Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2015, № 6 (60)
UDC 656.212.5(23.01):004.942
E. B. DEMCHENKO1*
1 Dep. «Stations and Junctions», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (097) 799 16 75, e-mail [email protected], ORCID 0000-0003-1411-6744
COMPLEX SIMULATION MODEL OF TRAIN BREAKING-UP PROCESS AT THE HUMPS
Purpose. One of the priorities of station sorting complex functioning improvement is the breaking-up process energy consumptions reduction, namely: fuel consumption for train pushing and electric energy consumption for cut braking. In this regard, an effective solution of the problem of energy consumption reduction at breaking-up subsystem requires a comprehensive handling of train pushing and cut rolling down processes. At the same time, the analysis showed that the current task of pushing process improvement and cut rolling down effectiveness increase are solved separately. To solve this problem it is necessary to develop the complex simulation model of train breaking-up process at humps. Methodology. Pushing process simulation was done based on adapted under the shunting conditions traction calculations. In addition, the features of shunting locomotives work at the humps were taken into account. In order to realize the current pushing mode the special algorithm of hump locomotive controlling, which along with the safety shunting operation requirements takes into account behavioral factors associated with engineer control actions was applied. This algorithm provides train smooth acceleration and further movement with speed, which is close to the set speed. Hump locomotive fuel consumptions were determined based on the amount of mechanical work performed by locomotive traction. Findings. The simulation model of train pushing process was developed and combined with existing cut rolling down model. Cut initial velocity is determined during simulation process. The obtained initial velocity is used for further cut rolling process modeling. In addition, the modeling resulted in sufficiently accurate determination of the fuel rates consumed for train breaking-up. Originality. The simulation model of train breaking-up process at the humps, which in contrast to the existing models allows reproducing complexly all the elements of this process in detail and evaluate accurately its quality, was improved by the author. Practical value. The developed model can help to determine a rational processing mode of sorting complex. For this purpose, it is appropriate to include the model into the decision support system of dispatching station staff.
Keywords: train pushing and breaking-up process; hump; hump locomotive; fuel consumption
Introduction
In modern conditions one of the priorities of station sorting complex functioning improvement is the breaking-up process energy consumptions reduction.
Energy costs, which take place during the train breaking-up at humps, consist of fuel consumption for train pushing and electric energy consumption for cut braking. In this regard, an effective solution of the problem of energy consumption reduction at breaking-up subsystem requires a comprehensive handling of train pushing and cut rolling down processes. At the same time, the analysis [6] showed that the current task of pushing process improvement and cut rolling down effectiveness increase are solved separately.
Thus, the existing pushing models [13, 17] only simulate the process of shunting train movement;
while the movement of some cuts is modelled before their uncoupling at the hump apex (HA) without their further rolling. As a result, these models do not allow assessing the impact of the selected breaking-up mode of a train on the conditions of interval and target braking of its cuts. In addition, the existing pushing models are based on traction calculations for train operation [16], which do not include features of shunting at the humps and do not allow with sufficient accuracy to determine the pushing and breaking-up process fuel consumption.
At the same time, both when optimizing the cut braking modes with the help of the method [4, 14, 19], and when imitating their rolling down with the help of the models [9, 21, 22] we take the constant breaking-up velocity v0, the value of which is the same for each cut. This approach does not correspond to the real conditions of train humping and
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2015, № 6 (60)
does not allow determining with sufficient accuracy the rational cut braking mode and calculating the sorting process quality coefficients.
Purpose
The purpose of this work is to develop a complex simulation model of train breaking-up process at humps that will allow elaboration of the method for resource saving controlling of train pushing and breaking-up, aimed at high quality of sorting process with minimum energy consumption for its implementation
Methodology
To achieve the set purpose, the train humping model was developed and combined with the existing cut rolling model [4], resulting in the complex simulation model of train breaking-up process.
In the developed model the train pushed to the hump is assumed as a set of cuts with certain parameters (number of cars, their type, length, mass and basic specific movement resistance) and as non-extendible flexible rod with uniform longwise weight. This train model allows the best consideration of its movement conditions when transferring from one profile element to another and after further cut breaking-up.
To solve the problem of pushing and breaking-up modelling it is sufficient to consider the controlled forward movement of a shunting train, so during its simulation process it is necessary to take into account only external forces that coincide with the movement direction or are opposite to it. Accordingly, the following forces were taken into account: Ft - tangent locomotive power; Wr -train motion resistance force; Bb - locomotive braking force. In the shunting train motion equation the relevant specific forces are considered ft, wr, bb; the total force ftl depends on the hump locomotive operation mode and equals ftl = ft± wr in traction mode, ftl = ± wr - in rundown mode and ftl = ±wr -bb - in idling mode.
The work [3] developed the method of calculating the forces acting on the shunting train during pushing and breaking-up. Thus, the tangent locomotive power ft in the model is determined by partial (intermediate) traction characteristics that
can be realized in terms of grip, and then by the following intermediate characteristics until reaching the automatic (external) characteristics [12].
Specific movement resistance force wr is determined as
Wr = w0 + w0 + Wew + wsc + Wg + wst,
(1)
where w'r - locomotive basic specific motion resistance; w"r - car basic specific motion resistance; wew - additional specific resistance due to environment and wind; wsc - additional specific resistance due to switches and curves; wg -additional specific resistance due to track gradient; wst - additional specific resistance due to starting.
The locomotive basic specific motion resistance w'r and additional specific resistance due to starting wst are determined by method [16]. The car basic specific motion resistance w"r is calculated as a weighted average of the cut basic specific motion resistance and is adjusted after further cut breaking-up; herewith the value w" for each car is included in the train model structure. Additional motion resistance values due to environment and wind wew, points and curves wpc are calculated by the method [15].
Additional specific resistance due to track gradient wg is taken numerically equal to the average
gradient i , where the shunting train is located; while for pushing simulation in the longitudinal profile model the gradient value i on the rise is positive (i > 0) and on the descent - negative (i < 0). Average gradient i, where there is a train, when its first axis is at the point Sj, is determined
by the difference in marks of the first h(Sj) and
the last h(Sj - lt) train axles:
) h(Sj) - h(SJ - lt)
i(Sj ) = —-—H-
¿t
(2)
where lt - shunting train length, m.
Due to the fact that in the breaking-up process at hump the train automatic brakes do not as a rule actuate its velocity is reduced only by shunting locomotive braking force, the specific value of
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2015, № 6 (60)
which bb is calculated by the following formula [16]:
bb = 1000 Qdydf, (3)
where 6d - design braking factor; tyf - brake pad
friction design factor.
The values 6d and q>df are determined by the
method [7] based on the number of locomotive axles and in case of brake actuation in the train -on the number of car axles, where the automatic brakes are actuated, as well. It should be noted that the braking force bb from the brake position valve switch moment gradually increases to its maximum value. In addition, the shunting train braking modelling should take into account the time required for the driver's reaction. In this regard, the design braking factor 9d in (3) is considered as the braking duration function tbr, the value of which is accepted in accordance with [7].
The peculiarity of the train breaking-up process modelling is the change of its settings at cut uncoupling. In this regard, during the train movement simulation one must control the possible next cut uncoupling at every step At. After recording the cut uncoupling the model performs the appropriate train length and weight reduction; herewith it changes the coordinate of its first axis Sj and re-calculates the basic specific resistance w"r . This, in turn, causes corresponding changes in the hump locomotive operation mode aimed at maintaining the set breaking-up velocity v0.
Train motion in the model is described by second order differential equation S"=f (t, S, S') in which the independent variable is the time t :
S " =
d2 S
1-
-Y
-U io-
(4)
where g/ 1+y - accelerated gravity force with consideration of rotating mass inertia.
The motion equation (4) allows performing joint modelling of train breaking-up and cut rolling down processes.
It is known that equation (4) has a unique solution if his right part f (S ,V ) is continuous and differentiated. However, the nature of force change ftl in this equation does not always meet the
specified condition. Thus, in moments of controller position switching the tangent power f can change stepwise. The braking power bb during train deceleration also changes unevenly. The motion resistance in curves is a step function, the discontinuities of which occur at curved track section enter and exit points by shunting train. In addition, at the time of the next cut uncoupling at HA the train parameters are changed. Therefore, the model assumed that within the integration step At the shunting train motion mode remains constant; to this end there is chosen sufficiently small step At (At=1 sec).Controller position is not changed within the traction mode At ; while at the end of the step the train velocity is analysed and if necessary the locomotive operation mode is adjusted and the simulation is repeated.
Similarly, the braking force bb at each step At is taken constant and if the train velocity at the end of the step became below the mark, then, depending on motion conditions, the transition to traction or idling mode is performed.
Besides, within the integration step At both ends of shunting train must not go beyond the beginning or the end of the curve. If at some step this condition is not met, then this step is divided into separate parts with a certain length AS , AS2,..., ASn Herewith, at the modelling steps 1... (n -1) the train is moved using the first-order differential equation V' = f(S,V) with independent variable S:
V ' =
dV
dS 1 + y V
■â. v>о
(5)
At the last step n the train motion is simulated with the help of equation (4) by the time At '=At - At * that remained till the end of the initial step. The same algorithm is used for train motion simulation when the next cut is broken-up from it at HA.
To ensure the continuity of functions i( S )and
ftl (V ) the model uses the method of spline approximation of track longitudinal profile [5] and locomotive traction characteristics. Integration of differential motion equations (4) and (5) are performed by the Runge-Kutta fourth-order method [1].
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2015, № 6 (60)
When modelling, the train to undergo breaking-up is considered as controlled system that operates in terms of internal and external factors, as well as control impacts [2]. Controlled movement of the train is determined by the hump locomotive operation mode. Herewith the major controllable parameters are tangent power Ft and braking force Bb of the shunting locomotive, depending on the actuated controller position nc and the auxiliary brake valve position.
The simulation must provide such a hump locomotive control that allow the train velocity at the pushing completion time t to be equal to the
specified breaking-up velocity v0, and the subsequent phase trajectory V(t) to meet for all t < t < te corresponded to the set breaking-up mode, where te is the traction motion end point. The initial time t0 is assumed to be 0; the final time tf is assumed as the last cut off-locomotive uncoupling time.
The work [3] developed the algorithm of hump locomotive controlling, which along with the safety shunting operation requirements takes into account behavioural factors associated with engineer control actions. This algorithm provides train smooth acceleration and further movement with speed, which is close to the set breaking-up velocity v0. Herewith the actual velocity va at every step At may deviate from the specified velocity v0 by the realization error value 5 QVa = [V0- 5; V0+ 5] .
The shunting train simulation results in determination of fuel consumption G by shunting locomotive during pushing and breaking-up processes. According to the research [8] the fuel consumption G for train breaking-up at humps should be determined based on the amount of mechanical work performed by locomotive traction RmJ:
G = 1 kjRmj .
(6)
j=1
where k. - transition coefficient.
Mechanical traction work R ., t-km is deter-
Rm] = F , (7)
where AS. - train motion in step, km.
The transition coefficient k. is a co-relation,
expressed in kilograms of fuel consumed to perform 1 t-km of mechanical work by locomotive, and is determined as [10]:
k, =-
I -0,00002v.2 - 0,0021v,. + 0,969 - for TEM2,
[0,00002 v..2 - 0,0030 v.. + 0,920 - for ChME3.
(8)
mj '
mined as [11]:
Thus, at each simulation step j the tangent power Fj and average velocity vj are determined.
Then, using these values and the expressions (7) and (8) there are calculated, respectively, the performed mechanical work RmJ and transition coefficient kj, based on which the fuel consumption G is determined by formula (6).
Findings
The developed train breaking-up model based on the shunting-adapted traction calculations allows the detailed simulation of hump locomotive operation mode and train motion process. This makes it possible to determine the initial velocity of each cut at its off-train uncoupling time at HA. The obtained initial velocity is used for further cut rolling process modeling. In addition, the modeling resulted in sufficiently accurate determination of the hump locomotive fuel consumption rates G , the value of which is necessary to determine the rational train breaking-up mode.
The developed model allows simulating various train breaking-up modes. For example, Fig. 1 shows the results of simulation of 3869 ton train breaking-up and pushing by TEM2 hump locomotive. Herewith the mode implied the train acceleration up to the set breaking-up velocity v0 = 1.7 m/s, with the following breaking-up at a constant speed. As shown in Fig. 1, a, the locomotive control algorithm [3] provides smooth acceleration of the train and its further movement with the velocity va , close to set breaking-up velocity v0 ( va e [1.52; 1.74]). It should be noted that at the final stage of breaking-up (Fig. 1, a, section B-C) when the train length does not exceed 10 cars, its motion mode changes abruptly. These changes are caused
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету зашзничного транспорту, 2015, № 6 (60)
by train weight reduction at the end of the break-ing-up process, resulting in inflated intensity of acceleration even at the first controller positions.
In order to verify the model adequacy the experimental studies of sorting process at the Nizhnedneprovsk station even system were performed. Herewith for each breaking-up train the following items were recorded: cut parameters; the
4
duration of pushing and breaking-up operations and the dynamics of engineer controller switch during their performance; cut uncoupling time at the HA; hump locomotive fuel consumption (using «BIS-R» system). In addition, the data were obtained on the design of plan and longitudinal profile of receiving yard tracks and the hump of the station even system.
Fig. 1. The breaking-up and pushing process simulation results:
a - train speed diagram; b - simulation report
The above data combined with the developed model allowed simulation of 17 real train break-ing-up processes.
In accordance with the existing methods of statistical analysis [18], the adequacy of the developed train breaking-up model is proved by homogeneity of sampled data derived from experimental studies and simulation.
The experimental research and simulation resulted in two fuel consumption random variable samples; wherein the above samples are dependent. To test the hypothesis of homogeneity of these samples Wilcoxon T -criterion [20] was used.
Checking by the specified criterion is performed as follows. It is assumed that R(Zi) is the
rank |Z| in the range from the smallest to the largest values of differences\ZX \, |Z21, ..., |Zn |, where the value \Zt\ is the difference of experimental research data xi and simulation yi (Zi = xi -yi). We define the counter variables Q(Zi) as:
Q(Zi ) = •
[1, where Zi > 0, I 0, where Zt < 0.
(9)
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2015, № 6 (60)
Statistics of T -criterion is as follows:
t +=£ R( Zj )Q(Zj ).
(10)
When fulfilling the null hypothesis the statistics of n observations
T +-
T++ =
n(n +1) 4
n(n + 1)(2n +1)
(11)
24
has asymptotic standard normal distribution with expectation 0 and variance 1. Thus, the decision rule at the 5% significance level is as follows: if
| T++ <1,96, then the dependent samples homogeneity hypothesis by Wilcoxon criterion is accepted, otherwise - is rejected.
According to the check the T -criterion statistics made: T + = 67 ; T++ = -0,46 . Thus, the conducted statistical analysis of experimental results and simulation demonstrates the adequacy of the designed model train breaking-up process at hump.
Originality and practical value
The simulation model of train breaking-up process at the humps, which in contrast to the existing models allows reproducing complexly all the elements of this process in detail and evaluate accurately its quality, was improved.
The developed simulation model can be used as a decision support system to identify effective operation modes of sorting complexes.
Conclusions
1. The fact was established that the initial velocity of each cut at its off-train uncoupling time at the hump apex is a random variable whose value is different from the set breaking-up velocity v0. At the same time the cut initial velocity value significantly affects the regulating conditions of their velocity during rolling down from the hump. There -fore, the breaking-up modelling should consider the train pushing and cut rolling operations as interrelated processes that need joint simulation.
2. Detailed modelling of the shunting train movement and the hump locomotive operation mode is possible by performing traction calcula-
tions; while the existing method of traction calculations needs adapting to the shunting work conditions.
3. Hump locomotive fuel consumptions for train breaking-up should be determined based on the amount of mechanical work performed by locomotive traction. This approach in contrast to existing methods allows determination of impact of breaking-up velocity, as well as of hump and train design parameters, on the amount of fuel consumption.
4. To ensure the specified humping mode the model uses the hump locomotive control algorithm that provides smooth train acceleration and its further motion at the velocity close to the set one. At the final breaking-up stage when the train length does not exceed 10 cars, the train motion velocity fluctuations are increasing sufficiently. These fluctuations are caused by train weight reduction at the end of the breaking-up process, resulting in inflated intensity of acceleration even at the first controller positions
5. The statistical analysis of experimental studies and simulation results, using Wilcoxon T -criterion, proved adequacy of the developed model of train breaking-up at the hump.
6. The developed train breaking-up model allows a comprehensive assessment of the sorting process quality that is needed to determine a rational processing mode of sorting complex. For this purpose, it is appropriate to include the model into the decision support system of dispatching station staff.
LIST OF REFERENCE LINKS
1. Бобровский, В. И. Дифференциальные уравнения движения отцепа и методы их решения / В. И. Бобровский // Информ.-управл. системы на ж.-д. трансп. - 1996. - № 6. - С. 34-39.
2. Бобровский, В. И. Имитационная модель развязки линий в железнодорожном узле / В. И. Бобровский // Концепщя шдвищення ефективносл вантажних перевезень на залiзн. трансп. : мiжвуз. зб. наук. пр. - Харшв : Хар-ДАЗТ, 1999. - Вип. 38. - С. 35-42.
3. Бобровський, В. I. Моделювання процесу насу-ву та розпуску составiв на сортувальнш прщ / В. I. Бобровський, £. Б. Демченко // Транспор-тш системи та технологи перевезень : зб. наук. пр. Дншропетр. нац. ун-ту залiзн. трансп. iм.
i=1
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2015, № 6 (60)
акад. В. Лазаряна. - Дншропетровськ, 2012. -Вип. 4. - С. 13-19.
4. Бобровский, В. И. Оптимизация режимов торможения отцепов расчетной группы состава / В. И. Бобровский, А. С. Дорош // Наука та прогрес трансп. Вюн. Дншропетр. нац. ун-ту залiзн. трансп. - 2013. - № 1 (43). - С. 103-112. ао1: 10.15802^2013/9582.
5. Бобровский, В. И. Представление продольного профиля сортировочных горок в АСУ расформированием составов / В. И. Бобровский // Ин-форм.-управл. системы на ж.-д. трансп. - 1996.
- № 1/2. - С. 19-25.
6. Бобровский, В. И. Совершенствование имитационной модели процесса надвига и роспуска составов на сортировочных горках / В. И. Бобровский, Е. Б. Демченко // Транспортш систе-ми та технологи перевезень : зб. наук. пр. Дшпропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Дншропетровськ, 2012. - Вип. 3.
- С. 5-9.
7. Гребенюк, П. Т. Тяговые расчеты : справочник / П. Т. Гребенюк, А. Н. Додганов, А. И. Сквор-цова. - Москва : Транспорт, 1987. - 272 с.
8. Демченко, Е. Б. Оценка расхода топлива маневровыми тепловозами при расформировании составов на сортировочных горках / Е. Б. Демченко // Транспортш системи та технологи перевезень : зб. наук. пр. Дншропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Дншропетровськ, 2013. - Вип. 6. - С. 39-46.
9. Козаченко, Д. М. Моделювання роботи сортувально! прки в умовах невизначеносп параметрiв ввдчешв та характеристик навко-лишнього середовища / Д. М. Козаченко, М. I. Березовий, О. I. Таранець // Вюн. Дншропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Дшпропетровськ, 2007. - Вип. 16. - С. 73-76.
10. Корженевич, И. П. Оценка расхода топлива или электроэнергии через механическую работу локомотива / И. П. Корженевич // Вюн. Дншропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Дшпропетровськ, 2009. - Вип. 29. - С. 88-90.
11. Методические указания по сравнению вариантов проектных решений железнодорожных линий, узлов и станций. - Москва : ВПТИТ-РАНССТРОЙ, 1988. - 468 с.
12. Назаров, Л. С. Повышение эффективности маневровой работы / Л. С. Назаров, С. Л. Назаров // Ж.-д. трансп. - 2001. - № 8. - С. 56-57.
13. Огар, О. М. Науковий шдхщ до визначення рацюнальних конструктивно-технолопчних параметрiв сортувальних прок / О. М. Огар //
Зб. наук. пр. Дон1ЗТ. - Донецьк, 2009. - Вип. 18. - С. 9-16.
14. Оптимизация режимов торможения отцепов на сортировочных горках : монография / В. И. Бобровский, Д. Н. Козаченко, Н. П. Бож-ко [и др.]. - Днепропетровск : Маковецкий, 2010. - 260 с.
15. Правила и нормы проектирования сортировочных устройств на железных дорогах Союза ССР : ВСН 207-89. - Москва : Транспорт, 1992. - 104 с.
16. Правила тяговых расчетов для поездной работы. - Москва : Транспорт, 1985. - 287 с.
17. Сокращение расхода дизельного топлива на маневрах / В. М. Овчинников, С. А. Пожидаев, Н. Г. Швец, В. В. Скрежендевский // Транспортш системи та технологи перевезень : зб. наук. пр. Дншропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. - Дншропетровськ, 2011. - Вип. 1. - С. 62-70.
18. Corder, G. W. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach / G. W Corder, D. I Foreman. - New York : John Wiley & Sons Inc., 2009. - 264 р. doi: 10.1002/9781118165881.
19. Dorosh, A. S. Determination of braking optimal mode of controlled cut of design group / A. S. Do-rosh // Наука та прогрес трансп. Вюн. Дншропетр. нац. ун-ту залiзн. трансп. - 2015. -№ 3 (57). - P. 36-44. doi: 10.15802/stp2015-/46044.
20. Kerby, D. S. The simple difference formula: An approach to teaching nonparametric correlation / D. S. Kerby // Innovative Teaching. - 2014. -№ 3. - P. 1-9.
21. Shengjun, F. Research on Application of Braking Retarder Speed Control System / F. Shengjun // Retarders & Speed Control Technology. - 2012. -Iss. 4. - P. 11-16.
22. Tian-ming, M. The Research of Hump Retarder Assistant Speed Control System / M. Tian-ming, Z. Lianxiang // Retarders & Speed Control Technology. - 2011. - Iss. 1. - P. 1-7.
Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2015, № 6 (60)
ЕКСПЛУАТАЦ1Я ТА РЕМОНТ ЗАСОБ1В ТРАНСПОРТУ
е. Б. ДЕМЧЕНКО1*
1 Каф. «Станцп та вузли», Днiпропетровський нацюнальний утверситет залiзничного транспорту ш. академжа В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Укра!на, 49010, тел. +38 (097) 799 16 75, ел. пошта [email protected], ОЯСГО 0000-0003-1411-6744
КОМПЛЕКСНА 1М1ТАЦ1ЙНА МОДЕЛЬ ПРОЦЕСУ РОЗФОРМУВАННЯ СОСТАВ1В НА СОРТУВАЛЬНИХ Г1РКАХ
Мета. Одним iз прiоритетних напрямк1в п1двищення ефективностi функцюнування сортувальних ком-плексiв станцiй е скорочення енергетичних витрат на розформування составiв, а саме: витрат палива на !х насув та електроенергп на гальмування вiдчепiв. У зв'язку з цим ефективне вирiшення проблеми зниження енерговитрат у пiдсистемi розформування вимагае комплексного розгляду процесiв насуву та розпуску сос-тавiв. Проте, як показав аналiз, у тепершнш час задачi удосконалення процесу насуву та тдвищення ефек-тивностi процесу розпуску виршуються окремо. Для виршення вказано! проблеми в роботi необхвдно роз-робити комплексну iмiтацiйну модель розформування составiв. Методика. Моделювання процесу насуву та розпуску составiв виконувалось на основi адаптованих до умов маневрово! роботи тягових розрахункiв; при цьому були врахованi особливостi роботи маневрових тепловозiв на сортувальнiй прщ. Для реалiзацii зада-ного режиму насуву було застосовано спещальний алгоритм управлшня гiрковим тепловозом, який, о^м вимог iз безпечного виконання маневрово! роботи та експлуатацii' локомотивiв, враховуе й бiхевiоральнi фактори, що пов'язаш з керуючими дгями машинiста. Даний алгоритм забезпечуе плавний розгiн та пода-льший рух составу з близькою до встановлено! швидк1стю. Витрати палива гiрковим тепловозом визнача-лись на основi величини виконано! мехашчно! роботи сили тяги локомотива. Результати. Розроблено модель насуву составiв, яку було об'еднано з юнуючою моделлю скочування вiдчепiв. У процеа моделювання визначаеться початкова швидк1сть ввдчешв у момент !х в1дриву вщ составу. Отримана початкова швидк1сть ввдчешв використовуеться для подальшого моделювання процесу !х скочування. У результатi моделювання з достатньою точшстю визначаються витрати палива прковим локомотивом на розформування состашв. Наукова новизна. Автором удосконалена iмiтацiйна модель процесу розформування составiв на сортувальних гiрках, що, на ввдмшу в1д iснуючих, дозволяе комплексно ввдтворювати всi елементи цього процесу та детально й достовiрно оцшювати його якiсть. Практична значимкть. За допомогою розроблено! моделi можливо визначати рацiональний режим функцiонування сортувального комплексу. З цiею метою вказану модель доцiльно включити до складу системи тдтримки прийняття рiшень диспетчерського персоналу станцп.
Ключовi слова: насув та розпуск состаив; сортувальна гiрка; гiрковий тепловоз; витрати палива
Е. Б. ДЕМЧЕНКО1*
1 Каф. «Станции и узлы», Днепропетровский национальный университет железнодорожного транспорта им. академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел. +38 (097) 799 16 75, эл. почта [email protected], ОЯСГО 0000-0003-1411-6744
КОМПЛЕКСНАЯ ИМИТАЦИОННАЯ МОДЕЛЬ ПРОЦЕССА РАСФОРМИРОВАНИЯ СОСТАВОВ НА СОРТИРОВОЧНЫХ ГОРКАХ
Цель. Одним из приоритетных направлений повышения эффективности функционирования сортировочных комплексов станций является сокращение энергетических затрат на расформирование составов, а именно: расхода топлива на их надвиг и электроэнергии на торможение отцепов. В связи с этим эффективное решение проблемы снижения энергозатрат в подсистеме расформирования требует комплексного рассмотрения процессов надвига и роспуска составов. Однако, как показал анализ, в настоящее время задачи совершенствования процесса надвига и повышения эффективности процесса роспуска решаются раздельно. Для решения указанной проблемы в работе необходимо разработать комплексную имитационную модель расформирования составов. Методика. Моделирование процесса надвига и роспуска составов выполнялось на основе адаптированных к условиям маневровой работы тяговых расчетов; при этом были учтены особенности работы маневровых тепловозов на сортировочной
Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2015, № 6 (60)
горке. Для реализации заданного режима надвига был применен специальный алгоритм управления горочным тепловозом, который наряду с требованиями безопасности выполнения маневровой работы и эксплуатации локомотивов учитывает и бихевиоральные факторы, связанные с управляющими действиями машиниста. Данный алгоритм обеспечивает плавный разгон и дальнейшее движение состава с близкой к установленной скоростью. Расходы топлива горочным тепловозом определялись на основе величины выполненной механической работы силы тяги локомотива. Результаты. Разработана имитационная модель надвига составов, которая была объединена с существующей моделью скатывания отцепов. В процессе моделирования определяется начальная скорость отцепов в момент их отрыва от состава. Полученная начальная скорость отцепов используется для дальнейшего моделирования процесса их скатывания. В результате моделирования с достаточной точностью определяются расходы топлива горочным локомотивом на расформирование составов. Научная новизна. Автором усовершенствована имитационная модель процесса расформирования составов на сортировочных горках, которая в отличие от существующих, позволяет комплексно воспроизводить все элементы этого процесса и подробно и достоверно оценивать его качество. Практическая значимость. С помощью разработанной модели возможно определять рациональный режим функционирования сортировочного комплекса. С этой целью указанную модель целесообразно включить в состав системы поддержки принятия решений диспетчерского персонала станции.
Ключевые слова: надвиг и роспуск составов; сортировочная горка; горочный тепловоз; расход топлива
REFERENCES
1. Bobrovskiy V.I. Differentsialnyye uravneniya dvizheniya ottsepa i metody ikh resheniya [Differential equations of cut motion and their solutions]. Informatsionno-upravlyayushchiye sistemy na zheleznodorozhnom transporte - Information Management Systems on Railway Transport, 1996, no. 6, pp. 3439.
2. Bobrovskiy V.I. Imitatsionnaya model razvyazki liniy v zheleznodorozhnom uzle [Simulation model of lines interchange in a railway junction]. Kontseptsiya pidvishchennya efektivnosti vantazhnikh perevezen na zaliznichnomu transporti: Mizhvuzivskyi zbirnyk naukovykh prats [The concept of increase of efficiency of freight transport at the railway transport: Interuniversity Proc.]. Kharkiv, KharDAZT Publ., 1999, issue 38, pp. 35-42.
3. Bobrovskiy V.I., Demchenko E.B. Modeliuvannia protsesu nasuvu ta rozpusku sostaviv na sortuvalnii hirtsi [The simulation of pushing and breaking-up process at the hump yard]. Transportni systemy ta tekhnolohii perevezen: zbirnyk naukovykh prats Dnipropetrovskoho natsirnalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Transport systems and transport technologies. Proc. of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan]. Dnipropetrovsk, DNUZT Publ., 2012, issue 4, pp. 13-19.
4. Bobrovskiy V.I. Dorosh A.S. Optimizatsiya rezhimov tormozheniya ottsepov raschetnoy gruppy sostava [The optimization of retarding regimes within the particular group of cuts]. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu - Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2013, no. 1 (43), pp. 104-112.
5. Bobrovskiy V.I. Predstavleniye prodolnogo profilya sortirovochnykh gorok v ASU rasformirovaniyem sostavov [Presentation of the longitudinal profile of sorting yards in automated control system of train breaking-up]. Informatsionno-upravlyayushchiye sistemy na zheleznodorozhnom transporte - Information Management Systems on Railway Transport, 1996, no. 1/2, pp. 19-25.
6. Bobrovskiy V.I., Demchenko E.B. Sovershenstvovaniye imitatsionnoy modeli protsessa nadviga i rospuska sostavov na sortirovochnykh gorkakh [Improving the simulation model of the pushing and braking-up process on humps]. Transportni systemy ta tekhnolohii perevezen: zbirnyk naukovykh prats Dnipropetrovskoho natsirnalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Transport systems and transport technologies. Proc. of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan]. Dnipropetrovsk, DNUZT Publ., 2012, issue 3, pp. 5-9.
7. Grebenyuk P.T., Dodranov A.N., Skvortsova A.I. Tyagovyye raschety [Traction calculations] Moskow, Transport Publ, 1987, 272 p.
8. Demchenko E.B. Otsenka raskhoda topliva manevrovymi teplovozami pri rasformirovanii sostavov na sortirovochnykh gorkakh [The evaluation of shunting engines fuel consumption during the humping process].
Transportni systemy ta tekhnolohii perevezen: zbirnyk naukovykh prats Dnipropetrovskoho natsirnalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Transport systems and transport
HayKa Ta nporpec TpaHcnopTy. BÎCHHK ^mnponeTpoBctKoro Ha^oH&atHoro yHÎBepcHTeTy 3&ri3HHHHoro TpaHcnopTy, 2015, № 6 (60)
technologies. Proc. of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan]. Dnipropetrovsk, DNUZT Publ., 2013, issue 6, pp. 39-46.
9. Kozachenko D.M., Berezovyi M.I., Taranets O.I. Modeliuvannia roboty sortuvalnoi hirky v umovakh nevyznachenosti parametriv vidchepiv ta kharakterystyk navkolyshnoho seredovyshcha [Simulation of work under hump uncertain parameters unhooked and environmental conditions]. Visnyk Dnipropetrovskoho natsirnalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2007, issue 16, pp. 73-76.
10. Korzhenevich I.P. Otsenka raskhoda topliva ili elektroenergii cherez mekhanicheskuyu rabotu lokomotiva [Evaluation of fuel or electricity consumptions based on locomotive mechanical work]. Visnyk Dnipropetrovskoho natsirnalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2009, issue 29, pp. 88-90.
11. Metodicheskiye ukazaniya po sravneniyu variantov proyektnykh resheniy zheleznodorozhnykh liniy, uzlov i stantsiy [Guidelines for comparing the variants of design decisions of railway lines, junctions and stations]. Moskow, VPTITRANSSTROY Publ., 1988, 468 p.
12. Nazarov L.S., Nazarov S.L. Povysheniye effektivnosti manevrovoy raboty [Effectiveness increasy of the shunting operations]. Zheleznodorozhnyy transport - Railway Transport, 2001, no 8, pp. 56-57.
13. Oghar O.M. Naukovyi pidkhid do vyznachennia ratsionalnykh konstruktyvno-tekhnolohichnykh parametriv sortuvalnykh hirok [Scientific approach to the definition of rational constructive and technological parameters of humps]. Zbirnyknaukovyhprats Donetskoho instytu zaliznychnoho transportu [Proc. of Donetsk institute of railway transport], 2009, no. 18, pp. 9-16.
14. Bobrovskiy V.I., Kozachenko D.N., Bozhko N.P., Rogov N.V., Berezovyy N.I., Kudryashov A.V. Optimizatsiya rezhimov tormozheniya ottsepov na sortirovochnykh gorkakh [Optimization of cut braking modes at the sorting yards]. Dnipropetrovsk, Makovetskiy Publ., 2010. 260 p.
15. Pravila i normy proyektirovaniya sortirovochnykh ustroystv na zheleznykh dorogakh Soyuza SSR. VSN 207-89 [State standart VSN 207-89. Rules and regulations of the design of sorting devices on the railways of the USSR]. Moskow, Transport Publ, 1992, 104 p.
16. Pravila tyagovykh raschetov dlya poyezdnoy raboty [Rules of traction calculations for train operation]. Moskow, Transport Publ, 1985. 287 p.
17. Ovchinnikov V.M., Pozhidayev S.A., Shvets N.G., Skrezhendevskiy V.V. Sokrashcheniye raskhoda dizelnogo topliva na manevrakh [Reduce cost of diesel fuel on maneuvers]. Transportni systemy ta tekhnolohii perevezen: zbirnyk naukovykh prats Dnipropetrovskoho natsirnalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Transport systems and transport technologies. Proc. of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan]. Dnipropetrovsk, DNUZT Publ., 2011, issue 1, pp. 62-70.
18. Corder G.W. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach, New York, John Wiley & Sons Inc. Publ., 2009, 264 p. doi: 10.1002/9781118165881.
19. Dorosh A.S. Determination of braking optimal mode of controlled cut of design group. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu - Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 2015, no. 3 (57), pp. 36-44. doi: 10.15802/stp2015/46044.
20. Kerby D.S. The simple difference formula: An approach to teaching nonparametric correlation. Innovative Teaching, 2014, no 3, pp. 1-9.
21. Shengjun F. Research on Application of Braking Retarder Speed Control System. Retarders & Speed Control Technology, 2012, issue 4, pp. 11-16.
22. Tian-ming M. The Research of Hump Retarder Assistant Speed Control System. Retarders & Speed Control Technology. 2011, issue 1, pp. 1-7.
Prof. T. V. Butko, D. Sc. Tech. (Ukraine); Prof. V. I. Bobrovskyi, D. Sc. Tech. (Ukraine) recommended
this article to be published
Accessed: Nov.11, 2015
Received: Nov. 26, 2015