DOI: 10.6060/ivkkt.20236606.6789
УДК: 541.49+54.04+546.732
КОМПЛЕКСООБРАЗОВАНИЕ В СИСТЕМЕ
ЦИНК (Н)-ХРОМ (III) -КОБАЛЬТ (П)-ГЛИЦИН-ВОДА
Н.Б. Березин, В.В. Чевела, Ж.В. Межевич, В.Ю. Иванова
Николай Борисович Березин (ORCID 0009-0002-5492-1588), Жанна Витальевна Межевич (ORCID 0009-0008-2123-120Х)*
Кафедра технологии электрохимических производств, Казанский национальный исследовательский технологический университет, ул. К. Маркса, 68, Казань, Российская Федерация, 420015 E-mail: [email protected], [email protected] *
Владимир Всеволодович Чевела (ORCID 0000-0002-4651-9030), Валентина Юрьевна Иванова (ORCID 0000-0002-3589-5049)
Кафедра неорганической химии, Казанский (Приволжский) федеральный университет, ул. Кремлевская,
18, Казань, Российская Федерация, 420008
E-mail: [email protected], [email protected]
Исследование процессов комплексообразования является научной основой при разработке электролитов в гальванотехнике. В работе получены данные по комплексообра-зованиюв системе цинк (П)-хром (Ш)-кобальт (II)- глицин-вода. Исследование комплек-сообразования в системе цин^Щ-хром^Щ-кобальт^^-глицин-вода актуально в связи с возможностью разработки процессов электролитического цинкования и получения соответствующих покрытий с высокими показателями коррозионной стойкости. Кроме того, легирование цинковых гальванических покрытий хромом, кобальтом позволяет заменить применение токсичных кадмиевых покрытий и использовать меньшие их толщины. Растворы термостатировали при 25 °С. Для измерения рН применяли прибор HI 2215pH/ORPMeter. Время спин-решеточной релаксации Ti измеряли на импульсном ЯМР-спектрометре «Minispecmq 20» с частотой 19,75 МГц. Константы образования комплексов и их доли накопления рассчитывались по программе CPESSP. В работе приведены данные проведенных ранее исследований систем хром(Ш)-вода, цинк(И)-глицин-вода, хром(Ш)-глицин-водаи цинк(П)-хром(Ш)-глицин-вода. Получены данные по комплексо-образованию в системе хром (III) - кобальт (И)-глицин-вода. Установлено образование ге-тероядерного комплекса Cr^Gfys3-. Установлены составы гетероядерных соединений, доли их накопления и константы образования:CrCoZn(HGly)5Glyз4+ (lgK= 2,31±0,01); CrCoZn(HGly)sGlys2+ (lgK= -1,36±0,05) и CrCoZn(HGly)2Gly6+ №К=-4,23±0,09).Максимальная доля накопления гетероядерных комплексов, как показали исследования, наблюдается в области рН 2...6. В работе высказаны соображения об электрохимической реакционной способности гетероядерных соединений. В частности, отмечено, что электрохимическое восстановление более электроотрицательных металлов, в случае их нахождения в гетероядерном комплексе, должно происходить с меньшим перенапряжением реакции.
Ключевые слова: комплексные гетероядерные соединения, цинк(П), хром(Ш), кобальт(И), глицин, рН-метрическое титрование, ядерная магнитная релаксация протонов, программа CPESSP
COMPLEX FORMATION IN THE SYSTEM ZINC (II)-CHROMIUM (III) -COBALT (II)-GLYCINE-WATER
N.B. Berezin, V.V. Chevela, Zh.V. Mezhevich, V.Yu. Ivanova
Nikolay B. Berezin (ORCID 0009-0002-5492-1588), Zhanna V. Mezhevich (ORCID 0009-0008-2123-120Х)*
Department of Technology of Electrochemical Production, Kazan National Research Technological University,
K. Marx st., 68, Kazan, 420015, Russia
E-mail: [email protected], [email protected]*
Vladimir V. Chevela (ORCID 0000-0002-4651-9030), Valentina Yu. Ivanova (ORCID 0000-0002-3589-5049) Department of Inorganic Chemistry, Kazan Federal University, Kremlevskaya st., 18, Kazan, 420008, Russia E-mail: [email protected], [email protected]
The study of complex formation processes is the scientific basis for the development of electrolytes in electroplating. The data on complexation in the zinc (II)-chromium (III)-cobalt (II)-glycine-water system were obtained. The study of complex formation in the zinc (II)-chro-mium (III)-cobalt (II)-glycine-water system is relevant due to the possibility of developing electrolytic galvanizing processes and obtaining appropriate coatings with high corrosion resistance. In addition, the alloying of zinc electroplating coatings with chromium, cobalt makes it possible to replace the use of toxic cadmium coatings and use their smaller thicknesses. The solutions were thermostated at 25 °C The HI 2215 pH/ORPMeter was used to measure pH. The spin-lattice relaxation time T1 was measured on a pulsed NMR spectrometer "Minispecmq20" with a frequency of 19.75 MHz. The constants of the formation of complexes and their accumulation shares were calculated according to the CPESSPprogram. The paper presents data on previously conducted studies of chromium(III)-water, zinc(II)-glycine-water, chromium(III)-glycine-water and zinc(II)-chromium(III)-glycine-water systems. Data on complexation in the chromium (III)-co-balt (II)-glycine-water system were obtained. The formation of a heteronuclear complex CrCoGlyi' has been established. The compositions of heteronuclear compounds, their accumulation fractions and formation constants were established: CrCoZn(HGly)sGly34+ (lgK= 2.31±0.01); CrCoZn(HGly)3Glys2+ (lgK= -1.36±0.05) and CrCoZn(HGy) 2Gly6+ (lgK= -4.23±0.09). The maximum proportion of accumulation of heteronuclear complexes, as studies have shown, is observed in the pH range of 2...6. In this paper, considerations are made about the electrochemical reactivity of heteronuclear compounds. In particular, it is noted that the electrochemical reduction of more electronegative metals, if they are in a heteronuclear complex, should occur with less overvoltage of the reaction.
Key words: complex heteronuclear compounds, zinc(II), chromium(III), cobalt(II), glycine, pH-metric titration, nuclear magnetic relaxation of protons, CPESSP program
Для цитирования:
Березин Н.Б., Чевела В.В., Межевич Ж.В., Иванова В.Ю. Комплексообразование в системе цинк (П)-хром (III) -кобальт (П)-глицин-вода. Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 6. С. 31-36. DOI: 10.6060/ivkkt.20236606.6789.
For citation:
Berezin N.B., Chevela V.V., Mezhevich Zh.V., Ivanova V.Yu. Complex formation in the system zinc (II)-chromium (III) -cobalt (II)-glycine-water. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. N 6. P. 31-36. DOI: 10.6060/ivkkt.20236606.6789.
INTRODUCTION
The study of complexation processes is the scientific basis for the development of electrolytes in modern electroplating. Data on the composition, stability and accumulation of complex compounds depending on the pH of the solution allow us to develop the composition of the electrolyte on a scientific basis, establish the electrolysis mode, investigate the kinetics in more detail and understand the mechanism of electrochemical processes.
The aim of the work is to obtain data on the complexation of Zn(II), Cr(III), Co (II) in glycine-con-taining aqueous solutions.
The electrolytic production of Zn alloys with metals such as Co, Cr, Ni is being studied most actively due to great practical and theoretical interest.
Thus, it was shown in [1-3] that the co-deposition of zinc with cobalt increases the anticorrosive properties of zinc coatings and can be used to replace toxic cadmium coatings. Electrodeposition of the zinc-cobalt alloy is carried out from glycine-containing solutions [4] and using pulsed current [5].
Zinc-chromium alloys also have increased corrosion resistance compared to zinc, which makes it possible to reduce the thickness of the covers used [6, 7].
Obtaining zinc-chromium-cobalt alloys makes it possible to give coatings, in addition to corrosion resistance, such necessary performance characteristics as microhardness [8]. In [9], it was noted that high-quality zinc-nickel-cobalt alloy coatings were obtained in solutions containing glycine. In addition, the study of multicomponent systems is currently relevant in the case of obtaining high-entropy alloys [10].
MATERIALS AND METHODS OF RESEARCH
The research methodology and processing of experimental data are described in detail in [11].
In this work, cobalt (II) sulfate, chromium (III) chloride, zinc (II) sulfate, and glycine were used as pure for analysis.
The pH was measured on the HI 2215 pH/ORP Meter with an accuracy of 0.01 units. The solutions were thermostated at 25 °C.
The spin-lattice relaxation time T1 was measured on a pulsed NMR spectrometer «Minispecmq20» with an operating frequency of 19.75 MHz. The study of complexation by NMR is presented in [12, 13].
The constants of the formation of complexes and their accumulation shares were calculated in the CPESSP program [14]. Diagrams of the distribution of complexes were also constructed using the CRESSP program.
DISCUSSION OF EXPERIMENTAL RESULTS
We have previously investigated the system of zinc (II) - chromium (III) - nickel (II) - glycine - water [11]. The compositions of complex compounds, stability constants and the proportion of their accumulation in solutions with different pH values are established. The electrochemical behavior of aqueous solutions containing heteronuclear compounds is presented in [15, 16].
The study of complex compounds in the Zn(II)
- Cr(III) - Co(II) - glycine - water system was preceded by obtaining data in solutions of Cr(III)-water [17], Zn(II) - glycine - water [18], Cr(III) - glycine -water [19] and Zn(II) - Cr(III) - glycine - water [20].
In this paper, the complex formation in the chromium (III) - cobalt (II) - glycine - water system is investigated. Experimental data for the chromium (III)
- cobalt(II) - glycine system are presented in Table 1. The formation of a heteronuclear complex CrCoGly83-is established.
Table 1
Composition and constants of formalized equilibria of
formation of Cr(III)-Co(n)-glycine complexes Таблица 1. Состав и константы формализованных равновесий образования комплексов Cr(III)-Co (II)-глицин
The formation of the complex occurs according to the scheme (1):
xCr3++yH2Gly++qCo2+~CrxH2y-rGlyyCoq+rH+ (1) The distribution of connections is shown in Fig. 1. As can be seen from the diagram of the fractional distribution obtained using the CPESSP program, the heteronuclear complex CrCoGlys3- prevails at pH values of 2.5...6.
Fig. 1. Diagram of the fractional distribution of mole fractions of compounds in the system chromium (III) - cobalt (II) - glycine depending on pH: 1 - H2Gly+, 2 - Co2+, 3 - HGly, 4 - Cr(HGly>Gly2+, 5 - Cr(HGly)2Gly2+, 6 - CrGly4-, 7-CnGly6, 8-CrCoGly83-.a- accumulation fraction. C(HGly) = 0.349 mol/L, C(Cr3+) = 0.045 mol/L,
C(Co2+) = 0.046 mol/L Рис. 1. Диаграмма долевого распределения мольных долей соединений в системе хром(Ш)- - кобальт(П) - глицин в зависимости от рН : 1 - H2Gly+, 2- Co2+, 3 - HGly, 4 -Cr(HGly>Gly2+, 5 - Cr(HGly)2Gly2+, 6 - CrGly4-, 7 - CnGly6, 8 - СГ^1у83".а- доля накопления. C(HGly) = 0,349 моль/л, c(cr3+) = 0,045 моль/л, C(Co2+) = 0,046 моль/л
Experimental data for the Zn(II)- Cr(III)-co-balt (II)-glycine-water system are presented in Table 2.
Table 2
Composition and constants of formalized equilibria of formation of Cr(III)-Zn(n)-Co(n)-glycine complexes Таблица 2. Состав и константы формализованных равновесий образования комплексов Cr (III)-Zn (II)-
Co (П)-глицин
Стехиометрическая мат] эица
№ Со2+ Cr3+ Zn2+ H2GI+ H+ lgK Комплекс
(m) (P) (i) (q) (r)
1 1 1 1 8 11 2.31+ 0.01 CrCoZn(HGly)5Gly34+
2 1 1 1 8 13 -1.36+ 0.05 CrCoZn(HGly)3Gly52=
3 1 1 1 8 14 -4.23+ 0.09 CrCoZn(HGly)2Gly6+
The formation of the complex occurs according to the scheme (2):
pCr3+ + qH2Gly+ + mCo2+ + iZn2+ ~ ^ CrpGlyqComZniH2q-r + rH+ (2)
Fig. 2 shows the dependence of the relaxation efficiency- pH of the solution for the systems: Cr(III) -glycine, Cr(III) - Co(II) - glycine, Cr(III) - Co(II) -Zn(II) - glycine.
Стехиометрическая
№ мат рица lgK Комплекс
Со2+ Cr3+ H2GI+ H+
(q) (x) (y) (r)
1 1 1 8 16 -19.08+0.21 CrCoGly83-
(BTO-1
Fig. 2. Dependence of relaxation efficiency for systems: l-Cr(III) - глицин, 2-Cr(III) - Co(II) - глицин, 3-Cr(III) - Co(II) - Zn(II)- глицин Рис. 2. Зависимость релаксационной эффективности для систем: l-Cr(III) - глицин, 2-Cr(III) - Co(II) - глицин, 3-Cr(III) - Co(II) - Zn(II)- глицин
The coincidence of curves 1 and 2 (Fig. 2) suggests the possible absence of heteronuclear complexes. During the calculation, only one heteronuclear complex of the composition CrCoGlys3- was identified. Relaxation curve 3 differs significantly from systems 1 and 2 (Fig. 2). The difference in the course of the curves indicates the formation of heteronuclear complexes Cr (III), Co (II), Zn (II) with glycine. The dependence of the distribution of complexes on pH is shown in Fig. 3. These diagrams are also calculated and constructed using the CPESSP program.
a
10,
e
08 /
5 /
0.6- 1 /
02- A A \ / \
/ \/3\\/ N.
—^ рн
0.0 | Г , Жр I I -.
12 3 4
Fig. 3. Diagram of the fractional distribution of mole fractions of complexes in the Cr(III) - Co(II) -Zn(II) - glycine system depending on pH. Accumulation shares of H2Gly+, Co2+, Zn2+, HGly are not shown. 1 - Cr(HGly)3Gly2+, 2 - Cr(HGly>Gly2+, 3 - Cr2Gly60, 4 - CrCoZn(HGly)5Gly34+, 5 - CrCoZn(HGly>Gly52+, 6 - CrCoZn(HGly)2Gly6+. C(HGly) = 0.349mol/L, C(Cr3+) = = 0.045 mol/L, C(Co2+) = 0.046 mol/L, C(Zn2+) =0.048 mol/L Рис. 3. Диаграмма долевого распределения мольных долей комплексов в системе Cr(III) - Co(II)-Zn(II)- глицин в зависимости от рН. Доли накопления H2Gly+, Co2+, Zn2+, HGly не показаны. 1 - Cr(HGly>Gly2+, 2 - Cr(HGly)2Gly2+, 3 - CnGlye0, 4 - CrCoZn(HGly)5Gly34+, 5 - CrCoZn(HGly>Gly52+, 6 - CrCoZn(HGly)2Gly6+. C(HGly) = 0,349моль/л, C(Cr3+) = = 0,045 моль/л, C(Co2+) = 0,046 моль/л, C(Zn2+) =0,048 моль/л
The CrCoZn(HGly)5Gly34+, CrCoZn(HGly)3Gly52+, and CrCoZn(HGly)2Gly6+ complexes exist throughout the studied pH region, with accumulation maxima at pH 1.6, 2.5 and 4.4, respectively. The triple complex CrCoGlys3- does not accumulate under these conditions.
As follows from the results of the work carried out, heteronuclear compounds in the system under study mainly dominate in the pH range of 2.. .6.
The results of the work can be used in the development of electrolytes for electrochemical alloying of zinc with chromium and cobalt.
In the case of electrochemical alloying of zinc coatings with chromium and cobalt, the presence of a positive charge in the complex compounds CrCoZn(HGly)5Gly34+, CrCoZn(HGly)3Gly52+, CrCo Zn(HGlyhGly6+ creates favorable conditions for their adsorption on the negatively charged cathode surface and should contribute to their recovery.
In conclusion, based on the analysis of literature sources and our research [16], some considerations can be made about the electrochemical reactivity of heteronuclear complexes.
Thus, according to [21] the heteronuclear complex, the orbital of a more electronegative atom makes a greater contribution to the binding orbital of the energy diagram, and the orbital of a less negative atom to the loosening one. Therefore, it can be assumed that the electrochemical reduction of more electronegative metals in the case of their presence in a heteronuclear complex should occur with less overvoltage of the reaction.
The stated consideration agrees with the fact that an increase in the size of complex compounds reduces the activation energy of their cathodic reduction. Thus, it was shown in [22] that an increase in the effective radius of complex compounds reduces the activation energy of their recovery.
In the development of the electrochemistry of heteronuclear compounds, the results of the work [23] may be of interest. Based on quantum mechanical studies, the authors [23] found that in the case when two metals are connected by a bridging particle, a unidirectional flow of electrons from one metal to another occurs in such a system.
It is known that there is a direct connection between ions of different metals in a heteronuclear complex, according to [24, 25], or it is carried out through a bridging particle. If surfactants are used as ligands, as in this work-glycine, which can be adsorbed [26] on the electrode and perform the function of a bridge during charge transfer, it is possible that this will contribute to the joint recovery of ions located in the hetero-nuclear complex.
CONCLUSION
The paper presents data on complexation in the systems: Cr(III) - Co(II) - glycine - water; Zn(II) -Cr(III) - Co(II) - glycine - water.
It was found that in the Zn(II) - Cr(III) - Co(II) - glycine-water system, heteronuclear compounds CrCoZn(HGly)5Gly34+ (lgK = 2.31±0.01); CrCoZn(HGly)3Gly52+ (lgK = -1.36±0.05) and CrCoZn(HGlyhGly6+ (lgK = -4.23±0.09) are bound.
ЛИТЕРАТУРА
1. Garcia J.R., Baptista do Lago D.L., Ferreira de Senna.
Electrodeposition of Cobalt Rich Zn-Co alloy Coatings from Citrate Bath. Materials Res. 2014. N 17(4). P. 947-957. DOI: 10.1590/S1516-14392014005000096.
2. Lodhi Z.F., Mol J.M.C, Hovestad A., Terryn H., De Wit. Electrodeposition of Zn-Co and Zn-Co-Fe alloys from acid chloride electrolytes. Surf. Coat. Technol. 2007. N 202 (1). P. 84-90. DOI: 10.1016/j.surfcoat.2007.04.070.
3. Karahan I.H., ^etinkara H.A. Study of effect of boric acid on Zn-Co alloy electrodeposition from acid baths and on composition, morphology and structure of deposit. Transactions of the Institute of Metal Finishing. Internat. J. Surf. Eng. Coat. 2011. N 89(2). P. 99-103. DOI: 10.1179/174591911X12968393517774.
4. Ortiz-Aparicio J.L., Meas Y., Trejo G., Ortega R., Chapman T.W., Chainet E., Ozil P. Electrodeposition of zinc-cobalt alloy from a complexing alkaline glycinate bath. Electrochim. Acta. 2007. N 52(14). Р. 4742-4751. DOI: 10.1016/j. electacta.2007.01.010.
5. Gharahcheshmeh M.H., Sohi M.H. Pulse electrodeposition of Zn-Co alloy coatings obtained from an alkaline bath. Mater. Chem. Phys. 2012. N 134(s2-3). P. 1146-1152. DOI: 10.1016/j.matchemphys.2012.04.007.
6. Chakarovaa V., Boiadjieva-Scherzerb Tz., Kovachevac D., Kronbergerd H., Moneva M. Corrosionbehaviour of electrodeposited Zn-Cr alloy coatings. Corros. Sci. 2018. V. 140. 1. P. 73-78. DOI: 10.1016/j.corsci.2018.06.019.
7. Watson A., Su Y.J., El-Sharif M. R., Chisholm C.U. The Electrodeposition of Zinc Chromium Alloys and the Formation of Conversion Coatings without use of Chromate Solutions. Transact. IMF. 1993. V. 71. N 1. P. 15-20. DOI: 10.1080/00202967.1993.11870976.
8. Tahraoui L., Diafi M., Fadel A. The influence of Chromium concentration on the corrosion resistance of theelectrodeposited Zn-Co-Cr alloys. Digest J. Nanomater. Biostruct. 2021. V. 16. N 2. P. 555 - 561. DOI: 10.15251/DJNB.2021.162.555.
9. Ченцова Е.В., Почкина С.Ю., Соловьева Н.Д. Влияние аминоуксусной кислоты на электроосаждение сплава цинк-никель-кобальт. Гальванотехника и обраб. поверхн. 2020. Т. 28. № 1. P. 42-49. DOI: 10.47188/0869-5326_2020_28_1_42.
10. Ремпель А.А., Гельчинский Б.Р. Высоко энтропийные сплавы: получение, свойства, практическое применение. Изв. вузов. Черн. металлургия. 2020. Т. 63. № 3-4. С. 248 - 253. DOI: 10.17073/0368-0797-2020-3-4-248-253.
11. Березин Н.Б., Чевела В.В., Межевич Ж.В., Иванова В.Ю. Комплексообразованиев системе цинк(П)-хром(Ш)-никель(П)-глицин-вода. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 11. С. 44-49. DOI: 10.6060/ivkkt.20216411.6401.
The maximum proportions of accumulation of hetero-nuclear compounds are in the pH range of 2...6.
In the work, based on the analysis of literary sources, considerations are made about the electrochemical reactivity of heteronuclear compounds.
Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.
The authors declare the absence a conflict of interest warranting disclosure in this article.
REFERENCES
1. Garcia J.R., Baptista do Lago D.L., Ferreira de Senna.
Electrodeposition of Cobalt Rich Zn-Co alloy Coatings from Citrate Bath. Materials Res. 2014. N 17(4). P. 947-957. DOI: 10.1590/S1516-14392014005000096.
2. Lodhi Z.F., Mol J.M.C, Hovestad A., Terryn H., De Wit. Electrodeposition of Zn-Co and Zn-Co-Fe alloys from acid chloride electrolytes. Surf. Coat. Technol. 2007. N 202 (1). P. 84-90. DOI: 10.1016/j.surfcoat.2007.04.070.
3. Karahan I.H., ^etinkara H.A. Study of effect of boric acid on Zn-Co alloy electrodeposition from acid baths and on composition, morphology and structure of deposit. Transactions of the Institute of Metal Finishing. Internat. J. Surf. Eng. Coat. 2011. N 89(2). P. 99-103. DOI: 10.1179/174591911X12968393517774.
4. Ortiz-Aparicio J.L., Meas Y., Trejo G., Ortega R., Chapman T.W., Chainet E., Ozil P. Electrodeposition of zinc-cobalt alloy from a complexing alkaline glycinate bath. Electrochim. Acta. 2007. N 52(14). Р. 4742-4751. DOI: 10.1016/j.electacta.2007.01.010.
5. Gharahcheshmeh M.H., Sohi M.H. Pulse electrodeposition of Zn-Co alloy coatings obtained from an alkaline bath. Mater. Chem. Phys. 2012. N 134(s2-3). P. 1146-1152. DOI: 10.1016/j.matchemphys.2012.04.007.
6. Chakarovaa V., Boiadjieva-Scherzerb Tz., Kovachevac D., Kronbergerd H., Moneva M. Corrosionbehaviour of electro-deposited Zn-Cr alloy coatings. Corros. Sci. 2018. V. 140. 1. P. 73-78. DOI: 10.1016/j.corsci.2018.06.019.
7. Watson A., Su Y.J., El-Sharif M. R., Chisholm C.U. The Electrodeposition of Zinc Chromium Alloys and the Formation of Conversion Coatings without use of Chromate Solutions. Transact. IMF. 1993. V. 71. N 1. P. 15-20. DOI: 10.1080/00202967.1993.11870976.
8. Tahraoui L., Diafi M., Fadel A. The influence of Chromium concentration on the corrosion resistance of theelectrodeposited Zn-Co-Cr alloys. Digest J. Nanomater. Biostruct. 2021. V. 16. N 2. P. 555 - 561. DOI: 10.15251/DJNB.2021.162.555.
9. Chentsova E.V., Pochkina S.Yu., Solovyova N.D. Influence of aminoacetic acid on the electrodeposition of zinc-nickel-cobalt alloy. Galvanotekhnika Obrab. Poverkhn. 2020. V. 28. N 1. P. 42-49 (in Russian). DOI: 10.47188/0869-5326_2020_28_1_42.
10. Rempel A.A., Gelchinsky B.R. High-entropy alloys: preparation, properties, practical application. Izv. Vyssh. Uchebn. Zaved. Chern. Metllurgiya. 2020. V. 63. N 3-4. P. 248 - 253. DOI: 10.17073/0368-0797-2020-3-4-248-253.
11. Berezin N.B., ^evela V.V., Mezhevich Zh.V., Ivanova V.Yu. Complexation in the system zinc (II)-chrome (III)-nickel(II)-glycine-water. ChemChemTech [Izv.Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 11. P. 44-49. DOI: 10.6060/ivkkt.20216411.6401.
12. Попель A.A. Mагнитно-релаксационный метод анализа неорганических веществ. M.: Химия. 1978. 224 с.
13. Башман И.А., Пронин И.С. Ядерная магнитная релаксация и ее применение в химической физике. M.: Наука. 1979. 224 c.
14. Сальников Ю.И., Глебов А.Н., Девятов Ф.Б. Полиядерные комплексы в растворах. Казань: Изд-во Казанского ун-та, 1989. 288 с.
15. Березин Н.Б., Межевич Ж.Б. Электрохимически легированные цинковые покрытия при использовании постоянного и импульсного тока. Вестн. технол. ун-та. 2020. Т. 23. № 9. С. 24-27.
16. Berezin N.B., Mezhevich Zh.V. Electrochemical Doping of Zinc Coatings with Chromium and Nickel Coatings with Phosphorus. Surf. Eng. Appl. Electrochem. 2018. V. S4. N 3. P. 247-2S4. DOI: 10.3103/S106837SS1803002X.
17. Березин Н.Б., Березина Т.Н., Межевич Ж.Б. Носители зарядов в электролитах на основе соединений хрома (III). Система хром (III) - вода. Вестн. Казан. технол. ун-та. 2012. Т. 15. № 19. C. S3-SS.
18. Березин Н.Б., Березина Т.Н., Межевич Ж.Б., Чевела Б.Б. Носители зарядов в электролитах для получения цинковых покрытий. Система цинк (II) - глицин - вода. Вестн. Казан. технол. ун-та. 2013. Т. 16. № 5. C. 267-2б8.
19. Березин Н.Б., Березина Т.Н., Шарифуллина А.У., Че-вела Б.Б. Носители зарядов в электролитах на основе соединений хрома (III). Система хром(Ш)-глицин-вода. Вестн. Казан. технол. ун-та. 2012. Т. 15. № 19. C. S9-61.
20. Березин Н.Б., Березина Т.Н., Межевич Ж.Б., Чевела Б.Б. Носители зарядов в электролитах для получения цинковых покрытий легированных хромом. Система цинк(П)-хром(Ш)-глицин-вода. Вестн. Казан. технол. ун-та. 2013. Т. 16. № 5. С. 262-264.
21. Ахметов Н.С. Общая и неорганическая химия. M.: Высш. шк. 1988. 640с.
22. Харкац Ю.М. Об энергии реорганизации полярной среды во внутрисферных процессах со сложным перераспределением заряда. Электрохимия. 1979. Т. 15. № 3. С. 409 - 412.
23. Кузнецов А.М., Ульструп Е. Адиабатические и неадиабатические электронные переходы в мостиковых электрохимических туннельных контактах. Электрохимия. 1995. Т. 31. № 3. С. 244 - 249.
24. Костромина Н.А., Кумок Б.Н., Скорик Н.А. Химия координационных соединений. M.: Высш. шк. 1990. 432 с.
25. Fenton H., Tidmarsh I.S., Ward M.D. Homonuclear-andheteronuclear complexes of a four-armed octadentate lig-and: synthetic control based on matching ligand denticity with metal ion coordination preferences. Dalton Trans. 2009. V. 21. Р. 4199-4207. DOI: 10.1039/B901891C.
26. Березин Н.Б., Сагдеев К.А., Гудин Н.Б., Роев Б.Г., Ме-жевич Ж.Б. Электрохимическое востановление комплексов цинка из глицинатных растворов. Электрохимия. 2005. Т. 41. № 2. С. 228-231. DOI: 10.1007/s1117S-00S-0034-y.
12. Popel A.A. Magnetic relaxation method of analysis of inorganic substances.M.: Khimiya. 1978. 224 p. (in Russian).
13. Vashman I.A., Pronin IS. Nuclear magnetic relaxation and its application in chemical physics. М.: Nauka. 1979. 224 р. (in Russian).
14. Salnikov Yu.I., Glebov A.N., Devyatov F.V. Polynuclear complexes in solutions. Kazan: Izd-vo Kazan. Un-ta. 1989. 288 p. (in Russian).
15. Berezin N.B., Mezhevich Zh.V. Electrochemically alloyed zinc coatings using direct and pulsed current. Vest. Tekhnol. Univ. 2020. V. 23. N 9. P. 24-27 (in Russian).
16. Berezin N.B., Mezhevich Zh.V. Electrochemical Doping of Zinc Coatings with Chromium and Nickel Coatings with Phosphorus. Surf. Eng. Appl. Electrochem. 2018. V. 54. N 3. P. 247-254. DOI: 10.3103/S106837551803002X.
17. Berezin N.B., Berezina T.N., Mezhevich Zh.V. Charge carriers in electrolytes based on chromium (III) compounds. The system chrome (III) - water. Vest. Tekhnol. Univ. 2012. V. 15. N 19. P. 53-55 (in Russian).
18. Berezin N.B., Berezina T.N., Mezhevich Zh.V., Chevela V.V. Charge carriers in electrolytes for obtaining zinc coatings. The zinc (II) - glycine-water system. Vest. Tekhnol. Univ. 2013. V. 16. N 5. P. 267-268 (in Russian).
19. Berezin N.B., Berezina T.N., Sharifullina A.U., Chevela V.V. Charge carriers in electrolytes based on chromium (III) compounds. The chromium(III)-glycine-water system. Vest. Tekhnol. Univ. 2012. V. 16. N 19. P. 59-61 (in Russian).
20. Berezin N.B., Berezina T.N., MezhevichZh.V., Chevela V.V. Charge carriers in electrolytes for obtaining zinc coatings alloyed with chromium. Thezinc(II)-chromium(III)-glycine-watersystem. Vest. Tekhnol. Univ. 2013. V. 16. N 5. P. 262-264 (in Russian).
21. Akhmetov N.S. General and inorganic chemistry. М.: Vussh. shk. 1988. 640 p. (in Russian).
22. Harkats Yu.M. On the energy of reorganization of the polar medium in intra-atmospheric processes with complex charge redistribution. Elektrokhimiya. 1979. V. 15. N 3. P. 409 - 412 (in Russian).
23. Kuznetsov A.M., Ulstrup E. Adiabatic and non-adiabatic electronic transitions in bridge electrochemical tunnel contacts. El-ektrokhimiya. 1995. V. 31. N 3. P. 244 - 249 (in Russian).
24. Kostromina N.A., Kumok V.N., Skorik N.A. Chemistry of coordination compounds. М.: Vussh. shk. 1990. 432 p. (in Russian).
25. Fenton H., Tidmarsh I.S., Ward M.D. Homonuclear-andheteronuclear complexes of a four-armed octadentate lig-and: synthetic control based on matching ligand denticity with metal ion coordination preferences. Dalton Trans. 2009. V. 21. Р. 4199-4207. DOI: 10.1039/B901891C.
26. Berezin N.B., Sagdeev K.A., Gudin N.V., Roev V.G., Mezhevich Zh.V. Electrochemical reduction of zinc complexes from glycinate solutions. Elektrokhimiya. 2005. V. 41. N 2. P. 228-231 (in Russian). DOI: 10.1007/s11175-005-0034-y.
Поступила в редакцию 19.12.2022 Принята к опубликованию 28.02.2023
Received 19.12.2022 Accepted 28.02.2023