Научная статья на тему 'Commercial potential of linear Fresnel solar collectors in the industrial sector of Ecuador: preliminary assessment'

Commercial potential of linear Fresnel solar collectors in the industrial sector of Ecuador: preliminary assessment Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
869
62
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
CONCENTRATED SOLAR ENERGY / LINEAR FRESNEL COLLECTORS / DIRECT NORMAL IRRADIANCE / SOLAR HEAT FOR INDUSTRIAL PROCESSES / INDUSTRY / ECUADOR / КОНЦЕНТРИРОВАННАЯ СОЛНЕЧНАЯ ЭНЕРГИЯ / ЛИНЕЙНЫЕ КОЛЛЕКТОРЫ ФРЕНЕЛЯ / ПРЯМОЕ НОРМАЛЬНОЕ ИЗЛУЧЕНИЕ / СОЛНЕЧНАЯ ЭНЕРГИЯ ДЛЯ ПРОМЫШЛЕННЫХ ПРОЦЕССОВ / ПРОМЫШЛЕННОСТЬ / ЭКВАДОР

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Cartuche Cojitambo Nathaly, Redina Margarita M., López Villada Jesus, Soria Peñafiel Rafael

One of the crucial challenges faced by industry has been finding approaches that meet its increasing energy demand and decreasing reliance on non-renewable sources. Ecuadorian policies promote the use of renewable sources of energy; nevertheless, there is limited research on concentrated solar energy in the country. Therefore, this review article presents an overview on previous research on the description of linear Fresnel collectors for solar heat for industrial processes, promising Ecuadorian industrial branches for its application, and the solar resource available for this purpose in Ecuador. As a result of existing literature analysis, the manufacturing industry may be a key sector for the application of this technology, which could reduce the use of conventional energy sources, especially in the food industry located in the Andean region. The outcomes will contribute to future thorough research on the topic.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

КОММЕРЧЕСКИЙ ПОТЕНЦИАЛ ЛИНЕЙНЫХ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ ФРЕНЕЛЯ В ПРОМЫШЛЕННОМ СЕКТОРЕ ЭКВАДОРА: ПРЕДВАРИТЕЛЬНАЯ ОЦЕНКА

Одной из важнейших задач, стоящих перед промышленным сектором, является поиск подходов, которые удовлетворяют растущий спрос на энергию и уменьшают зависимость от невозобновляемых источников энергии. Эквадорская политика поощряет использование возобновляемых источников энергии; тем не менее исследования по концентрированной солнечной энергии в стране малочисленны. В статье представлен обзор предыдущих исследований, посвященных описанию линейных солнечных коллекторов Френеля и их использованию в промышленных процессах, перспективных для их внедрения отраслей промышленности, а также имеющихся для этой цели в Эквадоре солнечных ресурсов. По итогам анализа существующей литературы было выявлено, что обрабатывающая промышленность может стать ключевым сектором для применения данной технологии, что может сократить использование традиционных источников энергии, особенно в пищевой промышленности Андского региона. Результаты будут способствовать будущим тщательным исследованиям по этой теме.

Текст научной работы на тему «Commercial potential of linear Fresnel solar collectors in the industrial sector of Ecuador: preliminary assessment»

RUDN Journal of Ecology and Life Safety

Вестник РУДН. Серия: Экология и безопасность жизнедеятельности

2019 Vol. 27 No. 2 143-153

http://journals.rudn.ru/ecology

DOI 10.22363/2313-2310-2019-27-2-143-153 Review article

UDC 620.92

Commercial potential of linear Fresnel solar collectors in the industrial sector of Ecuador: preliminary assessment

Nathaly Cartuche Cojitambo1, Margarita M. Redina1, Jesus López Villada2, Rafael Soria Peñafiel2

'Peoples' Friendship University of Russia (RUDN University)

8 Podolskoye shosse, bldg. 5, Moscow, 115093, Russian Federation 2The National Polytechnic School Ladrón de Guevara Ave., E11-253, Quito, 170517, Republic of Ecuador

Abstract. One of the crucial challenges faced by industry has been finding approaches that meet its increasing energy demand and decreasing reliance on non-renewable sources. Ecuadorian policies promote the use of renewable sources of energy; nevertheless, there is limited research on concentrated solar energy in the country. Therefore, this review article presents an overview on previous research on the description of linear Fresnel collectors for solar heat for industrial processes, promising Ecuadorian industrial branches for its application, and the solar resource available for this purpose in Ecuador. As a result of existing literature analysis, the manufacturing industry may be a key sector for the application of this technology, which could reduce the use of conventional energy sources, especially in the food industry located in the Andean region. The outcomes will contribute to future thorough research on the topic.

Keywords: concentrated solar energy; linear Fresnel collectors; direct normal irradi-ance; solar heat for industrial processes; industry; Ecuador

Introduction

Industry consumes about one-third of the total energy utilised in the world [1; 2]. Heat is responsible for three-quarters of industrial energy demand, and fifty per cent of it is of low to medium temperature [3]. Current heating systems for industrial process heat depend on steam, as well as on hot water, produced basically in boilers, which predominantly uses fossil fuel or electricity [4]. Nevertheless, heat for common industrial requirements may be supplied by concentrated solar systems such as linear Fresnel collectors (LFCs) and parabolic trough collectors (PTCs) [5]. As a matter of fact, to expand the energy matrix based on renewable energies, and to enhance scientific research on this field are goals aligned with the Ecuadorian policies. However, there is limited investigation on concentrated solar energy in the country, and consequently, it has not been applied yet by industry.

This review article provides information on promising industrial sectors that could use linear Fresnel collectors for solar heat for industrial processes (SHIP) in

© Cartuche Cojitambo N., Redina M.M., López Villada J., Soria Peñafiel R., 2019

(gv q I This work is licensed under a Creative Commons Attribution 4.0 International License https://creativecomn10ns.0rg/licenses/by/4.O/

the continental region of Ecuador. The outcomes will contribute to forthcoming techno-economic studies.

Existing literature on LFCs for SHIP was analysed, which has been carried out as well for the work developed by [6]. First of all, it was necessary to recognise the advantages and disadvantages of LFCs. Then, reliable sources of information such as the Global Solar Atlas [7] and the NSRDB Data Base [8] provided data on the solar resource in Ecuador. At the same time, the most incident industrial sectors of the country and their location were identified, through the review of available statistical reports [9; 10]. Finally, current Ecuadorian policies and legislation on renewable energy were underlined.

Linear Fresnel collectors

Table 1 shows the drawbacks and benefits of LFCs, in comparison with other concentrated solar technologies, discussed in articles and reports related to the topic.

Table 1

Disadvantages and advantages of LFCs [11-14]

Disadvantages Advantages

The implementation of tracking devices increases financial and maintenance resources Compared to other types of solar fields, this technology is simple, compact and cheap. It has a lower investment cost and a payback period

The direct normal irradiance depends, among other factors, on the geographical location Efficiency in the available land use, for its implementation. It offers a multiple land use too; for example, agriculture could make use of the semi-shaded space under the LFCs

The mirror rows shade each other at high transversal incidence angles Absorber tubes and collectors can be very long, which reduces pressure losses, the number of loops and tube connections

Optical losses may induce a partial decline in the total cost-effectiveness The use of solar radiation presents lower thermal losses thanks to the secondary concentrator in the receiver

If it is necessary to reach higher temperatures, then HTFs such as molten salt, oil, and other materials must be added Fresnel for a direct steam generation does not need any HTF in between

Cleaning is often needed to reduce dust accumulation. However, it is simpler for LFCs than for PTCs The tracking system of LFC needs lower forces to move the mirrors than PTC

Research on advance material to avoid ultraviolet degradation is required Once its useful life is over, most of its components could be recycled. The remaining ones can be incinerated or sent to landfill

LFC is a line-focus system that belongs to concentrating direct normal irra-diance (DNI) technologies, which can reach temperatures of about 400 °C [15] depending on the heat transfer fluid employed. An LFC is divided into numerous long rows of almost flat mirrors, which rotate individually along one axis to focus solar radiation onto a linear fixed receiver [12; 13]. This technology has been developed mainly by industrial enterprises from Germany, Spain, United States, Italy, France, and others [16; 17]. LFC has not been adopted yet in Ecuador due to a lack of studies showing its technical and economic potential.

Industrial sector in Ecuador

One of the multiple applications of LFCs is the direct steam generation for SHIP. Key industrial sectors suitable for the adoption of solar thermal systems may differ between countries. For the most part, they are generally food, beve-

rage, transport equipment, machinery, textile, and pulp and paper industries, because approximately 60% of the heating requirements can be supplied at less than 250 °C [18].

According to [19], the agro-food industry has stood out with more than 50% of manufacturing gross domestic product (GDP) in Ecuador. In 2014, the industrial sector accounted for 19,4% of the total energy consumption of the country, which increased by more than 50% from 2006 to 2014. Manufacturing industrial subsector mostly contributed to this increase. Then, in May 2018, the manufacture of food products was by far one of the most incident sectors in Ecuador regarding the manufacturing production index [9]. Accordingly, it may be a key sector for the use of solar thermal systems in the country. Diesel and electricity have been the main sources of energy for the Ecuadorian industry [19], which indicates that they could be reduced or replaced by LFCs.

Figure 1. Share in sales of companies with manufacturing activities by province in 2016 Source: Adapted from [10].

It is worth to mention that, as depicted in Figure 1, in 2016, more than 75% of total sales were made by enterprises located in Pichincha and Guayas provinces. In contrast, firms from the Amazon and Insular regions had the lowest percentage of about 1% of the total sales.

Solar resource in the continental region of Ecuador

The direct normal irradiance is the resource used by concentrated solar technologies for SHIP [20]. Its implementation takes place with higher economic feasibility in areas where DNI is abundant (>5 kWh/m2/day) [19], which are usually located in subtropical latitudes (dry and hot regions with clear skies). Nevertheless, DNI is remarkably higher at higher elevations, where absorption and scattering of sun's rays owing to aerosols can be much lower [21]. However, values between 4 and 6 kWh/m2/day may be still considered economically feasible [22].

Figure 2. Direct normal irradiation map of Ecuador Source: Global Solar Atlas [7].

Ecuador has a relatively abundant solar resource that reaches a value of approximately 4,6 kWh/m2/day [19]; with attention to its Andean region, where the DNI is higher. As evidence, Figure 2 [7] illustrates the long-term average of DNI from 1999 to 2015. Conversely, despite Ecuador's important solar potential, the participation of this energy in the energy matrix is minimal. In agreement with Vaca [23], one of the reasons is originated in the limited number of studies to quantify the solar resource in the localities of Ecuador.

Ecuadorian policies and regulations on renewable energy

Not only Ecuador was the first country worldwide to grant rights to Nature or 'Pacha Mama' in its 2008 constitution, but also it has a relevant number of policies and regulations for environmental management. They include mechanisms of promotion and economic incentives that encourage an efficient and sustainable use of natural resources. Table 2 is only an example of Ecuadorian regulations that cite renewable energies, and international agreements on the topic that the country has ratified.

Table 2

Ecuadorian legal framework and international agreements on renewable energy

Name Year

National Constitution of Ecuador [24] 2008

Rio Declaration on Environment and Development [25] 1992

Kyoto Protocol, second period [26] 2013-2020

2030 Agenda for Sustainable Development [27] 2015

'Toda una vida' National Development Plan 2017-2021 [28] 2017-2021

National Energy Efficiency Plan 'PLANEE' 2016-2035 [29] 2016-2035

Organic Code of the Environment [30] 2017

Organic Law of Energy Efficiency [31] 2019

Organic Law of the Public Service of Electric Power [32] 2015

Institutional Framework for Environmental Incentives. Ministerial Agreement No. 140 [33] 2015

Preliminary conclusions

Ecuador promotes the use of renewable sources of energy and energy efficiency through its legal framework: National Constitution of Ecuador, 'Toda una vida' National Development Plan 2017-2021, Organic Code of the Environment, Organic Law of Energy Efficiency, the Organic Law of the Public Service of Electric Power, and so on. Moreover, the country has ratified international commitments on this regard: Kyoto Protocol, Rio Declaration on Environment and Development, 2030 Agenda for Sustainable Development.

LFC is a simple, compact and reasonable technology, with techno-commercial challenges. It is geographically restricted to areas with high DNI, like the Ecuadorian Andes, but fortunately, leading industrial companies are located in many provinces of this region.

In spite of having good solar resource and supportive laws, Ecuador has insufficient research on LFC for SHIP. This technology has not been adopted yet by the industrial sector.

The implementation of LFCs in the manufacturing sector of Ecuador could reduce the use of conventional sources of energy, especially in the food industry.

All these points considered suggest that there is a feasible market for linear Fresnel technology in the country. Nevertheless, this conclusion must be confirmed or denied by means of further research.

References

[1] Berger M, Meyer-Grünefeldt M, Krüger D, Hennecke K, Mokhtar M, Zahler C. First Year of Operational Experience with a Solar Process Steam system for a Pharmaceutical Company in Jordan. Energy Procedia. 2016;91: 591-600.

[2] Zahler C, Iglauer O. Solar process heat for sustainable automobile manufacturing. Energy Procedia. 2012;30: 775-82. http://dx.doi.org/10.10167j.egypro.2012.11.088

[3] Philibert C. Renewable Energy for Industry. Paris: International Energy Agency; 2017. Available from: https://www.iea.org/publications/insights/insightpublications/Renewable_ Energy_for_Industry.pdf (Accessed 29 February 2019).

[4] IEA-ETSAP, IRENA. Solar Heat for Industrial Processes: Technology Brief. Paris, Abu Dhabi; 2015. Available from: http://www.solarthermalworld.org/sites/gstec/files/ news/file/2015 -02-27/irena-solar-heat-for-industrial-processes_2015 .pdf (Accessed 28 February 2019).

[5] Kurup P, Turchi C. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States. United States; 2015. Available from: https:// www.nrel.gov/docs/fy16osti/64709.pdf. doi:10.2172/1227710

[6] Cartuche N. Evaluation of the commercial potential of linear Fresnel collectors in the industrial sector of Ecuador in the short, medium and long term. Peoples' Friendship University of Russia (RUDN University); forthcoming 2019.

[7] The World Bank Group. Global Solar Atlas. 2016. Available from: https:// globalsolaratlas.info/ (Accessed 6 February 2019).

[8] DOE/NREL/ALLIANCE. NSRDB Data Viewer. Available from: https://nsrdb.nrel.gov/ nsrdb-viewer (Accessed 31 May 2018).

[9] INEC. Resultados Indice de Producción de la Industria Manufacturera. Instituto Nacional de Estadística y Censos; 2018. Available from: http://www.ecuadorencifras. gob.ec/documentos/web-inec/Estadisticas_Economicas/IPI-M/2018/Mayo-2018/ PRESENTACI0N_RESULTAD0S_IPI-M_2018_05.pdf (Accessed 24 July 2018).

[10] INEC. Directorio de Empresas y Establecimientos. 2016. Available from: http://www. ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_Economicas/Directorio Empresas/Directorio_Empresas_2016/Principales_Resultados_DIEE_2016.pdf (Accessed 10 March 2019).

[11] Gunther M. Advanced CSP Teaching Materials - Linear Fresnel Technology. In: Advanced CSP teaching materials. EnerMENA, DLR; 2011. pp. 1-43. Available from: http://www.energy-science.org/bibliotheque/cours/1361468614Chapter06Fresnel.pdf (Accessed 10 March 2019).

[12] Kumar V, Shrivastava RL, Untawale SP. Fresnel lens: A promising alternative of reflectors in concentrated solar power. Renew Sustain Energy Rev. 2015;44: 376-390.

[13] The European Union. Concentrating Solar Power. The European Union; 2013. Available from: http://setis.ec.europa.eu/energy-research/sites/default/files/docs/ERKCTRSConcentrating SolarPower_print.pdf (Accessed 5 June 2018).

[14] Mazzaferro CA. Life Cycle Assessment of Electricity Production from Concentrating Solar Thermal Power Plants. Universita Degli Studi Di Padova; 2017. Available from: http://tesi. cab.unipd.it/57365/1/Alberti_Mazzaferro_Cinzia_1131026.pdf (Accessed 24 February 2019).

[15] REN21. Renewable Energy Tenders and Community [Em]power[ment]: Latin America and the Caribbean. Paris; 2017. Available from: http://www.ren21.net/wp-content/uploads/ 2017/09/LAC-Report.pdf (Accessed 1 April 2018).

[16] AEE INTEC. Solar Thermal Plants Database. 2018. Available from: http://ship-plants. info/solar-thermal-plants (Accessed 13 July 2018).

[17] Solar Payback. Suppliers of Turnkey Solar Process Heat Systems. 2019. Available from: https://www.solar-payback.com/suppliers/ (Accessed 22 January 2019).

[18] Vannoni C, Battisti R, Drigo S. Potential for solar heat in industrial processes. IEA SHC Task 33 and SolarPACES Task IV: Solar heat for industrial processes. Madrid; 2008. Available from: http://archive.iea-shc.org/publications/task.aspx?Task=33 (Accessed 10 March 2019).

[19] INER. Análisis de oportunidades de investigación, desarrollo e innovación en eficiencia energética y energías renovables en Ecuador. Un enfoque desde el sector académico. Quito; 2016. Available from: http://iner.ec/plataforma/Documento.pdf (Accessed 10 March 2019).

[20] Blanc P, Espinar B, Geuder N, Gueymard C, Meyer R, Pitz-Paal R et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Solar Energy. 2014;110: 561-77.

[21] OECD/IEA. Technology Roadmap Solar Thermal Electricity. Paris; 2014. Available from: https://webstore.iea.org/technology-roadmap-solar-thermal-electricity-2014 (Accessed 24 February 2019).

[22] Cevallos-Sierra J, Ramos-Martin J. Spatial assessment of the potential of renewable energy: The case of Ecuador. Renewable and Sustainable Energy Reviews. 2018;81(P1): 1154-1165. http://dx.doi.org/10.1016Zj.rser.2017.08.015

[23] Vaca Revelo D. Validación de datos satelitales de radiación solar utilizando mediciones terrestres para el Ecuador. Escuela Politécnica Nacional; 2018. Available from: http:// bibdigital.epn.edu.ec/handle/15000/19516 (Accessed 6 February 2019).

[24] Asamblea Constituyente del Ecuador. Constitución de la República del Ecuador 2008. Registro Oficial 449 República del Ecuador. Available from: https://www. corteconstitucional.gob.ec/images/contenidos/quienes-somos/Constitucion_politica.pdf (Accessed 10 March 2019).

[25] The United Nations Conference on Environment and Development. Rio Declaration on Environment and Development 1992. Available from: http://www.unesco.org/education/ pdf/RIO_E.PDF (Accessed 10 March 2019).

[26] United Nations Climate Change. United Nations Framework Convention on Climate Change. 2018. Available from: https://unfccc.int/process/the-kyoto-protocol (Accessed 26 June 2018).

[27] The United Nations. Transforming Our World: the 2030 Agenda for Sustainable Development. 2015. Available from: https://sustainabledevelopment.un.org/post2015/ transformingourworld (Accessed 8 February 2019).

[28] SENPLADES. Plan Nacional de Desarrollo 2017-2021. Toda una Vida. Senplades, CNP-003-2017. Ecuador; 2017. Available from: http://www.planificacion.gob.ec/wp-content/ uploads/downloads/2017/10/PNBV-26-0CT-FINAL_0K.compressed1.pdf (Accessed 10 March 2019).

[29] Ministerio de Electricidad y Energía Renovable. Plan Nacional de Eficiencia Energética 2016-2035. Ecuador. Available from: http://www.centrosur.gob.ec/sites/default/ files/1. PLANEE maqueta final digital_1.pdf (Accessed 10 March 2019).

[30] Asamblea Nacional. Código Orgánico del Ambiente 2017. Registro Oficial Suplemento 983 República del Ecuador. 2017. Available from: http://www.ambiente.gob.ec/wp-content/ uploads/downloads/2018/01/CODIGO_ORGANICO_AMBIENTE.pdf (Accessed 10 March 2019).

[31] Asamblea Nacional. Ley Orgánica de Eficiencia Energética 2019. República del Ecuador.

[32] Asamblea Nacional. Ley Orgánica del Servicio Público de Energía Eléctrica 2015. Registro Oficial Suplemento 418 República del Ecuador.

[33] Ministerio del Ambiente. Acuerdo Ministerial 140 Marco institucional para incentivos ambientales 2015. Registro Oficial Edición Especial 387 Ecuador.

Article history:

Received: 14.03.2019 Revised: 20.06.2019

For citation:

Cartuche Cojitambo N, Redina MM, López Villada J, Soria Peñafiel R. Commercial potential of linear Fresnel solar collectors in the industrial sector of Ecuador: preliminary assessment. RUDN Journal of Ecology and Life Safety. 2019;27(2): 143-153. http:// dx.doi.org/10.22363/2313-2310-2019-27-2-143-153

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Bio notes:

Nathaly Cartuche Cojitambo - master's student, Department of Applied Ecology, Ecological Faculty, Peoples' Friendship University of Russia (RUDN University). Contact information: e-mail: [email protected]

Margarita M. Redina - Doctor of Economic Sciences, Associate Professor, Dean of the Faculty of Ecology, Head of the Department of Applied Ecology, Peoples' Friendship University of Russia (RUDN University). Contact information: e-mail: [email protected]

Jesus López Villada - Doctor of Mechanical Engineering in HVAC (Heating, Ventilation and Air Aconditioning) Technologies and Energy Efficiency in Buildings, Department of Mechanical Engineering, The National Polytechnic School. Contact information: e-mail: [email protected]

Rafael Soria Peñafiel - Doctor of Science in Energy Planning, Department of Mechanical Engineering, The National Polytechnic School. Contact information: e-mail: rafael.soria01@ epn.edu.ec

Обзорная статья

Коммерческий потенциал линейных солнечных коллекторов Френеля в промышленном секторе Эквадора: предварительная оценка

Н. Картуче Кохитамбо1, М.М. Редина1, Х. Лопес Вильяда2, Р. Сория Пеньяфьель2

'Российский университет дружбы народов Российская Федерация, 115093, Москва, Подольское шоссе, д. 8, корп. 5 2Национальная политехническая школа Республика Эквадор, 170517, Кито, пр-т Ладрон де Гевара, Ell-253

Аннотация. Одной из важнейших задач, стоящих перед промышленным сектором, является поиск подходов, которые удовлетворяют растущий спрос на энергию и уменьшают зависимость от невозобновляемых источников энергии. Эквадорская политика поощряет использование возобновляемых источников энергии; тем не менее исследования по концентрированной солнечной энергии в стране малочисленны. В статье представлен обзор предыдущих исследований, посвященных описанию линейных солнечных коллекторов Френеля и их использованию в промышленных процессах, перспективных для их внедрения отраслей промышленности, а также имеющихся для этой цели в Эквадоре солнечных ресурсов. По итогам анализа существующей литературы было выявлено, что обрабатывающая промышленность может стать ключевым сектором для применения данной технологии, что может сократить использование традиционных источников энергии, особенно в пищевой промышленности Андского региона. Результаты будут способствовать будущим тщательным исследованиям по этой теме.

Ключевые слова: концентрированная солнечная энергия; линейные коллекторы Френеля; прямое нормальное излучение; солнечная энергия для промышленных процессов; промышленность; Эквадор

Список литературы

[1] Berger M., Meyer-Grünefeldt M., Krüger D., Hennecke K., Mokhtar M., Zahler C. First Year of Operational Experience with a Solar Process Steam system for a Pharmaceutical Company in Jordan // Energy Procedia. 2016. Vol. 91. Pp. 591-600.

[2] Zahler C., Iglauer O. Solar process heat for sustainable automobile manufacturing // Energy Procedia. 2012. Vol. 30. Pp. 775-82. http://dx.doi.org/10.1016/j.egypro.2012.11.088

[3] Philibert C. Renewable Energy for Industry. Paris: International Energy Agency, 2017. URL: https ://www.iea.org/publications/insights/insightpublications/Renewable_Energy_for_ Industry.pdf (дата обращения: 29.02.2019).

[4] Solar Heat for Industrial Processes: Technology Brief / IEA-ETSAP, IRENA. Paris, Abu Dhabi, 2015. URL: http://www.solarthermalworld.org/sites/gstec/files/news/file/ 2015-02-27/irena-solar-heat-for-industrial-processes_2015.pdf (дата обращения: 28.02.2019).

[5] Kurup P., Turchi C. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States. United States, 2015. URL: https://www.nrel.gov/ docs/fy16osti/64709.pdf doi:10.2172/1227710

[6] Cartuche N. Evaluation of the commercial potential of linear Fresnel collectors in the industrial sector of Ecuador in the short, medium and long term. Peoples' Friendship University of Russia (RUDN University); forthcoming 2019.

[7] Global Solar Atlas / The World Bank Group. 2016. URL: https://globalsolaratlas.info/ (дата обращения: 06.02.2019).

[8] NSRDB Data Viewer / DOE/NREL/ALLIANCE. URL: https://nsrdb.nrel.gov/nsrdb-viewer (дата обращения: 31.05.2018).

[9] Resultados Índice de Producción de la Industria Manufacturera / INEC. Instituto Nacional de Estadística y Censos, 2018. URL: http://www.ecuadorencifras.gob.ec/documentos/ web-inec/Estadisticas_Economicas/IPI-M/2018/Mayo-2018/PRESENTACION_ RESULTAD0S_IPI-M_2018_05.pdf (дата обращения: 24.07.2018).

[10] Directorio de Empresas y Establecimientos / INEC. 2016. URL: http://www.ecuadorencifras. gob.ec/documentos/web-inec/Estadisticas_Economicas/DirectorioEmpresas/Directorio_ Empresas_2016/Principales_Resultados_DIEE_2016.pdf (дата обращения: 10.03.2019).

[11] Gunther M. Advanced CSP Teaching Materials - Linear Fresnel Technology // Advanced CSP teaching materials. EnerMENA, DLR, 2011. Pp. 1-43. URL: http://www.energy-science.org/ bibliotheque/cours/1361468614Chapter06Fresnel.pdf (дата обращения: 10.03.2019).

[12] Kumar V., Shrivastava R.L., Untawale S.P. Fresnel lens: A promising alternative of reflectors in concentrated solar power // Renew Sustain Energy Rev. 2015. Vol. 44. Pp. 376-390.

[13] Concentrating Solar Power. The European Union, 2013. URL: http://setis.ec.europa.eu/ energy-research/sites/default/files/docs/ERKCTRSConcentratingSolarPower_print.pdf (дата обращения: 05.06.2018).

[14] Mazzaferro C.A. Life Cycle Assessment of Electricity Production from Concentrating Solar Thermal Power Plants. Universita Degli Studi Di Padova, 2017. URL: http://tesi.cab.unipd.it/ 57365/1/Alberti_Mazzaferro_Cinzia_1131026.pdf (дата обращения: 24.02.2019).

[15] Renewable Energy Tenders and Community [Em]power[ment]: Latin America and the Caribbean / REN21. Paris, 2017. URL: http://www.ren21.net/wp-content/uploads/2017/09/ LAC-Report.pdf (дата обращения: 01.04.2018).

[16] Solar Thermal Plants Database / AEE INTEC. 2018. URL: http://ship-plants.info/solar-thermal-plants (дата обращения: 13.07.2018).

[17] Suppliers of Turnkey Solar Process Heat Systems / Solar Payback. 2019. URL: https:// www.solar-payback.com/suppliers/ (дата обращения: 22.01.2019).

[18] Vannoni C., Battisti R., Drigo S. Potential for solar heat in industrial processes. IEA SHC Task 33 and SolarPACES Task IV: Solar heat for industrial processes. Madrid, 2008. URL: http://archive.iea-shc.org/publications/task.aspx?Task=33 (дата обращения: 10.03.2019).

[19] Análisis de oportunidades de investigación, desarrollo e innovación en eficiencia energética y energías renovables en Ecuador. Un enfoque desde el sector académico / INER. Quito, 2016. URL: http://iner.ec/plataforma/Documento.pdf (дата обращения: 10.03.2019).

[20] Blanc P., Espinar B., Geuder N., Gueymard C., Meyer R., Pitz-Paal R. et al. Direct normal irradiance related definitions and applications: the circumsolar issue // Solar Energy. 2014. Vol. 110. Pp. 561-77.

[21] Technology Roadmap Solar Thermal Electricity / OECD/IEA. Paris, 2014. URL: https:// webstore.iea.org/technology-roadmap-solar-thermal-electricity-2014 (дата обращения: 24.02.2019).

[22] Cevallos-Sierra J., Ramos-Martin J. Spatial assessment of the potential of renewable energy: the case of Ecuador // Renewable and Sustainable Energy Reviews. 2018. Vol. 81. Part 1. Pp. 1154-1165. http://dx.doi.org/10.1016/j.rser.2017.08.015

[23] Vaca Revelo D. Validación de datos satelitales de radiación solar utilizando mediciones terrestres para el Ecuador. Escuela Politécnica Nacional, 2018. URL: http://bibdigital. epn.edu.ec/handle/15000/19516 (дата обращения: 06.02.2019).

[24] Constitución de la República del Ecuador 2008. Registro Oficial 449 República del Ecuador / Asamblea Constituyente del Ecuador. URL: https://www.corteconstitucional. gob.ec/images/contenidos/quienes-somos/Constitucion_politica.pdf (дата обращения: 10.03.2019).

[25] The United Nations Conference on Environment and Development. Rio Declaration on Environment and Development 1992. URL: http://www.unesco.org/education/pdf/ RIO_E.PDF (дата обращения: 10.03.2019).

[26] United Nations Climate Change. United Nations Framework Convention on Climate Change. 2018. URL: https://unfccc.int/process/the-kyoto-protocol (дата обращения: 26.06.2018).

[27] Transforming Our World: the 2030 Agenda for Sustainable Development / The United Nations. 2015. URL: https://sustainabledevelopment.un.org/post2015/transformingourworld (дата обращения: 08.02.2019).

[28] Plan Nacional de Desarrollo 2017-2021. Toda una Vida. Senplades, CNP-003-2017. Ecuador, 2017. URL: http://www.planificacion.gob.ec/wp-content/uploads/downloads/2017/ 10/PNBV-26-0CT-FINAL_0K.compressed1.pdf (дата обращения: 10.03.2019).

[29] Plan Nacional de Eficiencia Energética 2016-2035 / Ministerio de Electricidad y Energía Renovable. Ecuador. URL: http://www.centrosur.gob.ec/sites/default/files/1.PLANEE maquetafinaldigital_1.pdf (дата обращения: 10.03.2019).

[30] Código Orgánico del Ambiente 2017. Registro Oficial Suplemento 983 República del Ecuador / Asamblea Nacional. 2017. URL: http://www.ambiente.gob.ec/wp-content/ uploads/downloads/2018/01/CODIGO_ORGANICO_AMBIENTE.pdf (дата обращения: 10.03.2019).

[31] Ley Orgánica de Eficiencia Energética 2019. República del Ecuador / Asamblea Nacional.

[32] Ley Orgánica del Servicio Público de Energía Eléctrica 2015. Registro Oficial Suplemento 418 República del Ecuador / Asamblea Nacional.

[33] Acuerdo Ministerial 140 Marco institucional para incentivos ambientales 2015. Registro Oficial Edición Especial 387 Ecuador / Ministerio del Ambiente.

История статьи:

Дата поступления в редакцию: 14.03.2019 Дата принятия к печати: 20.06.2019

Для цитирования:

Cartuche Cojitambo N., Redina M.M., López Villada J., Soria Peñafiel R. Commercial potential of linear Fresnel solar collectors in the industrial sector of Ecuador: preliminary assessment (Коммерческий потенциал линейных солнечных коллекторов Френеля в промышленном секторе Эквадора: предварительная оценка) // Вестник Российского университета дружбы народов. Серия: Экология и безопасность жизнедеятельности. 2019. Т. 27. № 2. С. 143-153. http://dx.doi.org/10.22363/2313-2310-2019-27-2-143-153

Сведения об авторах:

Картуче Кохитамбо Натали - магистрант кафедры прикладной экологии, экологический факультет, Российский университет дружбы народов. Контактная информация: e-mail: [email protected]

Редина Маргарита Михайловна - доктор экономических наук, доцент, декан экологического факультета, заведующая кафедрой прикладной экологии, Российский университет дружбы народов. Контактная информация: e-mail: [email protected] Лопес Вильяда Хесус - доктор технических наук по технологиям ОВКВ (отопление, вентиляция и кондиционирование воздуха) и энергоэффективности зданий, кафедра машиностроения, Национальная политехническая школа. Контактная информация: e-mail: [email protected]

Сория Пеньяфьель Рафаэль - доктор технических наук в области энергетического планирования, кафедра машиностроения, Национальная политехническая школа. Контактная информация: e-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.