Научная статья на тему 'COLLEMBOLA FAUNA IN SOIL LAYERS OF NATURAL ECOSYSTEMS OF SOUTHERN UZBEKISTAN'

COLLEMBOLA FAUNA IN SOIL LAYERS OF NATURAL ECOSYSTEMS OF SOUTHERN UZBEKISTAN Текст научной статьи по специальности «Биологические науки»

CC BY
9
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Bioindicator / oribatid mites / industrial plant / Galumnidae / Kashkadarya region. / Биоиндикатор / орибатидные клещи / промышленное предприятие / Galumnidae / Кашкадарьинская область.

Аннотация научной статьи по биологическим наукам, автор научной работы — M.Sh. Raximov, Z.U. Elmuratova, D.Z. Majidova, Z.K.Djurayeva, D.E. Chuliyeva

This article discusses the loss of bioindicator characteristics in oribatid mites found in the Kashkadarya region due to various anthropogenic and environmental factors. The study, conducted during the spring and summer of 2023, focused on pine and spruce gardens surrounding the Shortan gas-chemical industrial area. The results of our research identified 23 species, including Ornithonyssus bursa, Geratoppia quadridentate, Furcoribula furcillata, Perlohmannia altaica, Liochthonius kirghisicus, Asiacarius elongatus, Liochthonius hystricinus, Сultroribula dentata, Epilohmannia cylindrica and Michelia paradoxa with bioindicator properties. Changes in these indicators of species primarily occurred in the A soil layer, up to 10 cm deep. The study found that the primary factor influencing these changes was not the chemical waste from the industrial plant but rather acid gases resulting from burning companion gases, leading to acid rain formation when mixed with precipitation.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ФАУНА КОЛЛЕМБОЛ В ПОЧВЕННЫХ СЛОЯХ ЕСТЕСТВЕННЫХ ЭКОСИСТЕМ ЮЖНОГО УЗБЕКИСТАНА

В данной статье рассматривается утрата биоиндикаторных признаков у панцирных клещей, обнаруженных в Кашкадарьинской области, в связи с различными антропогенными и экологическими факторами. Исследование, проведенное весной и летом 2023 года, было сосредоточено на сосновых и еловых садах, окружающих Шортанскую газохимическую промышленную зону. В результате наших исследований выявлено 23 вида, среди которых Ornithonyssus bursa, Geratoppia quadridentate, Furcoribula furcillata, Perlohmannia altaica, Liochthonius kirghisicus, Asiacarius elongatus, Liochthonius hystricinus, Сultroribula dentata, Epilohmannia cylindrica и Michelia paradoxa, обладающие биоиндикаторными свойствами. Изменения этих показателей видов в первую очередь произошли в слое почвы А, на глубине до 10 см. Исследование показало, что основным фактором, влияющим на эти изменения, были не химические отходы промышленного предприятия, а кислые газы, образующиеся при сжигании сопутствующих газов, которые при смешивании с осадками приводят к образованию кислотных дождей. Ключевые слова: Биоиндикатор, орибатидные клещи, промышленное предприятие, Galumnidae, Кашкадарьинская область.

Текст научной работы на тему «COLLEMBOLA FAUNA IN SOIL LAYERS OF NATURAL ECOSYSTEMS OF SOUTHERN UZBEKISTAN»

8. Raximov M.Sh., Elmuratova Z.U. Fauna and seasonal dynamics of the collembolans of Uzbekistan //International Journal of Advanced Science and Technology. Avstralya. 2019 vol. 28. -№14. p.68-87.

9. Raximov M.Sh., Elmuratova Z.U. Distribution and seasonal dynamics of soil collembolan in the soils of southern regions of // European

science review, Premier Publishing s.r.o. Vienna. 2018. - №9-10. - P. 28-31.

10. Rakhimov M.Sh., Majidova D.Z., Mardonov Sh.U. "Moss Mites on soil layers in cenoses of southeast Uzbekistan //"Materials of the XVII international scientific and practical conference". Cutting-edge science-2020 Vol. 14.

UDK: 633.581.1:581.5.

COLLEMBOLA FAUNA IN SOIL LAYERS OF NATURAL ECOSYSTEMS OF

SOUTHERN UZBEKISTAN

M.Sh. Raximov, Z.U. Elmuratova, D.Z. Majidova, Z.K.Djurayeva, D.E. Chuliyeva

National University of Uzbekistan, Tashkent, 61010333, Uzbekistan* Corresponding author email: omonovsh@nuu.uz

Abstract. This article discusses the loss of bioindicator characteristics in oribatid mites found in the Kashkadarya region due to various anthropogenic and environmental factors. The study, conducted during the spring and summer of 2023, focused on pine and spruce gardens surrounding the Shortan gas-chemical industrial area. The results of our research identified 23 species, including Ornithonyssus bursa, Geratoppia quadridentate, Furcoribula furcillata, Perlohmannia altaica, Liochthonius kirghisicus, Asiacarius elongatus, Liochthonius hystricinus, Cultroribula dentata, Epilohmannia cylindrica and Michelia paradoxa with bioindicator properties. Changes in these indicators of species primarily occurred in the A soil layer, up to 10 cm deep. The study found that the primary factor influencing these changes was not the chemical waste from the industrial plant but rather acid gases resulting from burning companion gases, leading to acid rain formation when mixed with precipitation.

Keywords: Bioindicator, oribatid mites, industrial plant, Galumnidae, Kashkadarya region.

ФАУНА КОЛЛЕМБОЛ В ПОЧВЕННЫХ СЛОЯХ ЕСТЕСТВЕННЫХ ЭКОСИСТЕМ ЮЖНОГО УЗБЕКИСТАНА

М.Ш. Рахимов, З.У. Эльмуратова, Д.З. Маджидова, З.К.Джураева, Д.Э. Чулиева

Национальный университет Узбекистана имени,Ташкент, 61010333, Узбекистан "Соответствующий автор email: omonovsh@nuu.uz

Аннотация. В данной статье рассматривается утрата биоиндикаторных признаков у панцирных клещей, обнаруженных в Кашкадаръинской области, в связи с различными антропогенными и экологическими факторами. Исследование, проведенное весной и летом 2023 года, было сосредоточено на сосновых и еловых садах, окружающих Шортанскую газохимическую промышленную зону. В результате наших исследований

выявлено 23 вида, среди которых Ornithonyssus bursa, Geratoppia quadridentate, Furcoribula furcillata, Perlohmannia altaica, Liochthonius kirghisicus, Asiacarius elongatus, Liochthonius hystricinus, Cultroribula dentata, Epilohmannia cylindrica и Michelia paradoxa, обладающие биоиндикаторными свойствами. Изменения этих показателей видов в первую очередь произошли в слое почвы А, на глубине до 10 см. Исследование показало, что основным фактором, влияющим на эти изменения, были не химические отходы промышленного предприятия, а кислые газы, образующиеся при сжигании сопутствующих газов, которые при смешивании с осадками приводят к образованию кислотных дождей.

Ключевые слова: Биоиндикатор, орибатидные клещи, промышленное предприятие, Galumnidae, Кашкадарьинская область.

Introduction

Currently, the number of Collembola species exceeds 8,600, with ongoing growth due to the discovery of new species. Collembola possess specialized morphological features, including a sacrificial fork, a hook that secures the sacrificial fork, and a ventral tube. Collembola primarily feeds on fungal spores, although certain species may consume other soil organisms, process plant debris, and extract plant cell sap [31].

For instance, Micranurida species, equipped with a mouth-sucking apparatus, specialize in feeding on plant cell sap, while Frisea species are carnivorous, preying on roundworms [77].

The dietary habits of Collembola are determined through the examination of their oral apparatus and digestive system. Moreover, the abundance of Collembola often correlates with biomass and plant diversity [17,18,14].

Collembola plays crucial roles in organic matter decomposition, chemical element cycling as reductants, and the exchange of organic substances in the environment, thus contributing to soil stability and fertility. They are considered one of the most promising model groups for comparative

ecological analyses of soils due to their widespread distribution and sensitivity to environmental changes, making them extensively studied pedobiont taxa.

In temperate climates, certain spring Collembola species aid in controlling bio- and geohelminths by consuming roundworm eggs. Additionally, Collembola serve as effective indicator organisms for assessing anthropogenic impacts on soils and analyzing the restoration processes of contaminated soils. In summary, Collembola play vital roles in organic matter decomposition, chemical element circulation, and environmental stability, particularly in ensuring soil fertility [4, 28, 46]. Soil Collembola have been observed to actively participate in soil mineralization processes and influence the degradation of pesticides and herbicides within soil.genera [3].

Methods and materials

The Sampling was conducted at depths of 0-10 cm, 10-20 cm, and 20-30 cm in natural ecosystems, resulting in a total of 1440 samples of 1 dm3 each being collected. Soil samples were gathered from specified points in the field, placed into labeled bags, and recorded with details such as sampling date, location, ecosystem type, soil layer,

and additional relevant information. Stationary methods were employed to study the species composition and ecological dynamics of Collembola within these areas and throughout various seasons.

The widely accepted "Berleze-Thulgren apparatus" was utilized to extract Collembola from soil samples. This apparatus comprises a tripod, a large funnel, a sieve, and a glass container. Initially, the funnel is positioned on the tripod, followed by placing the sieve atop the funnel, and adding the soil sample onto the sieve. A glass container, containing a fixing liquid (such as alcohol), is positioned below the funnel. The operation of this apparatus involves the downward drying of the soil samples placed on the sieve, causing small soil-dwelling organisms to move downwards. The fixative then collects in the container, typically filled with 70-80% ethyl alcohol. Small arthropods collected in the dish are transferred into a Petri dish for observation under a binocular microscope and further examination. In order to determine the species composition, permanent preparations were prepared. Permanent preparations were made by the method of fixation.

In order to determine the species composition, permanent preparations were prepared. Permanent preparations were made by the method of fixation.

Fixation: 70-80% ethyl alcohol is traditionally used to fix Oribatid mites. It is recommended to add 1-2% glycerine to alcohol. In this case, glycerin prevents the alcohol from drying out during the storage of the material in the test tube [7]. Dominance:

To express the relative abundance of species, percentages of the total were utilized [3, 7]. In our investigation, employing an index ranging from 0% to 20%, the Engelman scale was employed as follows:

0-3.99%: characterized as subresident; 4-7.99%: characterized as resident; 8-11.99%: characterized as subdominant; 12-14.99%: characterized as dominant; >15%: collectively considered eudominant.

Results and Discussion

From During our investigation, we identified 25 species of Collembola distributed across soil layers within natural ecosystems located in the Yakkabog and Shahrisabz districts of the Kashkadarya region (Table 1). The distribution of these species varies according to soil composition and depth, particularly notable in the 0-10 cm and 20-30 cm layers of the Shahrisabz region. In this area, Agrenia bidenticulata and Heteromurus nitidus emerge as dominant species, whereas Agrenia bidenticulata dominates the 10-20 cm layer but not in the 0-10 cm or 20-30 cm layers. Conversely, Xenylla maritima is the dominant species in the 10-20 cm layer of natural ecosystems in the Shahrisabz district, with an abundance of 95.7 ± 0.6 individuals per ldm3 of soil. In the Yakkabog district, Heteromurus nitidus and Xenylla maritima species dominate across all soil layers. The varying distribution of species contributes to the diverse soil fauna. Throughout our study, soil fauna diversity was assessed across layers using diversity indices (Fig 1.).

Table 1.

Distribution of Collembola in soil layers

Kashkadarya region

Shahrisabz district Yakkabog district

№ Species Soil layers

0-10 (M±m) 10-20 (M±m) 20-30 (M±m) 0-10 (M±m) 10-20 lin (M±m) 20-30 (M±m)

1. Typhlogastrura mendizabali (F.Bonet, 1930) 13.1 ±0.3 7.4 ±0.6 13.2 ±0.3 4.2±0.6

2. Hypogastrura assimilis (Krausbauer, 1898) 10.2 ±0.4 9.1 ±0.3 - 11.9 ±0.7 7.2 ±0.3 -

3. Paraxenylla affiniformis (J.Stach, 1930) 12.1 ±0.6 9.4 ±0.3 - 12.2 ±0.6 7.4 ±0.3 -

4. Xenylla maritima (Tullberg, 1869) 45.2 ±0.3 95.7 ±0.6 22.2 ±0.3 47.6 ±0.4 71.1±0.6 16.2 ±0.3

5. Hypogastrura viatica (Tullberg, 1872) 8.1 ±0.3 - 9.4 ±0.4 7.1 ±0.3 - 16.2 ±0.3

6. Metaphorura affinis (Börner, 1903) - 7.2 ±0.2 13.2 ±0.3 - 8.1 ±0.3 13.1 ±0.5

7. Ongulonychiurus colpus (Thibaud & Z.Massoud, 1986) 5.4 ±0.3 13.4 ±0.6 5.1 ±0.6 12.2 ±0.3

8. Lophognathella choreutes (Börner, 1908) - 11.2 ±0.3 4.1 ±0.4 - 13.4 ±0.3 4.2 ±0.3

9. Supraphorurafurcifera (Börner, 1908) 13.1 ±0.1 5.4 ±0.3 - 13.7 ±0.3 2.2 ±0.6 -

10. Protaphorura taimyrica (Martynova, 1976) 10.6 ±0.6 - 3.2 ±0.3 12.1 ±0.6 - 5.3±0.3

11. Axenyllodes bayeri (Kseneman, 1935) - 10.1 ±0.4 5.2 ±0.3 - 10.8 ±0.4 5.4±0.6

12. Xenyllodes armatus (W.M.Axelson, 1903) - 9.8 ±0.3 4.2 ±0.4 - 11.1 ±0.3 5.2±0.3

13. Adbiloba sokolowi (Philiptschenko, 1926) 12.1 ±0.3 2.8 ±0.6 - 9.2 ±0.3 6.2 ±0.3 -

14. Pseudachorutes subcrassus (Tullberg, 1871) 9.4±0.3 - 5.4 ±0.5 13.1 ±0.3 - 5.4±0.6

15. Archisotoma besselsi (A.S.Packard, 1877) 7.1±0.5 - 14.1±0.3 6.1±0.3 - 12.4±0.6

16. Vertagopus cinereus (H.Nicolet, 1842) - 13.2 ±0.3 5.2 ±0.4 - 11.6 ±0.4 3.8±0.1

17. Agrenia bidenticulata (T.Tullberg, 1877) 93.1 ±0.6 17.1 ±0.3 29.1 ±0.4 63.1 ±0.4 17.1 ±0.2 31.1 ±0.1

18. Pseudofolsomia acanthella (Martynova, 1967) 13.1 ±0.1 4.7 ±0.3 - 13.2 ±0.3 5.6 ±0.2 -

19. Folsomides parvulus (Stach, 1922) 8.4 ±0.3 13.1 ±0.2 - 9.1 ±0.6 11.2 ±0.3 -

20. Pseudisotoma sensibilis (T.Tullberg, 1877) 12.7 ±0.3 9.1 ±0.4 - 12.6 ±0.6 9.1 ±0.3 -

21. Isotomodes productus (W.MAxelson, 1906) 7.4 ±0.6 4.1 ±0.4 - 8.1 ±0.6 3.5 ±0.3 -

22. Isotomiella minor (Schäffer, 1896) 5.3 ±0.3 9.1 ±0.5 - 5.4 ±0.5 9.9 ±0.6 -

23. Metisotoma grandiceps (Reuter, 1891) 13.1 ±0.3 5.2 ±0.4 - 12.4 ±0.3 4.1 ±0.1 -

24. Heteromurus nitidus (R.Templeton, 1836) 72.7 ±0.7 46.2 ±0.3 32.1 ±0.6 63.1 ±0.4 34.8 ±0.6 30.2 ±0.3

25. Tomocerus sibiricus (Reuter, 1891) 14.1±0.3 4.1±0.2 - 10.2±0.6 3.1±0.3 -

Figure 1. Diversity indicing of Collembola by Soil layers (Sh_0-10_SL, - 0-10 cm soil layer of Shahrisabz district, Y_0-10 cm_SL - 0-10 cm soil layer of Yakkabog district)

Conclusion

In conclusion, it is important to highlight that within the soil fauna of agrocenoses established around gas extraction and processing centers in the Kashkadarya region, certain species such as Ornithonyssus bursa, Geratoppia quadridentate, Furcoribula furcillata, Perlohmannia altaica, Liochtkonius

kirghisicus, Asiacarius elongatus, Liochthonius hystricinus, Sultroribula dentata, Epilohmannia cylindrica, and Michelia paradoxa play a significant role as bioindicators. These species exhibit low abundance in soil layer A due to the presence of acidic gases resulting from the combustion of various gases, which

create acidic conditions upon References

1. Бабенко А.Б. К фауне ногохвосток (Hexapoda, Collembola) острова Врангеля // Зоологический журнал.-Москва, 2010. Т. 89. №. 7. - С. 804-816.

2. Hopkin, S.P. A Key to the Collembola (springtails) of Britain and Ireland / S.P. Hopkin. - Aidgap, FSC publications, 2007. - 252 p.

3. Raximov M.Sh., Elmuratova Z.U. Fauna and seasonal dynamics of the collembolans of Uzbekistan //International Journal of Advanced

precipitation and enter the soil. Science and Technology. Avstralya. 2019 vol. 28. -№14. p.68-87.

4. Raximov M.Sh., Elmuratova Z.U. Distribution and seasonal dynamics of soil collembolan in the soils of southern regions of // European science review,Premier Publishing s.r.o. Vienna. 2018. - №9-10. - P. 28-31.

5. Rakhimov Matnazar Shomurotovich, Azimov Djaloluddin Azimovich Ecological - taxonomical analysis of collembolans of the northeast of Uzbekistan // European science review, Premier Publishing s.r.o. Vienna. No. 3-4. 2019 - P. 9 -11.

i Надоели баннеры? Вы всегда можете отключить рекламу.