Научная статья на тему 'Cинтез оптимальных по быстродействию систем высокого порядка'

Cинтез оптимальных по быстродействию систем высокого порядка Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
538
82
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОПТИМАЛЬНЫЕ СИСТЕМЫ / МЕТОД ФАЗОВЫХ ТРАЕКТОРИЙ / БЫСТРОДЕЙСТВУЮЩИЕ СИСТЕМЫ / OPTIMAL SYSTEM / METHOD OF PHASE TRAJECTORIES / TIME OPTIMAL SYSTEMS

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Замятин Д. В., Ловчиков А. Н.

Исследованы возможности синтеза систем автоматического регулирования, описываемых системами дифференциальных уравнений третьего и четвертого порядка, оптимальных по быстродействию. Выполнен анализ существующих разработок для создания систем высокого порядка, оптимальных по быстродействию. Представлена простая методика синтеза, основанная на методе фазовых траекторий. Предлагаемая методика включает в себя все этапы создания оптимальной по быстродействию системы от исходного описания в виде дифференциального уравнения или передаточной функции до формирования корректирующего звена. Сложность создания системы высокого порядка, оптимальной по быстродействию, заключается в необходимости иметь для управления информацию о n – 1 производных, где n – порядок системы дифференциальных уравнений. Однако технически получить такую информацию практически невозможно. Предлагается способ создания устройства для получения необходимой информации при синтезе систем высокого порядка, оптимальных по быстродействию

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

SYNTHESIS OF TIME OPTIMAL SYSTEMS OF HIGH ORDER

The purpose of the work is to study the possibility of the synthesis of systems of automatic control described with time optimal systems of differential equations of the third and the fourth order. The authors analyze the existing investigations for creation of time optimal systems of high order and present a simple synthesis strategy based on the method of the phase trajectories. The proposed strategy includes all the stages of creation of the time optimal system, from the input description in the form of a differential equation or a transfer function to formation of a correcting section. The creation of time optimal system of higher-order is challenging to obtaining the information about the n – 1 derivatives, where n is the order of the system of differential equations. However, to obtain such information technically is practically impossible. The article proposes a way to create a device for obtaining the necessary information with the synthesis of time optimal systems of high order.

Текст научной работы на тему «Cинтез оптимальных по быстродействию систем высокого порядка»

3. Lyuger D. F. Iskusstvennyj intellekt: strategii i me-tody resheniya slozhnyx problem (Artificial Intelligence: Strategies and methods to solvedifficult problems). Moscow, Vilyams, 2002.

4. Berman A. F., Nikolajchuk O. A., Pavlov A. I., Yu-rin A. Yu. Materialy XII mezhdunarodnoj konferencii po

vychislitelnoj mexanike i sovremennym prikladnym pro-grammnym sistemam (Materials XII Intern. Conf. on ComputationalMechanics andAdvanced Applied). Vladimir, June 30 - July 5, 2003. Moscow, vol. 2, pp. 110-111.

© Жуков В. Г., Шаляпин А. А., 2013

УДК 621.31:681.5

СИНТЕЗ ОПТИМАЛЬНЫХ ПО БЫСТРОДЕЙСТВИЮ СИСТЕМ ВЫСОКОГО ПОРЯДКА

Д. В. Замятин1, А. Н. Ловчиков2

Сибирский федеральный университет Россия, 660074, Красноярск, ул. Академика Киренского, 28. E-mail: [email protected] 2Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева Россия, 660014, Красноярск, просп. им. газ. «Красноярский рабочий», 31 Е-mail: [email protected]

Исследованы возможности синтеза систем автоматического регулирования, описываемых системами дифференциальных уравнений третьего и четвертого порядка, оптимальных по быстродействию. Выполнен анализ существующих разработок для создания систем высокого порядка, оптимальных по быстродействию. Представлена простая методика синтеза, основанная на методе фазовых траекторий. Предлагаемая методика включает в себя все этапы создания оптимальной по быстродействию системы от исходного описания в виде дифференциального уравнения или передаточной функции до формирования корректирующего звена. Сложность создания системы высокого порядка, оптимальной по быстродействию, заключается в необходимости иметь для управления информацию о n - 1 производных, где n - порядок системы дифференциальных уравнений. Однако технически получить такую информацию практически невозможно. Предлагается способ создания устройства для получения необходимой информации при синтезе систем высокого порядка, оптимальных по быстродействию.

Ключевые слова: оптимальные системы, метод фазовых траекторий, быстродействующие системы.

SYNTHESIS OF TIME OPTIMAL SYSTEMS OF HIGH ORDER

D. V. Zamjatin1, A. N. Lovchikov2

1 Siberian Federal University 28 Kirenskiy st., Krasnoyarsk, 660074, Russia. E-mail: [email protected]

2Siberian State Aerospace University named after academician M. F. Reshetnev 31 “Krasnoyarskiy Rabochiy” prosp., Krasnoyarsk, 660014, Russia. Е-mail: [email protected]

The purpose of the work is to study the possibility of the synthesis of systems of automatic control described with time optimal systems of differential equations of the third and the fourth order. The authors analyze the existing investigations for creation of time optimal systems of high order and present a simple synthesis strategy based on the method of the phase trajectories. The proposed strategy includes all the stages of creation of the time optimal system, from the input description in the form of a differential equation or a transfer function to formation of a correcting section. The creation of time optimal system of higher-order is challenging to obtaining the information about the n - 1 derivatives, where n is the order of the system of differential equations. However, to obtain such information technically is practically impossible. The article proposes a way to create a device for obtaining the necessary information with the synthesis of time optimal systems of high order.

Keywords: optimal system, method of phase trajectories, time optimal systems.

При решении задачи создания системы высокого порядка, оптимальной по быстродействию, и наличии ограничений на управляющее воздействие |Ц| < итах структурная схема системы в соответствии с принципом максимума Понтрягина [1-4] представлена на рисунке, где ^оуг(р) - передаточная функция объекта управления; РЭ - релейный элемент, обеспечивающий ступенчатое изменение управляющего воздействия и от -итах до +итах и наоборот; УП - устройство переключения, реализующее определенную функцию переключения релейного элемента £(е) в функции ошибки системы. Необходимо определить вид и параметры функции £(е), при которой система переходит из одного устойчивого состояния в другое за минимальное время.

В дальнейшем под системами высокого порядка будем понимать системы третьего и четвертого порядка. Методика синтеза оптимальных по быстродействию систем второго порядка хорошо изучена и не представляет сложностей [1]. Но для систем высокого порядка не существует простой и четко сформулированной методики синтеза несмотря на то, что различные разработки в этой области ведутся уже давно. Имеющиеся разработки сводятся к получению либо частных решений, либо сложных математических выражений, практически нереализуемых.

В общем случае закон оптимального управления формируется в виде нелинейной зависимости управляющего воздействия от вектора состояния системы или, в данном случае, вектора ошибки системы, определяемого выражением

ио.у = ита^и^е)]. (1)

Задача нахождения оптимального управления иоу сводится к отысканию функции переключения £(е). Релейный элемент переключается тогда, когда функция переключения меняет знак, отсюда уравнение переключения имеет вид

ад = о. (2)

Данное уравнение для систем второго порядка определяет линию в фазовом плоскости, для систем

третьего порядка - поверхность, а для систем порядка выше третьего - гиперповерхность в координатах «ошибка и ее производные».

Для систем второго порядка это, как правило, линии второго порядка типа параболы, эллипса или скручивающейся спирали. Аналитически получить уравнение подобной линии переключения в большинстве практических случаев не удается. Приходится прибегать к аппроксимации, т. е. сначала, используя информацию о математическом описании объекта управления, рассчитывать фазовые траектории системы относительно ошибки и ее производной для и = +итах и и = -итах, а затем по полученным дан-

ным осуществлять аппроксимацию, задаваясь видом аппроксимирующего уравнения, и таким образом получать уравнение переключения £(е). Если в этом случае аппроксимирующее выражение представлено в виде прямой линии, то полученный закон управления и систему называют квазиоптимальной, т. е. для одного задающего воздействия система оптимальна, для остальных - близка к оптимальной [1-4]. Квази-оптимальная система практически легко реализуема.

Если подобную методику распространить на системы третьего и четвертого порядков, то в первом случае необходимо аппроксимировать поверхность переключения плоскостью, во втором - аппроксимировать гиперповерхность гиперплоскостью. В общем случае уравнение переключения должно иметь вид

£ (е) = Х а 8« (3)

/=0

где ai - параметры; е(1) - /-я производная ошибки системы; п - порядок системы.

Однако если для систем второго порядка задача определения уравнения линии переключения достаточно проста и описана в ряде источников, то для систем более высокого порядка она существенно усложняется. И для систем третьего и четвертого порядка практически невозможно представить, как гиперплоскость должна пересекать гиперповерхность.

В данной статье приведены результаты исследования возможностей построения оптимальной по быстродействию системы, когда объект управления описывается дифференциальным уравнением третьего и четвертого порядка, и приводятся рекомендации по проектированию подобных систем при различных параметрах уравнений объекта управления.

Предлагаемая методика синтеза систем высокого порядка, оптимальных по быстродействию [5], состоит из следующих этапов.

При проведении исследований предполагалось, что объект управления описывается дифференциальным уравнением

) = ки^), (4)

/=0

где у(/)(0 - /-я производная выходной координаты; п -порядок уравнения.

Поскольку гиперповерхность рассматривается в координатах «ошибка и п - 1 производные ошибки», то точки на подобной гиперповерхности находятся в результате решения дифференциального уравнения относительно ошибки:

X с/е(/) (/) = с0Узад - ки(1). (5)

/ =0

Є УП РЭ и И'о.у(р)

ад

Структурная схема

У.

У

Описание поверхности переключения следует находить в виде набора точек в п-мерном фазовом пространстве. В этом случае необходимо решать систему дифференциальных уравнений с применением принципа «обратного времени» на определенном интервале времени /0 - 4. Сложность решения последующей задачи аппроксимации при удовлетворении требования квазиоптимальности определяется значением 4. Чтобы получить наилучший результат, выбираем границу интервала времени 4 исходя из порядка системы и вида корней характеристического уравнения объекта управления.

Проведенные исследования выявили следующие результаты:

1) для системы третьего порядка:

а) три отрицательных действительных корня: 4 ~ (1.. .1,5т), где т - коэффициент, вычисляемый как

т = ФП, (6)

здесь сп - коэффициент при старшей производной дифференциального уравнения системы; п - порядок системы;

б) один отрицательный действительный корень и два отрицательных мнимых: 4 ~ (3 .4т);

2) для системы четвертого порядка:

а) четыре отрицательных действительных корня: 4~ (2,5.4т);

б) четыре отрицательных мнимых корня: 4 ~ (3.4,5т).

в) два отрицательных действительных корня и два отрицательных мнимых корня: в системе происходят автоколебания.

Если определены границы интервала решения системы дифференциальных уравнений, то встает вопрос о разбиении этого интервала. От количества точек на интервале зависит точность решения системы дифференциальных уравнений и время вычисления. Малое количество точек приведет к тому, что синтезируемая система будет не оптимальна по быстродействию, а большое - к чрезмерному времени вычисления решения. В результате многократного решения различных вариантов систем дифференциальных уравнений можно сформулировать следующую рекомендацию: достаточное количество точек на интервале решения равно 100, что позволяет получить точность решения на втором этапе до сотых долей значения коэффициентов: увеличение количества точек

до 1 000 приводит к повышению точности решения до тысячных долей значений коэффициентов.

Далее рассмотрим возможные значения корней характеристического уравнения объекта управления Жоу, применительно к разработанной методике, т. е. если применять данную методику, то какими могут быть значения корней характеристического уравнения объекта управления, чтобы гарантированно получить систему, оптимальную по быстродействию. Очевидно, что применимость разработанной методики не может зависеть от конкретных значений корней характеристического уравнения, поэтому в первую очередь следует обратить внимание на применимость в зависимости от порядка корней. Все результаты данных исследований сведены в таблицу.

На втором этапе методики проводится аппроксимация поверхности переключения некоторым аналитическим выражением с использованием уже имеющихся точек поверхности. Остановимся на выборе выражения для аппроксимации.

Выбор выражения для аппроксимации влияет на сложность реализации коррекции в системе. Поэтому выражение должно быть простым и по возможности близким к реальной поверхности. В литературе предлагается множество различных способов аппроксимации. Рассмотрим основные из них.

В качестве первого способа предлагается способ аппроксимации, основанный на разложении в ряд по функциям одной переменной [3]. Аппроксимация ведется с помощью суммы функций одной переменной:

П

Хф к о( хк X (7)

к=1

где фк0 (хк) - некоторые функции.

Второй способ основан на представлении поверхности переключения отрезком степенного ряда. При этом способе аппроксимации уравнение аппроксимированной поверхности ищется в виде

2

Хп = С10Х1 + ... + Сп0Хп + С11Х1 + ... +

+ С12Х1Х2 + ... + СпіХпХі + ., (8)

где х1, х2, ., хП - переменные; с10, ., сп0, с11, с12, ., с1п -коэффициенты.

Порядок и типы характеристических уравнений

Порядок системы уравнений Варианты корней характеристического уравнения Область применения разработанной методики синтеза (разность порядков корней)

Третий Три действительных Не более трех

Один действительный и два мнимых Не более трех

Четвертый Четыре действительных Не более трех

Четыре мнимых Не более трех

Два действительны и два мнимых Порядки действительных относительно мнимых не более четырех, порядки действительных относительно друг друга не более одного

Третий способ - аппроксимация поверхности переключения с помощью полиномов. А. М. Летовым [4] предложен полином в виде квадратичной формы:

(9)

где х„ ху - переменные; А у - коэффициенты.

Самый простой способ - это аппроксимация полиномом первой степени:

X агхг

(10)

п-1

X ‘

,(г)

(11)

где е(/) - /-я производная ошибки системы; п - порядок системы.

Значения всех производных ошибки известны и требуется найти коэффициенты а. Поэтому формируем нормальную систему метода наименьших квадратов, используя зависимость е0 от остальных производных:

п ( п

XIX

і=0 V г=0

І+к

Л

=Х^

(12)

,(г) =

= 0,

(14)

Передаточная функция звена коррекции (15) лишь теоретически заставляет систему работать нужным образом. На практике реализация передаточной функции, у которой порядок числителя больше порядка знаменателя, не применяется из-за того, что в реальной системе всегда присутствуют различные сигналы шума и применение дифференцирования ведет к потере полезного сигнала. Поэтому реализуем звено коррекции с передаточной функцией

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

П~1

X агр

где х/ - переменные; а/ - коэффициенты.

Применение выражения (10) для аппроксимации поверхности переключения означает аппроксимацию гиперповерхности гиперплоскостью.

Несмотря на серьезное упрощение аналитического выражения поверхности переключения, полином первом степени является наиболее подходящим для систем оптимальных по быстродействию, третьего и четвертого порядка, так как позволяет получить высокие результаты при простом корректирующем устройстве.

Выбор метода аппроксимации не оказывает значительного влияния на точность результатов. Для получения аналитического выражения поверхности переключения можно использовать метод наименьших квадратов. Рассмотрим использование этого метода подробнее.

Выражение (10) при использовании сигнала ошибки примет вид

(16)

X ЬгР'

г=0

Это интегро-дифференциальное звено. Для реализации коррекции необходимо подобрать коэффициенты Ьг в знаменателе таким образом, чтобы на каком-то участке частотной характеристики звено вело себя как дифференцирующее, обеспечивая оптимальность по быстродействию, а на высоких частотах - как обыкновенное усилительное. Предлагается следующая последовательность действий:

1. Вычислим вспомогательный коэффициент аТп _ і

аТп-1 = . (17)

2. Вычислим вспомогательный коэффициент аТп _ 1:

ЬТп~1 =

аТп-1

кр

(18)

где кр _ коэффициент, зависящий от порядка уравнения и его корней.

Проведенные исследования соотношения (18) дали следующие результаты по определению значения кР: для системы второго порядка кр = 10.20; для системы третьего порядка кр = 20.60; для системы четвертого порядка кр = 30.100.

3. Знаменатель передаточной функции (16) сформируем как произведение п _ 1 звеньев

где к = 1, 2, ..., п.

Полученная система (12) - это система алгебраических уравнений относительно неизвестных а0, а1, . , ап. Решение нормальной системы найдем методом Гаусса: а = АЧВ, (13)

где а - вектор коэффициентов уравнения гиперповерхности переключения; А - матрица левой части системы уравнений частных производных; В - вектор правой части системы уравнений частных произ-водных. Сформировав поверхность переключения в виде

X Ьгр =П (ЬТп~1 р + 1).

(19)

г=0

переходим к третьему этапу методики.

Поверхности переключения (14) соответствует звено коррекции с передаточной функцией

Wk(р) = Ха,рг . (15)

Как показывают исследования, формирование знаменателя передаточной функции коррекции (16) в форме (19) облегчает в дальнейшем ее практическую реализацию.

В итоге сформирована передаточная функция корректирующего устройства, обеспечивающего системе квазиоптимальность по быстродействию, которое может быть построено на операционных усилителях.

Таким образом, предложена методика синтеза систем, оптимальных по быстродействию, высокого порядка. Рассмотрено применение разработанной методики для систем, оптимальных по быстродействию, третьего и четвертого порядка. Данная методика достаточно проста и проектирование систем высокого порядка может быть легко автоматизировано с помощью распространенных информационных систем, таких как МаШСАБ и МісгоСар.

г =1

г=0

г =1

г=0

г=0

Библиографические ссылки

1. Александров А. Г. Оптимальные и адаптивные системы. М. : Высш. шк., 1989.

2. Павлов А. А. Синтез релейных систем, оптимальных по быстродействию: Метод фазового пространства. М. : Наука, 1966.

3. Иванов В. А., Фалдин Н. В. Теория оптимальных систем автоматического управления. М. : Наука, 1981.

4. Куропаткин П. В. Оптимальные и адаптивные системы : учеб. пособие для вузов. М. : Высш. шк., 1980.

5. Замятин Д. В., Ловчиков А. Н. Методика синтеза оптимальных по быстродействию систем / Вестник СибГАУ. 2005. Вып. 7. С. 28-30.

References

1. Aleksandrov A. Optimalnyye i adaptivnyye sistemy (Optimal and adaptive systems). Moscow, Vysshaya shkola, 1989, 262 p.

2. Pavlov A. A. Sintez releynykh sistem, optimalnykh po bystrodeystviyu: Metod_ fazovogo prostranstva (Synthesis of relay systems, optimal for speed: Method of the phase space). Moscow, Nauka, 1966, 390 p.

3. Ivanov V. A., Faldin N. V. Teoriya optimalnykh sistem avtomaticheskogo upravleniya (The theory of optimal systems of automatic control). Moscow, Nauka, 1981, 331 p.

4. Kuropatkin P. V. Optimal'nyye i adaptivnyye sistemy (Optimal and adaptive systems). Moscow, Vysshaya shkola, 1980, 287 p.

5. Zamyatin D. V., Lovchikov A. N. Vestnik SibGAU. 2005, № 7, pp. 28-30.

© Замятин Д. В., Ловчиков А. Н., 2013

УДК 321.313 + 004.428

АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ ТОРЦЕВЫХ ГЕНЕРАТОРОВ МОЩНОСТЬЮ ДО 20 КВТ

Е. В. KapneHKO, В. В. KapneHKO, М. П. Головин

Сибиpский фeдepaльный yHrnepcHreT Россия, 660074, Kpaснояpск, ул. Академика К^ен^ого, 26. E-mail: [email protected]

Приводятся основные принципы автоматизированного проектирования активной части низкоскоростного торцевого синхронного генератора для микроГЭС, обзор потребностей рынка в микроГЭС, шаги, предпринятые для ускорения процесса сборки, снижения стоимости изготовления. Используются методы объектноориентированного программирования, динамически подключаемые библиотеки. Результатом работы является программный комплекс «МикроГЭС Проектировщик», который позволяет создать модель в SolidWorks методами автоматизированного проектирования, где каждый параметр рассчитывается исходя из электромагнитной модели и конструктивных ограничений. Областью применения данного программного обеспечения является электроэнергетическое и гидротехническое строительство. Применение данного пакета позволяет сократить время проектирования конструкции микроГЭС, снижая цену изделия.

Ключевые слова: низкоскоростной торцевой синхронный генератор, автоматизация проектирования, мик-роГЭС, программный комплекс, динамическая библиотека.

AUTOMATION OF DESIGN OF BUTT GENERATORS WITH THE CAPACITY UP TO 20 KW

E. V. Karpenko, V. V. Karpenko, M. P. Golovin

Siberian Federal University,

26 Kirenskiy st., Krasnoyarsk, 660074, Russia. E-mail: [email protected]

The article describes the basic principles of computer-aided design of the active part of low speed butt time parallel generators for micro hydro power stations, conducts a survey of the market needs in micro hydro power stations, steps taken to speed up the assembly process and to reduce the cost of manufacturing. We use object-oriented programming, dynamic link libraries. The result of our work is a software package «MHPS-designer» (micro hydro power stations designer) which allows you to create a model in SolidWorks with CAD methods where each parameter is calculated from the electromagnetic model and design constraints. The field of the software application is the energy and hydraulic engineering. Use of this software allows to reduce the time of construction design and to reduce the price of the product.

Keywords: low-speed butt time parallel generator, automated design, micro hydro power station, program complex, dynamic library.

i Надоели баннеры? Вы всегда можете отключить рекламу.