4. Трунин А. С. Петрова Д. Г. Визуально-политермический метод / Куйбышевский политехн. Инс-т.-Куйбышев. 1977.- 94 с.
5. Киргинцев А. Н., Трушникова Л. Н., Лаврентьева В. Г. Растворимость неорганических веществ в воде. Справочник. Изд-во «Химия», л. 1972.- С. 111-112.
6. Абдуллаева М. Т. Взаимодействие моноэтаноламина с уксусной кислотой. Узб. хим. журн. - № 3. 2008.- C. 50-54.
7. Фролов Ю. Г Курс коллоидной химии // Поверхностное явление и дисперсные системы.- М.: 1982.- C. 117-124.
8. Здановский А. Б., Галлургия: - Л.: Химия. 1972.- 572 с.
9. Горбачев С. В. Практикум по физической химии -М.: Высшая школа. 1974.- 310 с.
10. Эргашев Д. А., Аскарова М. К., Эшпулатова М. Б., Махаматова Г. Б., Омонбоева Г. Б. изучение взаимного влияния компонентов в системах, обосновывающих процесс получения жидкого удобрения // Евразийский союз ученых. 2019.- № . 9-1.- С. 33-37.
11. Эргашев Д. А., Аскарова М. К., Исабаев З., Эшпулатова М. Б., Махаматова Г. Б., Исабаев Д. З. Исследование систем, обосновывающих процесс получения жидкого удобрения комплексного действия // Евразийский Союз Ученых.- № . 5-1 (62). 2019.- С. 25-30.
12. Эргашев Д. А., Аскарова М. К., Эшпулатова М. Б., Исабаев З., Исабаев Д. З. Растворимость компонентов в системе Ca(NO3)2-HNO3 • NH2C2H4OH-H2O // Universum: технические науки.- № 7. - (52). 2018.- С. 61-68.
13. Эргашев Д. А., Тураев Т. Т., Мирзаолимов А. Н., Аминбоев А. F., Хамдамова Ш. Ш. Физико-химическое обоснование процесса получения нового дефолианта // Universum: технические науки.- № . 2 (59). 2019.
14. Эргашев Д. А., Адилов З. Х., Тожиев Р. Р., Хамдамова Ш. Ш. Получение хлоратсодержащих дефолиантов, обладающих инсектицидными свойствами олучение хлоратсодержащих дефолиантов, обладающих инсектицидными свойствами // Монография European Scientific Platform, - Фергана-Винница, 2021 г.
15. Изучение физико-химических свойств растворов в системе {[19, 37% Ca (Clü3) 2+ 15, 06% Мg (Clü3) 2 + 3, 72% CaCl2+ 2, 68% MgCl2+ 45, 17% H2O]+ 10, 0% Co (NH2) 2+ 4, 0% C2H5OH}-CH3COOH-• NH2C2H4OH // Universum: технические науки.2018.- № 4. - (49).- С. 2-2.
16. Эргашев Д. А., Эшпулатова М. Б., Тураев Т. Т., Хамракулов З. А., Аскарова М. К. Диаграмма растворимости системы Cа(CIO3)2-CH3COOH • NH2C2H4OH-H2ü при 25 °C // Universum: технические науки.— №4. - (49). 2018.- С. 1-1.
17. Эргашев Д. А., Хамдамова Ш. Ш., Мирзаолимов А. Н., Мухаммедов С. Б. Получение хлоридов кальция и магния из доломита месторождения «Навбахор» // Universum: технические науки.-№11-2. - (68). 2019.- С. 69-74.
18. Кодирова Д. Т., Мирсалимова С. Р., Умаралиева М. Ж., Абидова М. А., Нурматова З. Н. Изучение процесса получения азотно-фосфорных удобрений разложением кызылкумских фосфоритов азотной кислотой // Universum: технические науки.- № 3-2. - (72). 2020.- С. 57-59.
https://doi.org/10.29013/AJT-22-3.4-67-71
Butaev Khurshid,
researcher, Tashkent Chemical-Technological Institute
Ikramov Abduvakhob, doctor of sciences, professor, Tashkent Chemical-Technological Institute
Kadirov Khasan, doctor of sciences, professor, Tashkent Chemical-Technological Institute Baltabaev Ulugbek Narbaevich, associate professor, Tashkent Сhemical-Technological institute,
Tashkent, Republic of Uzbekistan,
COMPARATIVE CHARACTERISTICS OF OCTANE-ENHANCING ADDITIVES BASED ON O- AND N-CONTAINING RAW MATERIALS
Abstract. For the purpose of obtaining effective octane-increasing additives, the tart-product dissolved in spent hexane is separated in a vacuum distillation apparatus - by-products ofJV-LLC "Uz-Kor Gas Chemical". It was found that the obtained fraction with C - C, the basis of which is aromatic hydrocarbons, is the most important component of octane-boosting additives.
Keywords: octane-increasing additive, octane number, spent hexane, tar product.
Introduction Currently in developed countries to increase the
It is known that the bulk of the oil produced octane the number of gasoline instead of tetraethyl
in Uzbekistan is characterized by a high content lead, aliphatic alcohols are used - methanol, etha-
of asphaltenes and resinous compounds and a low nol, isopropanol; ethers - methyl tert-butyl ether
content of aromatic hydrocarbons and hydrocar- (MTBE), ethyl tert-butyl ether (ETBE), amyl tert-
bons of the isometric structure. Gasoline obtained butyl ether (ATBE), diisopropyl ether (DIPE) [2];
by direct distillation of a mixture of oil and gas con- aromatic amines - monomethylaniline (MMA), ash-
densate has an octane number of about 50 MON less highly effective additive - AHEA (70% MMA +
(motor octane number). In order to bring it to the + 30% methanol) [3]; metallocenes - ferrocene,
SS requirement, there are two ways: chemical pro- manganese organic compounds (Hitech-3000) [4],
cessing - reforming, platforming, destructive hy- ADA, Ferrada, etc. [5].
drogenation, etc., which requires huge capital costs. It was determined that methyl tert-butyl ether
The second method is the use of octane-enhancing (MTBE) has the best properties. In 1978, MTBE
additives and dopants. The capacities of the FR re- production facilities with a capacity of 100 thou-
formers do not allow the production of gasoline sand tons per year were put into operation in Italy
with an octane rating of Ai-80 and higher. There- [6-15]. The process is based on the use of methanol
fore, at present, the Fergana refinery uses tetraethyl and isobutylene contained in the C4 fraction from
lead to increase the octane number of low-octane the vapor-phase pyrolysis of hydrocarbons as raw
gasolines [1]. materials.
The purpose of this work is to compare the octane-increasing properties of new alcohols, ethers and esters, amines and amides. Results and their discussions In this regard, we have developed new octane-increasing additives based on aliphatic alcohols -methanol, ethanol, propyl alcohol, isobutyl alcohol, esters and ethers - methyl acetate, ethyl acetate, a mixture of acetates, methyl tert-butyl ether, amines -hexamethylenetetraamine, acetonitrile metals.
To increase the octane number of low-octane gasolines, oxygen-containing compounds - oxygenates - alcohols and ethers - are used instead of highly toxic tetraethyl lead. Esters are the most widely used: however, recently, due to the revealed cases of
Table 1.- Composition of
groundwater pollution, in some countries the use of MTBE in gasoline is limited.
Alcohol additives are used to gasolines less than ethers, but now interest in them has increased.
We have modified methanol with the addition of methyl acetate, acetone and urotropine in the following composition;% mass, methanol - 70%; methyl acetate - 10; acetone - 13; acetonitrile - 5.0; urotropine - 2.0 and was added to gasoline A-72 in the amount of 8%.
The antiknock properties ofA-72 containing 18% OPD-12 (octane -enhancing additive) are shown in (Table 1).
The antiknock resistance of the developed compositions was tested on the UIT-85 unit (Table 2).
tane-increasing additives
№ composition Состав,% 06.
Methanol Methylacetate Acetone Acetonitrile Urotropine
OID-12 70 10 13 5 2
OID-13 65 15 12 7 1
OID-14 60 20 15 5 -
OID-15 55 25 20 - -
OID-16 50 20 15 13 2
OID-17 45 25 15 10 -
OID-18 80 10 10 5 -
Table 2.- Anti-knock resistance of compositions
Composition Amount,% Octane number, ON Octane number increase
Without additives With additives
OID-12 5.0 50 58 8.0
OID-12 8.0 69 76 7.0
OID-13 5.0 69 72.0 3.0
OID-13 10.0 69 76.0 7.0
OID-14 5.0 50 59.0 9.0
OID-14 10.0 72 77.0 5.0
OID-15 5.0 72 75.0 3.0
OID-15 10.0 69 75.0 6.0
OID-16 5.0 50 57.0 7.0
OID-16 10.0 69 77.0 8.0
OID-17 5.0 50 60.0 10.0
OID-17 5.0 69 73.0 4.0
OID-17 10.0 72 81.0 9.0
The effect of various additives, including metha- the amount of 20% to the base gasoline A-76 leads
nol, on increasing the octane number of gasoline to an increase in its octane number up to 79.0 RPM.
was investigated in the FR laboratory. At the same And the addition of 50 mg/l hitech and 2% MMA
time, it was found that the addition of methanol in to 75.6, i.e. 3.6 units.
Table 3.- Physicochemical and operational properties of A-72 gasoline containing 8% OID-12
The name of indicators SS requirements 2084-72 to gazoline A-72 Gazoline А-72 with 8% OID-12
Detonation resistance motor octane number 76.0 83.0
Research Octane Number not normalized 89.0
Lead content 20 g/l 0.17 отс.
Fractional composition The start of gasoline distillation,°C, not less 35.0 35.0
10% not higher 55.0 44.0
50% not higher 100.0 92.0
90% not higher 160.0 145.0
The end of the boiling of gasoline, °C, not higher 185.0 170.0
Residue % 1.5 0.9
Loss% 4.0 3.0
Acidity, mg KOH per 100 sm3 of gasoline 3.0 2.8
Concentration of actual tar, mg per 100 sm3 of 10.0 6.5
gasoline
Induction period min. 900 890
Mass fraction of sulfur, % 0.1 0.02
Copper strip test withstands withstands
Water-soluble acids and alkalis missing missing
Saturated vapor pressure, mm, Hg 500-700 620
Mechanical impurities and water missing missing
Density at 20 °C kg/m3 not normalized 0.722
Cloud point, °C not normalized minus 45
In this regard, we have prepared various composi- sition is OID-12 when it is involved in base gasoline
tions based on methanol and tested their antiknock in an amount of 10% volume leads to an increase in
properties, some of them are shown in (Table 4). octane number by 6 units.
The anti-knock properties of the synthesized compositions showed that the most active compo-
Table 4.- Composition of oxygen and nitrogen-containing compositions (% vol.)
Composition symbol Methanol Ethanol Butanol Methyl acetate Ethyl acetate Urotropine
1 2 3 4 5 6 7
OID-19 70.0 10.0 8.0 8.0 2.0 2.0
0ID-20 72.0 8.0 10.0 6.0 4.0 —
OID-21 74.0 6.0 10.0 8.0 20.0 -
1 2 3 4 5 6 7
OID-22 70.0 - 20.0 8.0 - 2.0
OID-23 65.0 - 27.0 6.0 - 2.0
OID-24 75.0 - 17.0 6.0 2.0 -
OID-25 75.0 - 13.0 10 5.0 -
OID-26 60.0 5.0 - 20 15.0 -
The production of methanol and ethanol has been established in the republic well. In the production of ethanol by the biochemical method, a first running is formed, the so-called "ether-aldehyde fraction" (EAF), which contains up to 95% ethanol. On the basis of EAF,
acetic acid, and methanol, we synthesized methyl and ethyl acetate using a well-known method. The resulting methyl and ethyl acetate were tested as antiknock additives. The test was carried out in the laboratory of the FR. The test results are shown in (Table 5).
Table 5.- Results of tests of methyl - and ethyl acetate as octane-increasing additives (sample-1-methyl acetate: sample-2-ethyl acetate)
№ Catalyst base: straight petrol ON Additive concentration% vol. ON Octane number increase
1 50:50 71.4 8% sample № 1 72.0 0.6
2 50:50 71.4 10% sample № 1 72.8 1.4
3 50:50 71.4 10% sample № 2 73.4 2.0
4 50:50 71.4 10% sample № 2 75.6 4.2
5 40:60 71.8 8% sample № 2 72.1 0.3
6 40:60 71.8 10% sample № 2 72.0 0.2
As can be seen from these tables, ethyl acetate ditives in gasoline based on local raw materials. It
is the most effective. When introduced into base was found that a composition consisting of metha-
gasoline in an amount of up to 10% of the mass, the nol - 70%, methyl acetate - 10,0%, acetone - 13%,
octane number of gasoline increases upto 4.2 units. acetonitrile - 5,0%, urotropine - 2,0%, manganese
Conclusions: acetate 50 mg/l is the most effective for increasing
Thus, systematic research has been carried out to the octane number gasoline. Adding it in the amount
develop new highly active, environmentally friendly, of 5-8% by volume allows you to increase the octane
energy- and resource-saving octane-enhancing ad- number of gasoline up to 7 units.
References:
1. Kurbanov A. A., Ibragimov K. A., Dosumova E. Ya. and others. The problem of withdrawal of lead additives from the composition of gasolines of the Fergana refinery // Uzbek. Journal. Oil and gas.- No. 3. 2002.- 21 p.
2. Orekhova A. The use of additives and additives is the most economical way to improve the quality of gasoline // The Chemical Jornal,- No. 12. 2002.- P. 42-44.
3. Danilov A. P. The use of additives in fuels for cars.- M.: Chemistry, 2000.- 229 p.
4. Kapustin V. M. Oil and alternative fuels with additives and additives / V. M. Kapustin.- M.: Kolos, 2008.-332 p.
5. Rudyak K. B., Sotov S. V., Yasinenko V. A., Kankaeva I. N., Khaldin I. A. Efficiency of application and environmental properties of monomethylaniline in the production of high-octane gasolines. Oil refining and petrochemistry.- No. 6. 2013.- P. 56-59.