Научная статья на тему 'COMPARATIVE BIOINFORMATICS ANALYSIS OF ANTIMICROBIAL RESISTANCE GENE POOL IN THE GENOMES OF REPRESENTATIVES OF GENUS CORYNEBACTERIUM'

COMPARATIVE BIOINFORMATICS ANALYSIS OF ANTIMICROBIAL RESISTANCE GENE POOL IN THE GENOMES OF REPRESENTATIVES OF GENUS CORYNEBACTERIUM Текст научной статьи по специальности «Биологические науки»

CC BY
7
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
C. amycolatum / C. jeikeium / C. striatum / C. urealyticum / C. aurimucosum / genomes / antimicrobial resistance genes / gyrA / antimicrobial drugs / C. amycolatum / C. jeikeium / C. striatum / C. urealyticum / C. aurimucosum / геномы / гены антимикробной устойчивости / gyrA / антимикробные (противомикробные) препараты

Аннотация научной статьи по биологическим наукам, автор научной работы — Kulshan T.A., Bugaeva I.O., Soboleva E.F., Allyanova M.S., Popov D.A.

Currently, multidrug resistance of bacterial infectious agents poses a serious threat to the global public health. The following Corynebacterium strains are of special importance for infections, including hospital-acquired ones: C. amycolatum, C. urealyticum, C. striatum, C. jeikeium, C. aurimucosum, C. genitalium that are resistant to the broad spectrum of antimicrobial drugs. The study was aimed to conduct bioinformatics analysis of the pool of antimicrobial resistance genes in the published genomes of some members of the genus Corynebacterium. The data on the whole genome nucleotide sequences of 22 Corynebacterium isolates readily available from NCBI GenBank were assessed. Bioinformatics analysis of the whole genome sequences conducted in order to search for antimicrobial resistance genes in the specified genomes was performed using the PATRIC online resource. It was found that the genomes provided comprised various combinations of 25 antimicrobial drug resistance genes. Amino acid substitutions in GyrA (positions 87, 88 and 91) were revealed in some Corynebacterium strains, through which quinolone/fluoroquinolone resistance could be realized.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СРАВНИТЕЛЬНЫЙ БИОИНФОРМАТИЧЕСКИЙ АНАЛИЗ СОСТАВА ГЕНОВ АНТИМИКРОБНОЙ УСТОЙЧИВОСТИ В ГЕНОМАХ ПРЕДСТАВИТЕЛЕЙ РОДА CORYNEBACTERIUM

В настоящее время множественная антимикробная резистентность бактериальных инфекционных агентов представляет серьезную угрозу для мирового здравоохранения. Особое значение в развитии инфекций, в том числе госпитальных, играют следующие виды коринебактерий: C. amycolatum, C. urealyticum, C. striatum, C. jeikeium, C. aurimucosum, C. genitalium, которые устойчивы к большому арсеналу антимикробных препаратов. Целью исследования было проведение биоинформатического анализа спектра генов устойчивости к антимикробным препаратам в опубликованных геномах некоторых представителей рода Corynebacterium. Исследованы данные о нуклеотидных последовательностях полных геномов 22 штаммов коринебактерий, представленных в свободном доступе в NCBI GenBank. Биоинформатический анализ полногеномных последовательностей с целью поиска генов антимикробной устойчивости в указанных геномах осуществляли с помощью онлайн-ресурса PATRIC. Установлено, что представленные геномы в различных комбинациях содержали 25 генов устойчивости к антимикробным препаратам. У некоторых штаммов коринебактерий выявлены аминокислотные замены в GyrA (позиции 87, 88 и 91), с которыми может быть связана реализация устойчивости к хинолонам/фторхинолонам.

Текст научной работы на тему «COMPARATIVE BIOINFORMATICS ANALYSIS OF ANTIMICROBIAL RESISTANCE GENE POOL IN THE GENOMES OF REPRESENTATIVES OF GENUS CORYNEBACTERIUM»

COMPARATIVE BIOINFORMATICS ANALYSIS OF ANTIMICROBIAL RESISTANCE GENE POOL IN THE GENOMES OF REPRESENTATIVES OF GENUS CORYNEBACTERIUM

Kulshan ТА Bugaeva IO, Soboleva EF, Allyanova MS, Popov DA, Shvidenko IG Razumovsky Saratov State Medical University, Saratov, Russia

Currently, multidrug resistance of bacterial infectious agents poses a serious threat to the global public health. The following Corynebacterium strains are of special importance for infections, including hospital-acquired ones: C. amycolatum, C. urealyticum, C. striatum, C. jeikeium, C. aurimucosum, C. genitalium that are resistant to the broad spectrum of antimicrobial drugs. The study was aimed to conduct bioinformatics analysis of the pool of antimicrobial resistance genes in the published genomes of some members of the genus Corynebacterium. The data on the whole genome nucleotide sequences of 22 Corynebacterium isolates readily available from NCBI GenBank were assessed. Bioinformatics analysis of the whole genome sequences conducted in order to search for antimicrobial resistance genes in the specified genomes was performed using the PATRIC online resource. It was found that the genomes provided comprised various combinations of 25 antimicrobial drug resistance genes. Amino acid substitutions in GyrA (positions 87, 88 and 91) were revealed in some Corynebacterium strains, through which quinolone/fluoroquinolone resistance could be realized.

Keywords: C. amycolatum, C. jeikeium, C. striatum, C. urealyticum, C. aurimucosum, genomes, antimicrobial resistance genes, gyrA, antimicrobial drugs

Author contribution: Kulshan TA — study planning, literature review, dealing with molecular genetic data (selection of genomes, genome annotation, comparative analysis of gyrA amino acid sequences), data analysis, manuscript writing; Bugaeva IO — study planning, data analysis, interpretation of findings, manuscript writing; Soboleva EF — literature review, data analysis, manuscript writing; Allyanova MS — literature review, analysis of the antimicrobial resistance gene pool in the genomes of corynebacterial strains, dealing with the PATRIC online service; Popov DA — literature review, search for gyrA amino acid sequences in the genomes of corynebacterial strains, comparative analysis of amino acid sequences; Shvidenko IG — advising during manuscript writing, data analysis.

[X] Correspondence should be addressed: Tatiana A. Kulshan

B. Kazachiya, 112, Saratov, 410012, Russia; tatjana.kulshan@yandex.ru

Received: 20.10.2023 Accepted: 03.12.2023 Published online: 19.12.2023 DOI: 10.24075/brsmu.2023.047

СРАВНИТЕЛЬНЫЙ БИОИНФОРМАТИЧЕСКИЙ АНАЛИЗ СОСТАВА ГЕНОВ АНТИМИКРОБНОЙ УСТОЙЧИВОСТИ В ГЕНОМАХ ПРЕДСТАВИТЕЛЕЙ РОДА CORYNEBACTERIUM

Т. А. Кульшань И. О. Бугаева, Е. Ф. Соболева, М. С. Аллянова, Д. А. Попов, И. Г. Швиденко

Саратовский государственный медицинский университет имени В. И. Разумовского Министерства здравоохранения Российской Федерации, Саратов, Россия

В настоящее время множественная антимикробная резистентность бактериальных инфекционных агентов представляет серьезную угрозу для мирового здравоохранения. Особое значение в развитии инфекций, в том числе госпитальных, играют следующие виды коринебактерий: C. amycolatum, C. urealyticum,

C. striatum, C. jeikeium, C. aurimucosum, C. genitalium, которые устойчивы к большому арсеналу антимикробных препаратов. Целью исследования было проведение биоинформатического анализа спектра генов устойчивости к антимикробным препаратам в опубликованных геномах некоторых представителей рода Corynebacterium. Исследованы данные о нуклеотидных последовательностях полных геномов 22 штаммов коринебактерий, представленных в свободном доступе в NCBI GenBank. Биоинформатический анализ полногеномных последовательностей с целью поиска генов антимикробной устойчивости в указанных геномах осуществляли с помощью онлайн-ресурса PATRIC. Установлено, что представленные геномы в различных комбинациях содержали 25 генов устойчивости к антимикробным препаратам. У некоторых штаммов коринебактерий выявлены аминокислотные замены в GyrA (позиции 87, 88 и 91), с которыми может быть связана реализация устойчивости к хинолонам/фторхинолонам.

Ключевые слова: C. amycolatum, C. jeikeium, C. striatum, C. urealyticum, C. aurimucosum, геномы, гены антимикробной устойчивости, gyrA, антимикробные (противомикробные) препараты

Вклад авторов: Т. А. Кульшань — планирование исследования, анализ литературы, работа с молекулярно-генетическими данными (подбор геномов, аннотация генома, сравнительный анализ аминокислотной последовательности гена gyrA), аналитическая работа с полученными данными, написание публикации; И. О. Бугаева — планирование исследования, аналитическая работа с полученными данными, интерпретирование результатов, участие в написании публикации; Е. Ф. Соболева — анализ литературы, аналитическая работа с полученными данными, написание публикации; М. С. Аллянова — анализ литературы, анализ состава генов антимикробной устойчивости в геномах штаммов коринебактерий, работа с онлайн-сервисом PATRIC; Д. А. Попов — анализ литературы, поиск аминокислотных последовательностей гена gyrA в геномах коринебактерий, сравнительный анализ аминокислотных последовательностей; И. Г. Швиденко — консультирование в ходе написания статьи, аналитическая работа с полученными данными.

Для корреспонденции: Татьяна Алексеевна Кульшань

ул. Б. Казачья, д. 112, г. Саратов, 410012, Россия; tatjana.kulshan@yandex.ru

Статья получена: 20.10.2023 Статья принята к печати: 03.12.2023 Опубликована онлайн: 19.12.2023 DOI: 10.24075/vrgmu.2023.047

Today, antimicrobial multidrug resistance of bacterial infectious agents poses a serious threat to global public health. Irrational use of antimicrobials for treatment of humans, in the livestock sector and agriculture is a determinant of widespread resistance to drugs among bacteria [1-3].

Selective pressure of antimicrobials on the bacterial population contributes to realization of various resistance mechanisms emerging due to acquisition of genetic determinants of resistance or spontaneous mutations

[1, 4-6]. Assessment of evolutionary transformation of bacterial genomes associated with antibiotic resistance contributes to optimization of treatment strategies and preventive measures.

Currently, the greater role played by normal flora members, specifically by members of the genus Corynebacterium, in infectious diseases can be associated with the spread of genes responsible for antimicrobial resistance across bacterial genomes. The increasingly frequent isolation of Corynebacterium

Table 1. Corynebacterium non diphtheriae strains, the whole genome nucleotide sequences of which are used In the study

№ Strain Year, place, isolation source GenBank ID:

1 Corynebacterium amycolatum BER245 2011, Brazil, human (biomaterial collected from the ear) CP102778.1

2 Corynebacterium amycolatum ICIS 53 2016, Russia, human (vaginal discharge) MIFV00000000

3 Corynebacterium amycolatum VH6958 2016, Spain, human JAFJMB000000000.1

4 Corynebacterium amycolatum ICIS 9 2017, Russia, human (vaginal discharge) MTPT00000000.1

5 Corynebacterium amycolatum SB-1 2019, South Korea, human (skin) CP120206.1

6 Corynebacterium amycolatum ICIS 99 2020, Russia, human (vaginal discharge) JAIUSU000000000

7 Corynebacterium amycolatum 1189 n/a, Germany, n/a CP069513.1

8 Corynebacterium urealyticum DSM 7109 1985, Germany, human (urine) AM942444

9 Corynebacterium urealyticum VH3073 2017, Spain, human (urine) VTFJ00000000

10 Corynebacterium urealyticum 996 n/a, Germany, n/a CP065982.1

11 Corynebacterium urealyticum 994 n/a, Germany, n/a CP066064.1

12 Corynebacterium striatum 2308 2011, Brazil, human (blood) NRI000000000.1

13 Corynebacterium striatum 708C 2021, UK (synovial fluid) JASNMG000000000

14 Corynebacterium striatum 824M 2022, UK, blood JASNMH000000000

15 Corynebacterium striatum 1197 n/a, Germany, n/a CP069514.1

16 Corynebacterium striatum 1115 n/a, Germany, n/a CP068158.1

17 Corynebacterium striatum ATCC 6940 n/a, human (urogenital tract) ACGE00000000

18 Corynebacterium jeikeium K411 2004, Germany, human (axilla region) CR931997.1

19 Corynebacterium jeikeium 574 2016, USA, human CP033784.1

20 Corynebacterium jeikeium ATCC 43734 n/a, human (urogenital tract) ACYW00000000

21 Corynebacterium aurimucosum UMB7769 2013, USA, human (urine) JAS0LN000000000

22 Corynebacterium genitalium ATCC 33030 n/a, USA, human (urogenital tract) ACLJ00000000

as pathogens, especially in immunocompromised individuals, is indicative of the greater role in the development of infectious complications in patients played by Corynebacterium [2].

The following Corynebacterium species are of special importance for development of infections: C. amycolatum (skin and soft tissue infections, bacteremia, endocarditis, genital infections), C. urealyticum (acute and chronic urinary tract infections, urolithiasis), C. striatum (true bacteremia, bacterial colonization of prostheses, catheters, breathing tubes, etc.), C. jeikeium (bacteremia, endocarditis, pneumonia, skin and soft tissue infections), C. aurimucosum (acute and chronic joint infections, diabetic foot ulcer infection), C. genitalium (urinary tract infections) [2, 3, 5, 7-14]. Multidrug resistance of some Corynebacterium species to p-lactams, macrolides, aminoglycosides, quinolones, tetracyclines and rifampicins, lincosamides, etc., should be noted [1, 4, 12-14].

However, the data on the Corynebacterium drug resistance are contradictory, that is why our study was aimed to conduct bioinformatics analysis of the pool of antimicrobial resistance genes in the published genomes of some representatives of the genus Corynebacterium.

METHODS

The study involved data on the whole genome nucleotide sequences of 22 strains of six Corynebacterium species (C. amycolatum, C. urealyticum, C. striatum, C. jeikeium, C. aurimucosum, C. genitalium) readily available from NCBI GenBank, isolated in different countries over the years (Table 1).

Bioinformatics analysis of whole genome sequences aimed at the search for antibiotic resistance genes in the specified genomes was performed using PATRIC (Pathosystems Resource Integration Center), Comprehensive Antibiotic Resistance Database (CARD), and Database of Antibiotic-Resistant Organisms (NDARO) [15].

Amino acid sequences of gyrA gene were acquired from Genbank. The UGENE (Unipro UGENE) 48.1 software package was used for analysis of gyrA amino acid sequences [16]. Amino acid sequence alignment was performed using the MUSCLE tool integrated into UGENE.

RESULTS

Bioinformatics analysis showed that the genomes provided comprised various combinations of antimicrobial resistance genes. A total of 25 different genes encoding resistance to drugs exhibiting antimicrobial activity were determined (Table 2).

It should be noted that the following genes were significantly less often found in the genomes of studied isolates (Table 3):

1) tetO (tetW) (encodes resistance to tetracyclines) — was not found in genomes of 19 strains (86.4%);

2) aph (3')-I, aph (6)-Ic (encode resistance to aminoglycosides) — were not found in genomes of 14 strains (63.6%);

3) ermX (encodes resistance to macrolides, lincosamides, streptogramins) — was not found in genomes of 13 strains (59%);

4) lsu (rplF) (encodes resistance to fusidic acid) — was not found in genomes of 12 strains (54.5%);

5) cmx (encodes resistance to chloramphenicol) — was not found in genomes of eight strains (36,4,3%);

6) ispC (dxr) (encodes resistance to fosfomycin) — was not found in genomes of seven strains (32%);

7) gibB (encodes resistance to aminoglycosides), oxyR (encodes resistance to u30Hua3ugy), fabG (encodes resistance to triclosan) — were not found in genome of one strain (4,5%) (Corynebacterium striatum 824M, Corynebacterium striatum 1197, Corynebacterium striatum 708C, respectively).

However, resistance to aminoglycosides, fusidic acid, fosfomycins was encoded by several genes. In this regard, the

Table 2. List of antimicrobial resistance genes found in the genomes of the studied Corynebacterium non diphtheriae strains using the PATRIC online resource

Antimicrobial drugs Genes encoding antimicrobial resistance

Lipopeptides pgsA, gdpD (ugpQ, glpQ)

Macrolides, penicillins mtrA, mtrB

Macrolides, lincosamides, streptogramins ermX

Diaminopyrimidines folA (dfr)

Tetracyclines, glycylcyclines s10p (rpsJ)

Tetracyclines tetO (tetW)

Sulfonamides folP

Aminoglycosides s12p (rpsL, rpsJ), gibB, aph(3)-I, aph(6)-Ic

Fusidic acid ef-G (fusA), lsu (rplF)

Cycloserine alr, dlr

Isoniazid oxyR

Fosfomycins murA, ispC (dxr)

Chloramphenicol cmx

Muropirocin lleS

Triclosan fabG

Bicyclomycin rho

Elfamycins ef-Tu(tufA)

lack of one gene in the genome can not indicate the isolate sensitivity to these antimicrobial substances.

All other genes provided in Table 2 were found in 100% of genomes of 22 Corynebacterium strains.

C. striatum 2308 was the strain containing 24 identified antimicrobial resistance genes out of 25. Only the tetO (tetW) gene was not found in its genome. According to the literature, this strain was isolated in 2011 from the blood culture of a man, who was treated at the hospital in Rio de Janeiro. Based on phenotypic characteristics, it showed sensitivity to tetracycline (MIC 1 mg/L), linezolid (MIC 0.25 mg/L) and vancomycin (MIC 0.5 mg/L) only [12]. The data of bioinformatics analysis we have obtained confirm the phenotypic study results [12]: no tetO (tetW) gene (tetracycline resistance), no genes encoding resistance to oxazolidones (linezolid) and glycopeptides (vancomycin). It is worth noting that no linezolid and vancomycin resistance genes were found in any of the studied strains. However, the authors point out that this strain showed phenotypic resistance to erythromycin (MIC > 256 mg/L) and clindamycin (MIC > 256 mg/L), as well as to gentamicin (aminoglycoside) (MIC 256 mg/L) [12]. Such phenotypic effects may result from the presence of genes ermX and aph (3')-I, aph (6)-Ic.

Corynebacterium amycolatum ICIS 9 extracted from vagina of a healthy woman in 2017 in Russia turned out to be one more strain with the genome showing the lack of gene ispC (dxr) (fosfomycin resistance) only. However, fosfomycin resistance is also encoded by the murA gene, which was found in the genome. The authors of the paper considered Corynebacterium amycolatum ICIS 9 as a potential probiotic agent for treatment of vaginal dysbiosis [9-11]. The Corynebacterium amycolatum ICIS 9 phenotypic resistance to antimicrobials (amikacin, gentamicin (aminoglycosides), amoxicillin (^-lactams), clarithromycin (macrolide), chloramphenicol, ciprofloxacin (fluoroquinolone) and tetracycline) was determined [9-11]. Indeed, our bioinformatics study showed that the genome of this isolate comprised genes encoding resistance to penicillins, aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, and tetracyclines (Table 2).

As for strains, the genomes of which lack a significant number of antimicrobial resistance genes (6-10 genes), these included the following: C. amycolatum ICIS 99, C. amycolatum

ICIS 53, C. amycolatum SB-1, C. amycolatum 1189, C. striatum 824M, C. striatum 708 (Table 3).

The C. striatum 708 strain extracted from synovial fluid of a patient in the UK (BioSample: SAMN34403526) comprised the lowest number of antimicrobial resistance genes (19 genes).

Currently, many causes of antimicrobial resistance of microorganisms are distinguished. This phenomenon results not only from the presence of genetic determinants associated with antimicrobial resistance, but also with various mutations in these genes. It has been found that mutations in the short regions of genes gyrA and gyrB (quinolone resistance-determining regions (QRDR)) encoding A and B subunits of DNA gyrase result in quinolone/fluoroquinolone resistance [9].

In Corynebacterium, quinolone/fluoroquinolone resistance results from spontaneous mutations in the gene encoding gyrase A subunit [12, 13]. It has been found that mutations associated with amino acid changes in positions 87, 88 and 91 increase the minimum inhibitory concentrations (MICs) of quinolones/fluoroquinolones. Thus, amino acid substitutions in position 87, Ser (s) to Arg (R), Phe (F), Val (V), in position 88, Ala (A) to Pro (P), in position 91, Asp (D) to Tyr (Y), Gly (G), Ala (A), increased the ciprofloxacin, levofloxacin and moxifloxacin MICs [12, 13]. In this regard we considered it necessary to conduct a molecular genetic analysis of the gene amino acid sequence in 22 studied strains. GyrA of Corynebacterium glutamicum ATCC 13032 (GenBank ID: NP599264) was used as a reference when performing comparative analysis and determining the amino acid position number [13].

According to the literature data, the C. striatum ATCC 6940, C. jeikeium ATCC 43734 and C. urealyticum DSM 7109 isolates showed quinolone/fluoroquinolone resistance [13]. The gyrA amino acid sequences of these strains were used as controls.

The analysis showed that in the C. striatum ATCC 6940, C. jeikeium ATCC 43734, C. amycolatum 1189, C. aurimucosum UMB7769, C. striatum 1115, C. urealyticum 994, C. urealyticum 996, C. urealyticum DSM 7109, C. jeikeium K411, C. amycolatum SB-1, C. genitalium ATCC 33030 strains, position 87 was occupied by Ser (S), while position 91 was occupied by Asp (D). According to the literature, such gene structure ensured the strains' sensitivity to quinolones/ fluoroquinolones, despite the presence of resistance genes [12, 13].

Table 3. List of antimicrobial resistance genes not found found in the genomes of the studied Corynebacterium non diphtheriae strains

№ Strain Antimicrobial resistance genes not found in the genome

1 Corynebacterium amycolatum BER245 ermX, tetO (tetW),ispC (dxr)

2 Corynebacterium amycolatum ICIS 53 ermX, tetO (tetW), aph(3)-I, aph(6)-I, lsu (rplF), ispC (dxr), cmx

3 Corynebacterium amycolatum VH6958 tetO (tetW), lsu (rplF), ispC (dxr)

4 Corynebacterium amycolatum ICIS 9 ispC (dxr)

5 Corynebacterium amycolatum SB-1 ermX, tetO (tetW), aph(3)-I, aph(6)-I, lsu (rplF), ispC (dxr), cmx

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

6 Corynebacterium amycolatum ICIS 99 ermX, tetO (tetW), aph(3)-I, aph(6)-I, lsu (rplF), ispC (dxr)

7 Corynebacterium amycolatum 1189 ermX, tetO (tetW), aph(3)-I, aph(6)-I, lsu (rplF), ispC (dxr), cmx

8 Corynebacterium urealyticum DSM 7109 ermX, tetO (tetW), aph(3)-I, aph(6)-I

9 Corynebacterium urealyticum VH3073 tetO (tetW), lsu (rplF)

10 Corynebacterium urealyticum 996 ermX, tetO (tetW), lsu (rplF)

11 Corynebacterium urealyticum 994 tetO (tetW), lsu (rplF)

12 Corynebacterium striatum 2308 tetO (tetW)

13 Corynebacterium striatum 708C mtrA, mtrB, ermX, tetO (tetW), gibB,aph(3)-I, aph(6)-I, lsu (rplF), fabG, cmx

14 Corynebacterium striatum 824M ermX, tetO (tetW),aph(3)-I, aph(6)-I, lsu (rplF), gibB

15 Corynebacterium striatum 1197 oxyR

16 Corynebacterium striatum 1115 tetO (tetW), aph(3)-I, aph(6)-I, lsu (rplF),cmx

17 Corynebacterium striatum ATCC 6940 ermX, tetO (tetW),aph(3)-I, aph(6)-I

18 Corynebacterium jeikeium K411 ermX, tetO (tetW), aph(3)-I, aph(6)-I

19 Corynebacterium jeikeium 574 tetO (tetW), aph(3)-I, aph(6)-I, lsu (rplF),cmx

20 Corynebacterium jeikeium ATCC 43734 ermX, tetO (tetW), aph(3)-I, aph(6)-I

21 Corynebacterium aurimucosum UMB776 aph(3)-I, aph(6)-I, lsu (rplF), cmx

22 Corynebacterium genitalium ATCC 33030 ermX, tetO (tetW), aph(3)-I, aph(6)-I, cmx

Ser (S) replaced with Arg (R) in position 87 was reported in C. amycolatum ICIS 53, C. amycolatum ICIS 99. As for C. amycolatum VH6958 strain, Ala (A) replaced with Pro (P) in position 88 was reported in addition to Ser (S) replaced with Arg (R) in position 87. It is worth paying attention to the C. amycolatum BER245 strain, for which Asp (D) replaced with Tyr (Y) in position 91 was reported along with Ser (S) replaced with Arg (R) in position 87. Such mutations dramatically increased the MICs of quinolones/fluoroquinolones [12, 13].

C. urealyticum VH3073 had two unique substitutions: 87 — Ser (S)/ Val (V) and 91 — Asp (D)/ Tyr (Y). C. striatum 2308, C. striatum 708C, C. striatum 824M had only one amino acid substitution: 87 — Ser (S)/ Val (V). Moreover, strains carrying unique substitutions were identified: 87 — Ser (S)/ Ile (I), 91 — Asp (D)/ Ala (A) — C. amycolatum ICIS 9; 87 — Ser (S)/ Ile (I), 91 — Asp (D)/ Gly (G) — C. jeikeium 574; 87 — Ser (S)/ Phe (F), 91 — Asp (D)/ Gly (G) — C. striatum 1197 (Fig. ). The evolutionary significance of these substitutions is to be determined in further studies.

Thus, 11 isolates have position 87 occupied by Ser (S), in 4 strains it is occupied by Val (V), in 4 strains by Arg (R), in 2 strains by Ile (I), in one strain by Phe (F). A total of 21 strains have position 88 occupied by Ala (A), while in one isolate it is occupied by Pro (P). A total of 17 isolates have position 91 occupied by Asp (D), in 2 strains it is occupied by Tyr (Y), in 2 strains by Gly (G), in 1 strain by Ala (A).

To summarize, it is worth noting that double mutations in gyrA described in the literature as mutations causing a dramatic increase in MICs of quinolones/fluoroquinolones were found in: C. amycolatum VH6958 isolated in 2016 in Spain (BioSample: SAMN18038700) — Ser (S) replaced with (R) in position 87, Ala (A) replaced with Pro (P) in position 88; C. amycolatum BER245 isolated in 2011 in Brazil from the patient with otitis — Ser (S) replaced with Arg (R) in position 87, Asp (D) replaced with Tyr (Y) in position 91; C. urealyticum VH3073 isolated in 2017 in

Spain from the patient's urine (BioSample: SAMN12621417) — Ser (S)/ Val (V) substitution in position 87, Asp (D)/ Tyr (Y) in position 91.

One mutation was found in two strains (C. amycolatum ICIS 53, C. amycolatum ICIS 99): Ser (S) replaced with Arg (R).

DISCUSSION

The spread of antimicrobial drug resistance genes by horizontal transfer causes the increase in the number of resistant microorganisms, including opportunistic pathogens. It is worth noting that Corynebacterium strains, such as C. amycolatum ICIS 53, C. amycolatum ICIS 9, C. amycolatum ICIS 99 isolates extracted from vaginal discharge of healthy women we have studied, had a large enough pool of antimicrobial resistance genes [9, 11]. In this regard, it is necessary to continuously monitor antimicrobial resistance of bacteria in order to develop effective measures against their growing resistance to antimicrobial drugs. The databases containing information about antibiotic resistance of bacteria will make it possible to compare the results obtained using different methods and estimate the abundance of antimicrobial resistance genes.

Our findings allowed us to single out a core set of antimicrobial resistance genes comprised in the Corynebacterium genomes. These data can be used as potential estimates of the use of antimicrobials for treatment of patients. However, molecular genetic testing should be combined with other methods based on phenotypic assessment of sensitivity to drugs, since the data on phenotypic and genotypic resistance are not always correlated.

Antimicrobial resistance can be associated with various mutations. In particular, quinolone/fluoroquinolone resistance is realized mainly through acquisition of point mutations in the sequence of gyrA gene encoding DNA gyrase A subunit, while overexpressed efflux pump can also contribute to acquisition

Consensus sequence:

s a i Y d T 1 V R m A Q p W

ß7 la 90 51 92 96 9S I 100

C.glu tamicumA TCC_13032 Bb. — T I Y D T L V R M A Q p w

C.striatum_A TCC_6940 36 ¡S I Y D T L V R L A Q s w

C.jeikeium_A TCC_43734 86, ¡s ] Y D T L V R L A Q p w

C. a mycola tum_FDAA RGOS_ 1189 86. IS 1 Y D T M V R M A Q p w

C.aurimucosum_UMB7769 86, is A ] Y D T L V R L A Q p w

C.stria tum_FDAA RGOS_ 1115 86. is IS I Y D T L V R L A Q s w

C.urealyticum_ FDAA RGOS_994 86, ] Y D T L V R M A Q p w

C.urealyticum_ FDAA RGOS_ 996 86, is A 1 Y D T L V R M A Q p w

C.jeikeium_ K411 86, s A ] Y D T L V R L A Q p w

C.urealyticum_ DSM_ 7109 86, IS A I Y D T L V R M A Q p w

C.amycolatum_SB-l 86, is A ] Y D T M V R M A Q p w

C.genitalium_ATCC_33030 86 s A 1 Y D T L V R L A Q p w

C. amy cola tum_ICIS_53 86- 1 Fl A ] Y D T M V R M A Q p w

C. amycola tum_ICIS_ 99 86. R I Y D T M V R M A Q p w

C. a i jjy cola t ui n_ VH695S 86, R P J ^ V Y D T M V R M A Q p w

C. a mycola tum_ BER245 86, 1 Fl I Y Y T M V R M A Q p w

C. urealyticum_ VH3073 86, !v ] Y Y T L V R M A Q p w

C. stria tum_2308 86. !v I Y D T L V R L A Q s w

C. stria tum_708C 86, IV A ] Y D T L V R L A Q s w

C.striatum_824M Ü6, ¡V ■A 1 Y D T L V R L A Q s w

C. amy cola tum_ICIS_ 9 86, ¡1 A I Y A T M V R M A Q p w

C.jeikeium_ FDAA RGOS_ 574 86. II A I Y G T M V R M A Q p w

C. stria turn FDAA RGOS_ 1197 86, k A I Y G T L V R L A Q S w

Fig. The gyrA amino acid sequence of Corynebacterium non diphtheriae isolates taken as examples. Positions of point mutations found in the gyrA amino acid sequence, which, according to the literature, affect the increase in the quinolone/fluoroquinolone minimum inhibitory concentrations (MICs), are marked with frames

of quinolone resistance [12, 13]. In C. amycolatum, alteration in the GyrA position 87 ensured resistance to all the tested quinolones/fluoroquinolones [12, 13]. Such substitutions were also observed in the genomes of C. amycolatum strains we had assessed. Furthermore, some Corynebacterium strains carried several mutations in the gyrA amino acid sequence, which increased the MICs of quinolones/fluoroquinolones [12, 13]. Investigation of genetic variability through mutation is important for the study of evolutionary transformation of bacterial genomes and can be used to develop rapid molecular diagnostic tests.

CONCLUSIONS

A growing etiological significance of Corynebacterium for infectious diseases, especially as hospital-acquired pathogens among immunocompromized patients having a history of the long-term hospital stay, several courses of antibiotic therapy and treatment with the use of invasive medical devices, determines the need to constantly monitor pathogens. Antimicrobial resistance of bacteria is a major concern: 1) it was found

that there was a large pool of antimicrobial resistance genes (25 genes) forming various combinations in the Corynebacterium genomes. The presence of gene was correlated to the isolate capability of being resistant to antimicrobial drugs. This represented an important evolutionary effect of the impact of antibiotics on the population structure of microorganisms. It should be noted that antimicrobial resistance is most often encoded by several genes. Variability of antimicrobial resistance determinants emphasizes the need for continuous monitoring of the Corynebacterium resistance profiles; 2) mutations were detected in the gyrA amino acid sequences of the studied strains (positions 87, 88, 91), which were considered to be associated with quinolone/fluoroquinolone resistance.

The goal of the study was achieved. The limited data on Corynebacterium, including molecular genetic data, hamper comparative analysis. Expansion of the range of strains, including ones represented in various databases, will contribute to better understanding of the genome structure, phenotypic characteristics, while identification of the range of antimicrobial resistance genes will expand the knowledge about the directions of antibiotic therapy.

References

1. Kharseeva GG, Voronina NA, Gasretova TD, Tyukavkina SYu, Sylka OI, Mironov AYu. The sensitivity to antibiotics of Corynebacterium 9. non diphtheriae isolated in hospitals of Rostov-on-don and the Rostovskaya oblast. Russian Clinical Laboratory Diagnostics. 2017; 62 (8): б02-6. Russian.

2. Fernandez LV, Fortuny AS, Rodriguez EF. Corynebacterium pyruviciproducens and Corynebacterium amycolatum mastitis in 10. immunocompetent no breastfeeding women. Revista Argentina

de Microbiologia. 2021; б3 (11): 39-42.

3. Jesus HNR, Rocha DJPG, Ramos RTJ, Silva A, Brenig B, Góes-Neto A, at al. Pan-genomic analysis of Corynebacterium 11. amycolatum gives insights into molecular mechanisms underpinning the transition to a pathogenic phenotype. Front Microbiol. 2022; 13: 1-11.

4. Kharseeva GG, Voronina NA, Mironov AYu, Kharysova AR. The 12. antibiotics sensitivity of strains of corinebacterium non diphtheriae circulating in Rostov-on-don and Rostov oblast. Russian Clinical Laboratory Diagnostics. 2012; 10: 62-4. Russian.

5. Alibi S, Ferjani A, Boukadida J, Cano ME, Fernández-Martínez M, Martínez-Martínez L, at al. Occurrence of Corynebacterium 13. striatum as an emerging antibiotic-resistant nosocomial pathogen

in a Tunisian hospital. Sci Rep. 2017; 7: 1-8. PubMed PMID: 28848236.

в. Kharseeva GG, Mangutov EO, But OM, Chepusova AV, Alutina EL.

Analysis of the frequency of allocation of Corynebacteria non- 14. diphtheria from patients with inflammatory diseases of the respiratory tract. Russian Clinical Laboratory Diagnostics. 2019; 64 (7): 430-34. Russian.

7. Sahu V, Pathak MM, Das P, Ravi A. Corynebacterium jeikeium as an unusual cause of keratitis: a case report from a tertiary care hospital in Chhattisgarh, India. Cureus. 2021; 13 (12): 1-11. 15.

8. Salem N, Salem L, Saber S, Ismail G, Bluth MH. Corynebacterium urealyticum: a comprehensive review of an understated organism. 1в.

Литература

1. Харсеева Г. Г., Воронина Н. А., Гасретова Т. Д., Тюкавкина С. Ю., Сылка О. И., Миронов А. Ю. Чувствительность к антибиотикам 9. штаммов Corynebacterium non diphtheriae, выделенных

в стационарах Ростова-на-Дону и Ростовской области. Клиническая лабораторная диагностика. 2017; 62 (8): 502-6.

2. Fernandez LV, Fortuny AS, Rodriguez EF. Corynebacterium pyruviciproducens and Corynebacterium amycolatum mastitis in 10. immunocompetent no breastfeeding women. Revista Argentina

de Microbiologia. 2021; 53 (11): 39-42.

3. Jesus HNR, Rocha DJPG, Ramos RTJ, Silva A, Brenig B, Góes-Neto A, at al. Pan-genomic analysis of Corynebacterium 11. amycolatum gives insights into molecular mechanisms underpinning the transition to a pathogenic phenotype. Front Microbiol. 2022; 13: 1-11.

4. Харсеева Г. Г., Воронина Н. А., Миронов А. Ю., Харисова А. Р. 12. Антибиотикочувствительность штаммов Corynebacterium non diphtheriae, циркулирующих в Ростове-на Дону и Ростовской области. Клиническая лабораторная диагностика. 2012; 10: 62-4.

5. Alibi S, Ferjani A, Boukadida J, Cano ME, Fernández-Martínez M, Martínez-Martínez L, at al. Occurrence of Corynebacterium 13. striatum as an emerging antibiotic-resistant nosocomial pathogen

in a Tunisian hospital. Sci Rep. 2017; 7: 1-8. PubMed PMID: 28848236.

6. Харсеева Г. Г., Мангутов Э. О. Бут О. М., Чепусова А. В., Алутина Э. Л. Анализ частоты выделения недифтерийных 14. коринебактерий от больных с воспалительными заболеваниями респираторного тракта. Клиническая лабораторная диагностика. 2019; 64 (7): 430-34.

7. Sahu V, Pathak MM, Das P, Ravi A. Corynebacterium jeikeium as an unusual cause of keratitis: a case report from a tertiary care hospital in Chhattisgarh, India. Cureus. 2021; 13 (12): 1-11. 15.

8. Salem N, Salem L, Saber S, Ismail G, Bluth MH. Corynebacterium urealyticum: a comprehensive review of an understated organism. 16.

Infection and Drug Resistance. 201б; 8: 129-4б. Gladysheva IV, Chertkov KL, Cherkasov SV, Khlopko YA, Kataev VY, Valyshev AV. Probiotic potential, safety properties, and antifungal activities of Corynebacterium amycolatum ICIS 9 and Corynebacterium amycolatum ICIS б3 strains. Probiotics Antimicrob Proteins. 2023; 1б (3): б88-600. PubMed PMID: 34807410. Gladysheva IV, Cherkasov SV, Khlopko YA, Plotnikov AO. Genome characterization and probiotic potential of Corynebacterium amycolatum human vaginal isolates. Microorganisms. 2022; 10 (2): 1-17. PubMed PMID: 3б208706.

Gladysheva IV, Khlopko YA, Cherkasov SV. Draft genome sequence of the vaginal isolate Corynebacterium amycolatum ICIS 9. Genome Announc. 2017; б (37): 1-2. PubMed PMID: 2891232б.

Ramos JN, Rodrigues IDS, Baio Pa VP, Veras JFC, Ramos RTJ, Pacheco LG, et al. Genome sequence of a multidrug-resistant Corynebacterium striatum isolated from bloodstream infection from a nosocomial outbreak in Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz. 2018; 113 (9): 1-б.

Sierra JM, Martinez-Martinez L, Vázquez F, Giralt E, Vila J. Relationship between mutations in the gyrA gene and quinolone resistance in clinical isolates of Corynebacterium striatum and Corynebacterium amycolatum. Antimicrob Agents Chemother. 200б; 49 (б): 1714-19. PubMed PMID: 15855486. Silva-Santana G, Silva CMF, Olivella JGB, Silva IF, Fernandes LMO, Sued-Karam BR. Worldwide survey of Corynebacterium striatum increasingly associated with human invasive infections, nosocomial outbreak, and antimicrobial multidrug-resistance, 1976-2020. Arch Microbiol. 2021; 203 (б): 1863-80. PubMed PMID: 3362бб40.

PATRIC (Pathosystems Resource Integration Center). Available from: https://www.patricbrc.org.

UGENE (Unipro UGENE) 48.1. Available from: https://ugene.net/ru/.

Infection and Drug Resistance. 201б; 8: 129-4б. Gladysheva IV, Chertkov KL, Cherkasov SV, Khlopko YA, Kataev VY, Valyshev AV. Probiotic potential, safety properties, and antifungal activities of Corynebacterium amycolatum ICIS 9 and Corynebacterium amycolatum ICIS б3 strains. Probiotics Antimicrob Proteins. 2023; 1б (3): б88-600. PubMed PMID: 34807410. Gladysheva IV, Cherkasov SV, Khlopko YA, Plotnikov AO. Genome characterization and probiotic potential of Corynebacterium amycolatum human vaginal isolates. Microorganisms. 2022; 10 (2): 1-17. PubMed PMID: 3б208706.

Gladysheva IV, Khlopko YA, Cherkasov SV. Draft genome sequence of the vaginal isolate Corynebacterium amycolatum ICIS 9. Genome Announc. 2017; б (37): 1-2. PubMed PMID: 2891232б.

Ramos JN, Rodrigues IDS, Baio Pa VP, Veras JFC, Ramos RTJ, Pacheco LG, et al. Genome sequence of a multidrug-resistant Corynebacterium striatum isolated from bloodstream infection from a nosocomial outbreak in Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz. 2018; 113 (9): 1-б.

Sierra JM, Martinez-Martinez L, Vázquez F, Giralt E, Vila J. Relationship between mutations in the gyrA gene and quinolone resistance in clinical isolates of Corynebacterium striatum and Corynebacterium amycolatum. Antimicrob Agents Chemother. 200б; 49 (б): 1714-19. PubMed PMID: 15855486. Silva-Santana G, Silva CMF, Olivella JGB, Silva IF, Fernandes LMO, Sued-Karam BR. Worldwide survey of Corynebacterium striatum increasingly associated with human invasive infections, nosocomial outbreak, and antimicrobial multidrug-resistance, 1976-2020. Arch Microbiol. 2021; 203 (б): 1863-80. PubMed PMID: 3362бб40.

PATRIC (Pathosystems Resource Integration Center). Available from: https://www.patricbrc.org.

UGENE (Unipro UGENE) 48.1. Available from: https://ugene.net/ru/.

i Надоели баннеры? Вы всегда можете отключить рекламу.