, the dependences of the Bjerrum function n on pH were subjected to mathematical processing. The function n can be represented as the sum of the contributions of molar properties from each component:
n = Ear ni, (1)
where % is the molar fraction of the i-th complex; ft - degree of titration of the i-th complex.
The calculation of n was made according to the formula:
n = (10-pH-(Va + Voh) + Cqh-Vgh - 10pH-14' ■ (Va + Voh)) / (CHnL * (Va + Voh)), (2) where Voh is the volume of added titrant alkali; Va is the volume of the titrated aliquot.
In the method of proton magnetic relaxation, the paramagnetic complex can be characterized by the relaxation efficiency coefficient (REC) - Kai.
(BTi)-1 = K3
(3)
Kai is an experimentally determined quantity in the NM relaxation method (dimension - mol-1 *s-1 *l).
кЭ1 = KBThy
1
Zo ^aim^n
(4)
where Ka1m is the coefficient of relaxation efficiency; Bm is the concentration of the m-th complex.
The solutions were prepared using chemically pure and analytical grade substances.
The activity of hydrogen ions was determined on a HI 2215 pH/ORP Meter pH meter. The spin-lattice relaxation time was measured on a Minispec MQ 20 pulsed NMR spectrometer with an operating frequency of 19.75 MHz. The solutions were thermo-stated at 25 °C.
RESULTS AND DISCUSSION
Establishment of the composition and stability of complex compounds in the system zinc(II) - chro-mium(III) - nickel(II) - glycine - water was preceded by obtaining data in solutions of chromium(III) - water [18], zinc(II) - glycine - water [21], chromium(III) -glycine - water [22] and zinc(II) - chrome(III) - glycine - water [23]. The study showed that heteronuclear complexes are formed in the zinc(II) - chromium(III) - glycine - water system, and at pH > 3, [CrZnGly8]3-is the main form.
The study of the nickel(II) - glycine - water system at metal: ligand ratios of 1:1 and 1:2 confirmed the formation of complexes NiGly+, NiGly2 known from the literature [24, 25]. It was also preliminary found that in the pH range 2-4 the dependences of the relaxation efficiency for the nickel(II) - glycine and nickel(II) - zinc(II) - glycine systems on pH coincide, which indicates the absence of heteronuclear glycinate complexes.
The dependences of the relaxation efficiency for the systems chromium(III) - glycine - water, chro-mium(III) - nickel(II) - glycine - water, chromi-um(III) - nickel(II) - zinc(II) - glycine - water are shown in Fig. 1-2.
6000-
5000-
т 4000-
'л с
g 3000
2000-
1000-
0 1 2 3 . . 4
PH
Fig. 1. Dependence of the relaxation efficiency of (BTi)-1 on the pH of the solution at a glycine concentration CHGly = 0.349 mol/l in the following systems: 1- Ccr3+ = 0.045 mol/l; 2- Ccr3+ = 0.045 mol/l, CNi2+ = 0.045 mol/l; 3- Ccr3+ = 0.045 mol/l, С№2+ = 0.045 mol/l,
Czn2+ = 0.048 mol/l Рис. 1. Зависимость релаксационной эффективности (BT1)-1 от рН раствора при концентрации глицина CHGly = 0,349 моль/л в
следующих системах:1- Саз+ = 0,045 моль/л; 2- Саз+ = 0,045 моль/л, CNi2+ = 0,045 моль/л; 3- Ссгз+ = 0,045 моль/л, Сш+ = 0,045 моль/л, Czn2+= 0,048 моль/л
6000-
,- 5000-'л
§ 4000
3000-
2000-
1000-
0 1 2 3 - - 4
pH
Fig. 2. Dependence of the relaxation efficienc y (BT1)-1 on the pH of the solution at a glycine concentration CHGly = 0.901 mol/l in the following systems: 1- Ccr3+ = 0.045 mol/l; 2- Ccr3+ = 0.045 mol/l, CNi2+ = 0.045 mol/l; 3- Ccr3+ = 0.045 mol/l, С№2+= 0.045 mol/l, Czn2+ = 0.048 mol/l Рис. 2. Зависимость релаксационной эффективности (BT1)"1 от рН раствора при концентрации глицина CHGly = 0,901 моль/л в следующих системах: 1- Ccr3+ = 0,045 моль/л; 2- Ccr3+ = 0,045 моль/л, CNi2+ = 0,045 моль/л; 3- Ccr3+ = 0,045 моль/л, Сш+ = 0,045 моль/л, Czn2+= 0,048 моль/л
The composition and stability constants are presented in Tables 1 and 2.
The term for the equilibrium constant is determined by the data in the "stoichiometric matrix": Ppnmr = ([crpNinH2m-rGlym][H]r)/([cr]p[Ni]n[H2Gly]m) (5) (charge somitted).
3
2
Table 1
Composition and equilibrium constants of complex formation in the chromium (III) -nickel (II) -glycine-water system
№ Стехиометрическая матрица lgPpqmr Комплекс
Cr3+ (p) Ni2+ (n) H2Gly+ (m) H+ (r)
1 1 1 8 12 -1.72±0.11 [CrNi(HGly)4Gly4]+
2 1 1 8 14 -5.70±0.14 [CrNi(HGly)2Gly6]-
3 1 1 8 16 -15.14±0.22 [CrNiGly8]3-
Table 2
Composition and equilibrium constants of complex formation in the system chromium (III)-nickel (II)-zinc (II)-
glycine-water
Таблица 2. Состав и константы равновесий образования комплексов в системе хром(ПГ)-никель(Ц)-_цинк(1Г)-глицин-вода_
№ Стехиометрическая матрица lgPpqnmr Комплекс
Cr3+ (p) Zn2+ (q) Ni2+ (n) H2Gly+ (m) H+ (r)
1 1 1 1 8 12 1.01+0.25 [CrNiZn(HGly)4Gly4]3+
2 1 1 1 8 14 -3.79+0.32 [CrNiZn(HGly)2Gly6]+
The term for the equilibrium constant is determined by the data in the "stoichiometric matrix" column: Ppqnmr = ([CrpZnqNinH2m-rGlym][H]r)/
/([Cr]p[Zn]q[Ni]n[H2Gly]m) (6)
(charges omitted).
Calculation of the fraction of accumulation of heteronuclear complexes shows (Table 3) that they exist in the pH range 2-3.5. In this pH range, the fraction of accumulation of [CrNiZn(HGl)4Gly4]3+ varies within 0.0-0.57, the fraction of [CrNiZn(HGl)2Gly6]+ -within 0.05-0.46.
Table 3
Shares of accumulation of heteronuclear complexes depending on pH (the shares of the remaining complexes
are not indicated) Таблица 3. Доли накопления гетероядерных комплексов в зависимости от pH (Доли остальных ком-
Studies have shown that heteronuclear complexes [CrNiZn(HGly)2Gly6]+, [CrNiZn(HGly)4Gly4]3+ are formed in the system zinc(II) - chromium(III) -nickel(II) - glycine - water.
According to the well-known concepts of the theory of molecular orbitals about heteronuclear complexes [26], a more electronegative atom makes a
greater contribution to the bonding orbital, and a less negative atom to the antibonding orbital. The electrochemical activity of more electronegative metals in the case of their presence in a heteronuclear complex should be higher, i.e. they should be restored at lower overvoltages, which has a positive effect on the convergence of the reduction potentials of various metal ions during alloy formation.
In the case of electrochemical alloying of zinc coatings with chromium and nickel, the presence of a positive charge in the complex compounds [CrNiZn(HGly)2Gly6]+, [CrNiZn(HGly)4Gly4]3+ creates favorable conditions for their adsorption on the negatively charged electrode surface and charge transfer.
The data obtained can be used in the development of electrolytes for obtaining zinc coatings doped with chromium and nickel.
CONCLUSION
The data on the composition and stability of complex compounds formed in the system Zn(II) -Cr(III) - Ni(II) - glycine - water were obtained by means of pH-metry and NMR with subsequent mathematical processing of the experiment.
The heteronuclear forms of the [CrNiZn(HGly)4Gly4]3+, [CrNiZn(HGly)2Gly6]+ complexes have been determined, and their formation constants and the fraction of accumulation have been calculated.
The authors declare the absence a conflict of interest warranting disclosure in this article.
Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.
плексов не указаны)
pH Доля [CrNiZn(HGl)4Gly4]3+ Доля [CrNiZn(HGl)2Gly6]+
1.891 0.57 0.05
2.050 0.54 0.11
2.385 0.39 0.3
2.556 0.20 0.4
2.876 0.05 0.46
3.045 0.02 0.41
3.236 0 0.31
3.570 0 0.13
ЛИТЕРАТУРА
1. Скорик Н.А., Алимова Р.Р. Соединения хрома (Ш) с некоторыми органическими лигандами. Журн. неорг. химии. 2020. T. 65. № 1. С. 16-24. DOI: 10.31857/S0044457X2001016X.
2. Бычкова С.А., Горболетова Г.Г., Фролова К. О. Исследование процессов комплексообразования Co(II) с триглицином в водном растворе. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 2. С. 21 -25. DOI: 10.6060/ivkkt.20206302.6020.
3. Горболетова Г.Г., Метлин А.А., Бычкова С.А. Термодинамика комплексообразования ионов Ni2+c триглицином в водном растворе. Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 2. С. 57-59.
4. Гондолова Г.Г. Синтез и исследование комплексов Zn c N'-ацил-салицилгидразидами. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 9. С. 27-32. DOI: 10.6060/ivkkt.20196209.5902.
5. Уреке Д., Булхак И., Рижа А., Коропану Э., Боурош П. Синтез и структура соли дианилинглиоксима и его биядер-ных комплексов Zn(II) и Mn(II) с 1,3-бензолдикарбоновой кислотой. Коорд. химия. 2019. Т. 45. № 12. С. 720-733. DOI: 10.1134/S107032841912008X.
6. Berezin N.B., Mezhevich Zh.V. Electrochemical Doping of Zinc Coatings with Chromium and Nickel Coatings with Phosphorus. Surf. Eng. Appl. Electrochem. 2018. V. 54. N 3. Р. 247-254. DOI: 10.3103/S106837551803002X.
7. ПочкинаС.Ю., Ченцова Е.В., Соловьева Н.Д. Защитные свойства гальванических сплавов цинк-никель, цинк-никель-кобальт. Коррозия: материалы, защита. 2018. № 5. С. 37-40.
8. Bhat R.S., Chitharanjan Hegde A., Udaya Bhat K Corrosion Behavior of Electrodeposited Zn-Ni, Zn-Co and Zn-Ni-Co аlloys. Analyt. Bioanalyt. Electrochem. 2011. V. 3. N 3. P. 302 - 315.
9. Гаевская Т.В., Бык Л.С., Цыбульская Л.С. Электрохимически осажденные сплавы цинк-никель. Журн. приклад. химии. 2003. Т. 76. № 10. С. 1625-1630. DOI: 10.1023/B:RJAC.0000015717.21845.5e.
10. Tomic M.V. The comparative study of the corrosion stability of Zn-Ni-Co alloy coatings deposited from chloride and sulphate baths. Zastita materijala. 2017. V. 58. N 2. P. 198 - 203. DOI: 10.5937/ZasMat1702198T.
11. Межевич Ж.В., Березин НБ. Адсорбционные явления на цинковом электроде в растворах, содержащих глицин. Вестн. Казан. технол. ун-та. 2016. Т. 19. № 9. С. 51 - 53.
12. Сапронова Л.В., Соцкая Н.В., Долгих О.В. Кинетика электроосаждения никеля из комплексных электролитов, содержащих аминокислоты. Конденсир. среды и межфаз. границы. 2013. Т. 15. № 4. С. 446 - 452.
13. Козихонов А.У., Джулаев У.Н. Раджабов У.Р. Исследование процессов образования координационных соединений цинка(П) с аминокислотами. Докл. Акад. наук Респ. Таджикистан. 2015. Т. 58. № 7. С. 608-614.
14. Долгих О.В., Соцкая Н.В., Шаманаева Е.С. Электроосаждение никеля из растворов, содержащих глицин. Конден-сир. среды и межфаз. границы. 2007. Т. 9. № 1. С. 32 - 39.
15. Березин Н.Б., Березина Т.Н., Межевич Ж.В., Сысоев В.А. Состояние и поведение глицина в водных растворах. Роль глицинатных комплексов при электроосаждении металлов и сплавов. Вестн. Казан. технол. ун-та. 2014. Т. 17. № 22. С. 355 - 359.
REFERENCES
1. Skorik N.A., Alimova R.R. Chromium (III) compounds with some organic ligands. Zhurn. Neorg. Khim. 2020. V. 65. N 1. P. 16-24 (in Russian). DOI: 10.31857/S0044457X2001016X.
2. Bychkova S.A., Gorboletova G.G., Frolova K.O. Investigation of the processes of complexation of Co (II) with triglycine in an aqueous solution. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2020. V. 63. N 2. P. 21-25 (in Russian). DOI: 10.6060/ivkkt.20206302.6020.
3. Gorboletova G.G., Metlin A.A., Bychkova S.A. Thermodynamics of complexation of Ni2+ ions with triglycine in aqueous solution. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2016. V. 59. N 2. P. 57-59 (in Russian).
4. Gondolova G.G. Synthesis and study of complexes ofZn with N1-acyl-salicylhydrazides. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 9. P. 27-32 (in Russian). DOI: 10.6060/ivkkt.20196209.5902.
5. Ureke D., Bulhak I., Rizha A., Koropanu E., Bourosh P. Synthesis and structure of dianilinglyoxime salt and its binu-clear complexes Zn (II) and Mn (II) with 1,3-benzenedicar-boxylic acid. Koord. Khim. 2019. V. 45. N 12. P. 720-733 (in Russian). DOI: 10.1134/S107032841912008X.
6. Berezin N.B., Mezhevich Zh.V. Electrochemical Doping of Zinc Coatings with Chromium and Nickel Coatings with Phosphorus. Surf. Eng. Appl. Electrochem. 2018. V. 54. N 3. P. 247-254. DOI: 10.3103/S106837551803002X.
7. Pochkina S.Yu., Chentsova E.V., Solovieva N.D. Protective properties of galvanic alloys zinc-nickel, zinc-nickel-cobalt. Korrozia:Materialy, Zashchita. 2018. N 5. P. 37-40 (in Russian).
8. Bhat R.S., Chitharanjan Hegde A., Udaya Bhat K. Corrosion Behavior of Electrodeposited Zn-Ni, Zn-Co and Zn-Ni-Co alloys. Analyt. Bioanalyt. Electrochem. 2011. V. 3. N 3. P. 302 - 315.
9. Gaevskaya T.V., Byk L.S., Tsybulskaya L.S. Electro-chemically deposited zinc-nickel alloys. Zhurn. Prikl. Khim. 2003. V. 76. N 10. P. 1625-1630 (in Russian). DOI: 10.1023/B:RJAC.0000015717.21845.5e.
10. Tomic M.V. The comparative study of the corrosion stability of Zn-Ni-Co alloy coatings deposited from chloride and sulphate baths. Zastita materijala. 2017. V. 58. N 2. P. 198 - 203. DOI: 10.5937/ZasMat1702198T.
11. Mezhevich Zh.V., Berezin N.B. Adsorption phenomena on a zinc electrode in solutions containing glycine. Vest. Kazan Tekhnol. Univ. 2016. V. 19. N 9. P. 51 - 53 (in Russian).
12. Sapronova L.V., Sotskaya N.V., Dolgikh O.V. Kinetics of Nickel Electrodeposition from Complex Electrolytes Containing Amino Acids. Kond. Sredy Mezhfazn. Granitsy.. 2013. V. 15. N 4. P. 446 - 452 (in Russian).
13. Kozikhonov A.U., Dzhulaev U.N., Radjabov U.R. Study of the processes of formation of coordination compounds of zinc (II) with amino acids. Dokl. Akad.NaukResp.Tajikistan. 2015. V. 58. N 7. P. 608- 614 (in Russian).
14. Dolgikh O.V., Sotskaya N.V., Shamanaeva E.S. Electro-deposition of nickel from solutions containing glycine. Kond. Sredy Mezhfazn. Granitsy. 2007. V. 9. N 1. P. 32 - 39 (in Russian).
15. Berezin N.B., Berezina T.N., Mezhevich Zh.V., Sysoev V.A. State and behavior of glycine in aqueous solutions. The role of glycinate complexes in the electrodeposition of metals and alloys. Vest. Kazan Tekhnol. Univ. 2014. V. 17. N 22. P. 355 - 359 (in Russian).
16. Ченцова Е.В., Почкина С.Ю., Соловьева Н.Д., Лопу-хова М.И. Кинетика электроосаждения сплава цинк-никель из сульфатно-глицинатного электролита. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 4. С. 128-134. DOI: 10.6060/ivkkt.20196204.5833.
17. Таранина О.А., Евреинова Н.В., Шошина И.А., Нараев В.Н., Тихонов К.И. Электроосаждение никеля из сульфатных растворов в присутствии аминоуксусной кислоты. Журн. прикл. химии. 2010. Т. 83. Вып. 1. С. 60 -63. DOI: 10.1134/S107042721001012X.
18. Beck M., Nagipal I. Chemistry of complex equilibria. Budapest: Akadémiai Kiadô. 1990. 402 p.
19. Иванова В.Ю., Чевела В.В., Ефремова Ю.В., Безря-дин С.Г. Изучение реакций комплексообразования в системе эрбий (III) - лимонная кислота в водном растворе. Бутлеров. сообщ. 2013. Т. 35. № 8. C. 116-125.
20. Сальников Ю.И., Чевела В.В. Стереоселективные и сте-реоспецифические эффекты в образовании d- и dl- гетеро-ядерных тартратных комплексов железа(Ш) и гадоли-ния(Ш).Журн. неорг. химии. 1988. Т. 33, № 10. С. 2541-2545.
21. Березин Н.Б., Березина Т.Н., Межевич Ж.В., Чевела В.В. Носители зарядов в электролитах для получения цинковых покрытий. Система цинк (II) -глицин- вода. Вестн. Казан. технол.ун-та. 2013.Т. 16. № 5. C. 267-268.
22. Березин Н.Б., Березина Т.Н., Шарифуллина А.У., Чевела В.В. Носители зарядов в электролитах на основе соединений хрома (III). Система хром(Ш)-глицин-вода. Вестн. Казан. технол. ун-та. 2012. Т. 15. № 19. C. 59-61.
23. Березин Н.Б., Березина Т.Н., Межевич Ж.В., Чевела В.В. Носители зарядов в электролитах для получения цинковых покрытий легированных хромом. Система цинк(П)-хром(Ш)-глицин-вода. Вестн. Казан. технол. ун-та. 2013. Т. 16. № 5. С. 262-264.
24. Kiss T., Sovago Ь, Gergely A. Critical survey of stability constants of complexes of glycine. Pure and Appl. Chem. 1991. V. 63. N 4. P. 597-638. DOI: 10.1351/pac199163040597.
25. Yuksel Altun, Fitnat Koseoglu. Stability of Copper(II), Nickel(II) and Zinc(II) Binary and Ternary Complexes of Histi-dine, Histamine and Glycine in Aqueous Solution. J. Solut. Chem. 2005. V. 34. N 2. P. 213-231. DOI: 10.1007/s10953-005-2763-7.
26. Ахметов Н.С. Общая и неорганическая химия. М.: Высш. шк. 2001. 743 с.
16. Pochkina S.Yu., Chentsova E.V., Solovyova N.D, Lopu-khova M.I Kinetics of electrodeposition of zinc-nickel alloy from sulfate-glycinate electrolyte. ChemChemTech. [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2019. V. 62. N 4. P. 128-134. DOI: 10.6060/ivkkt.20196204.5833.
17. Taranina O.A., Evreinova N.V., Shoshina LA., Naraev V.N., Tikhonov K.I. Electrodeposition of nickel from sulfate solutions in the presence of aminoacetic acid. Zhurn. Prikl. Khim. 2010. V. 83. N 1. P. 60 -63 (in Russian). DOI: 10.1134/S107042721001012X.
18. Beck M., Nagipal I Chemistry of complex equilibria. Budapest: Akademiai Kiado. 1990. 402 p.
19. Ivanova V.Yu., Chevela V.V., Efremova J.V., Bezryadin S.G. The study of complexing reactions in the system er-bium(III) - citric acid in aqueous solution. Butlerov Commun. 2013. V. 35. N 8. P. 116-125 (in Russian).
20. Salnikov Yu.I., Chevela V.V. Stereoselective and stereo-specific effects in the formation of d- and dl-heteronuclear tartrate complexes of iron (III) and gadolinium (III). Zhurn. Neorg. Khim. 1988. V. 33. N 10. P. 2541-2545 (in Russian).
21. Berezin N.B., Berezina T.N., Mezhevich Zh.V., Chevela V.V. Charge carriers in electrolytes for obtaining zinc coatings. Zinc (II) - glycine - water system. Vest. Kazan Tekhnol. Univ. 2013. V. 16. N 5. P. 267-268 (in Russian).
22. Berezin N.B., Berezina T.N., Sharifullina A.U., Chevela V.V. Charge carriers in electrolytes based on chromium (III) compounds. Chromium (III) -glycine - water system. Vest. Kazan Tekhnol. Univ. 2012. V. 15. N 19. P. 59-61 (in Russian).
23. Berezin N.B., Berezina T.N., Mezhevich Zh.V., Chevela V.V. Charge carriers in electrolytes for obtaining zinc coatings doped with chromium. Zinc (II) -chromium (III) -glycine - water system. Vest. Kazan Tekhnol. Univ. 2013. V. 16. N 5. P. 262-264 (in Russian).
24. Kiss T., Sovago I., Gergely A. Critical survey of stability constants of complexes of glycine. Pure Appl. Chem. 1991. V. 63. N 4. P. 597-638. DOI: 10.1351/pac199163040597.
25. Yuksel Altun, Fitnat Koseoglu. Stability of Copper(II), Nickel(II) and Zinc(II) Binary and Ternary Complexes of Histidine, Histamine and Glycine in Aqueous Solution. J. Solut. Chem. 2005. V. 34. N 2. P. 213-231. DOI: 10.1007/s10953-005-2763-7.
26. Akhmetov N.S. General and inorganic chemistry. M.: Vyssh. shk. 2001. 743 p. (in Russian).
Поступила в редакцию 15.03.2021 Принята к опубликованию 13.09.2021
Received 15.03.2021 Accepted 13.09.2021