Научная статья на тему 'ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОУПРУГИХ ПОЛЕЙ В ПОВЕРХНОСТНОМ ПЬЕЗОЭЛЕКТРОЛЮМИНЕСЦЕНТНОМ ОПТОВОЛОКОННОМ ДАТЧИКЕ ДЛЯ ДИАГНОСТИКИ ДЕФОРМИРОВАНИЯ КОМПОЗИТНЫХ ПЛАСТИН'

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОУПРУГИХ ПОЛЕЙ В ПОВЕРХНОСТНОМ ПЬЕЗОЭЛЕКТРОЛЮМИНЕСЦЕНТНОМ ОПТОВОЛОКОННОМ ДАТЧИКЕ ДЛЯ ДИАГНОСТИКИ ДЕФОРМИРОВАНИЯ КОМПОЗИТНЫХ ПЛАСТИН Текст научной статьи по специальности «Нанотехнологии»

CC BY
102
31
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПЬЕЗОЭЛЕКТРОУПРУГОСТЬ / МЕХАНОЛЮМИНЕСЦЕНТНЫЙ ЭФФЕКТ / ОПТОВОЛОКНО / ПОВЕРХНОСТНЫЙ ДАТЧИК / КОМПОЗИТ / ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ / PIEZO-ELECTRO-ELASTICITY / MECHANICAL AND LUMINESCENT EFFECT / OPTICAL FIBER / SURFACE SENSOR / COMPOSITE / NUMERICAL MODELING

Аннотация научной статьи по нанотехнологиям, автор научной работы — Паньков А. А., Писарев П. В.

Разработана трехмерная численная модель функционирования пьезоэлектролюминесцентного оптоволоконного датчика, закрепленного на поверхности фрагмента композитной пластины. Расчетная область датчика - оптоволокно с двумя концентрическими оболочками из 6 секторов электролюминесцентного и пьезоэлектрического материалов, два управляющих электрода на межфазных поверхностях: «оптоволокно/электролюминофор» и «пьезоэлектрик/корпус». Корпус выполнен в виде полуэллиптической цилиндрической полимерной оболочки, прямоугольное основание которой закреплено на поверхности стеклопластиковой пластины. В секторах пьезоэлектрической оболочки направления поляризации трансверсально-изотропного полимерного пьезоэлектрика PVDF различны и некомпланарны для любых трех секторов. Деформирование пластины обусловливает деформирование закрепленного на ее поверхности датчика, возникновение в нем информативных пьезоэлектрических полей и, как следствие, появление информативных свечений электролюминесцентных элементов. Искомая информация о сложном деформированном состоянии композитной пластины по длине датчика находится по результатам цифровой обработки интегральных интенсивностей полихромных световых сигналов на выходе из оптоволокна. Представлены новые численные результаты моделирования распределений неоднородных электроупругих полей в многофазном объеме датчика, окружающем его корпусе и внутри фрагмента композитной пластины при простых случаях электрического и механического нагружений. Нагружения системы «датчик - корпус - пластина» осуществлены управляющим электрическим напряжением на электродах датчика и механическим деформированием пластины: растяжениями вдоль поперечной и продольной осей, закручиваниями вокруг данных осей и изгибами в поперечной и продольной плоскостях. Определены численные значения управляющих и информативных передаточных коэффициентов пьезоэлектролюминесцентного оптоволоконного датчика, позволяющие выполнять достоверную и высокоточную диагностику сложного деформирования композитных пластин и осуществлять проектирование датчиков данного типа.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Паньков А. А., Писарев П. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

NUMERICAL MODELING OF ELECTROELASTIC FIELDS IN THE SURFACE PIEZOELECTRIC LUMINESCENT OPTICAL FIBER SENSOR TO DIAGNOSE DEFORMATION OF COMPOSITE PLATES

We developed a three-dimensional numerical model of a piezoelectric luminescent optical fiber sensor fixed on a composite’s plate. The computational region of the sensor is the optical fiber with two concentric (with 6 sectors) shells of electroluminescent and piezoelectric materials, two control electrodes on interface surfaces, such as optical fiber-electroluminophore and piezoelectric-cover. The external sensor’s cover is made in the form of a semi-elliptic cylindrical polymer shell, which rectangular base is fixed on the surface of the fiberglass plate. In the piezoelectric shell sectors, the polarization directions of the PVDF transversal-isotropic polymer piezoelectric are different and non-planar for any three sectors. Deformation of the plate causes deformation of the sensor fixed on its surface, as well as the occurrence of informative piezoelectric fields in it, thus the occurrence of informative glows of electroluminescent elements. As a result, we find the requested information about the combined deformed state of the composite plate along the length of the sensor based on the digital processing of the integral intensities of the polychrome light signals at the output of the optical fiber. In simple cases of electric and mechanical loads, we present new numerical results of simulating the distribution of non-uniform electroelastic fields in the sensor multiphase volume, the sensor’s external cover and inside fragment of the composite plate. Loading of the sensor-covering-plate system is performed by controlling electric voltage on the sensor’s electrodes and the plate’s mechanical deformation by stretching along the transverse and longitudinal axes, as well as by twisting around these axes and bending in transverse and longitudinal planes. Numerical values of the control and informative transfer coefficients of the piezoelectric luminescent optical fiber sensor are determined, which makes it possible to perform a reliable and high-precision diagnostics of complex deformations of the composite plates and design sensors of this type.

Текст научной работы на тему «ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОУПРУГИХ ПОЛЕЙ В ПОВЕРХНОСТНОМ ПЬЕЗОЭЛЕКТРОЛЮМИНЕСЦЕНТНОМ ОПТОВОЛОКОННОМ ДАТЧИКЕ ДЛЯ ДИАГНОСТИКИ ДЕФОРМИРОВАНИЯ КОМПОЗИТНЫХ ПЛАСТИН»

Паньков А.А., Писарев П.В. Численное моделирование электроупругих полей в поверхностном пьезоэлектролюминесцентном оптоволоконном датчике для диагностики деформирования композитных пластин // Вестник Пермского национального исследовательского политехнического университета. Механика. 2020. № 2. С. 64-77. DOI: 10.15593/perm.mech/2020.2.06

Pan'kov A.A., Pisarev P.V. Numerical modeling of electroelastic fields in the surface piezoelectric luminescent optical fiber sensor to diagnose deformation of composite plates. PNRPUMechanics Bulletin, 2020, no. 2, pp. 64-77. DOI: 10.15593/perm.mech/2020.2.06

ВЕСТНИК ПНИПУ. МЕХАНИКА № 2,2020 PNRPU MECHANICS BULLETIN

https://ered.pstu.ru/index.php/mechanics/index

DOI: 10.15593/perm.mech/2020.2.06 УДК 539.3; 531.787.5

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОУПРУГИХ ПОЛЕЙ В ПОВЕРХНОСТНОМ ПЬЕЗОЭЛЕКТРОЛЮМИНЕСЦЕНТНОМ ОПТОВОЛОКОННОМ ДАТЧИКЕ ДЛЯ ДИАГНОСТИКИ ДЕФОРМИРОВАНИЯ КОМПОЗИТНЫХ ПЛАСТИН

А.А. Паньков, П.В. Писарев

Пермский национальный исследовательский политехнический университет, Пермь, Россия

О СТАТЬЕ АННОТАЦИЯ

Разработана трехмерная численная модель функционирования пьезоэлектролюми-несцентного оптоволоконного датчика, закрепленного на поверхности фрагмента композитной пластины. Расчетная область датчика - оптоволокно с двумя концентрическими оболочками из 6 секторов электролюминесцентного и пьезоэлектрического материалов, два управляющих электрода на межфазных поверхностях: «оптоволокно/электролюминофор» и «пьезоэлектрик/корпус». Корпус выполнен в виде полуэллиптической цилиндрической полимерной оболочки, прямоугольное основание которой закреплено на поверхности стеклопластиковой пластины. В секторах пьезоэлектрической оболочки направления поляризации трансверсально-изотропного полимерного пьезоэлектрика PVDF различны и некомпланарны для любых трех секторов. Деформирование пластины обусловливает деформирование закрепленного на ее поверхности датчика, возникновение в нем информативных пьезоэлектрических полей и, как следствие, появление информативных свечений электролюминесцентных элементов. Искомая информация о сложном деформированном состоянии композитной пластины по длине датчика находится по результатам цифровой обработки интегральных интенсивностей полихромных световых сигналов на выходе из оптоволокна. Представлены новые численные результаты моделирования распределений неоднородных электроупругих полей в многофазном объеме датчика, окружающем его корпусе и внутри фрагмента композитной пластины при простых случаях электрического и механического нагружений. Нагружения системы «датчик -корпус - пластина» осуществлены управляющим электрическим напряжением на электродах датчика и механическим деформированием пластины: растяжениями вдоль поперечной и продольной осей, закручиваниями вокруг данных осей и изгибами в поперечной и продольной плоскостях. Определены численные значения управляющих и информативных передаточных коэффициентов пьезоэлектролюминесцентного оптоволоконного датчика, позволяющие выполнять достоверную и высокоточную диагностику сложного деформирования композитных пластин и осуществлять проектирование датчиков данного типа.

© ПНИПУ

Получена: 24 апреля 2020 г. Принята: 12 июня 2020 г. Опубликована: 30 июня 2020 г.

Ключевые слова:

пьезоэлектроупругость, механолюминесцентный эффект, оптоволокно, поверхностный датчик, композит, численное моделирование.

© Паньков Андрей Анатольевич - д.ф.-м.н., доц., e-mail:[email protected], ID: 0000-0001 -8477-5206. Писарев Павел Викторович - к.т.н., доц., e-mail:[email protected], : 0000-0001 -5103-4815.

Andrey A. Pan'kov - Doctor of Physical and Mathematical Sciences, Associate Professor, e-mail: [email protected], : 0000-0001 -8477-5206.

Pavel V. Pisarev - CSc in Technical Sciences, Associate Professor, e-mail: [email protected], : 0000-0001 -5103-4815

Эта статья доступна в соответствии с условиями лицензии Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

NUMERICAL MODELING OF ELECTROELASTIC FIELDS IN THE SURFACE PIEZOELECTRIC LUMINESCENT OPTICAL FIBER SENSOR TO DIAGNOSE DEFORMATION OF COMPOSITE PLATES

A.A. Pan'kov, P.V. Pisarev

Perm National Research Polytechnic University, Perm, Russian Federation

ARTICLE INFO ABSTRACT

We developed a three-dimensional numerical model of a piezoelectric luminescent optical fiber sensor fixed on a composite's plate. The computational region of the sensor is the optical fiber with two concentric (with 6 sectors) shells of electroluminescent and piezoelectric materials, two control electrodes on interface surfaces, such as optical fiber-electroluminophore and piezoelectric-cover. The external sensor's cover is made in the form of a semi-elliptic cylindrical polymer shell, which rectangular base is fixed on the surface of the fiberglass plate. In the piezoelectric shell sectors, the polarization directions of the PVDF transversal-isotropic polymer piezoelectric are different and non-planar for any three sectors. Deformation of the plate causes deformation of the sensor fixed on its surface, as well as the occurrence of informative piezoelectric fields in it, thus the occurrence of informative glows of electroluminescent elements. As a result, we find the requested information about the combined deformed state of the composite plate along the length of the sensor based on the digital processing of the integral intensities of the polychrome light signals at the output of the optical fiber. In simple cases of electric and mechanical loads, we present new numerical results of simulating the distribution of nonuniform electroelastic fields in the sensor multiphase volume, the sensor's external cover and inside fragment of the composite plate. Loading of the sensor-covering-plate system is performed by controlling electric voltage on the sensor's electrodes and the plate's mechanical deformation by stretching along the transverse and longitudinal axes, as well as by twisting around these axes and bending in transverse and longitudinal planes. Numerical values of the control and informative transfer coefficients of the piezoelectric luminescent optical fiber sensor are determined, which makes it possible to perform a reliable and high-precision diagnostics of complex deformations of the composite plates and design sensors of this type.

© PNRPU

Received: 24 April 2020 Accepted: 12 June 2020 Published: 30 June 2020

Keywords:

piezoelectroelasticity, mechanical and luminescent effect, optical fiber, surface sensor, composite, numerical modeling.

Введение

Высокое качество и надежность композитных конструкций аэрокосмического назначения обеспечивается применением современных эффективных методов не-разрушающего контроля геометрических и физико-механических характеристик состояния и свойств на различных структурных уровнях конструкций, в частности, мониторинга возникающих в них существенно неоднородных сложных деформационных и температурных полей, состояния структурных элементов и их межфазных границ, индикации возникновения и идентификации положения, формы и размеров разнообразных технологических дефектов и эксплуатационных микроповреждений [1-12]. Системы диагностики физико-механических полей в композитных конструкциях подразделяются на «внешние», расположенные вне или на поверхности конструкций, и «внутренние», предварительно встроенные в диагностируемые области конструкций на этапе их изготовления. Диагностика появления и идентификации дефектов в композитных конструкциях может проводиться опосредованно через мониторинг и анализ физических и механических деформационных полей внутри конструкций, выявление и пространственную локацию технологических дефектов и/или зон концентраций напряжений с целью предотвращения или контроля разрушения элементов структу-

ры композита. Широкое распространение в дефектоскопии конструкций получили универсальные ультразвуковые методы контроля, которые позволяют определять пористость, плотность, содержание матрицы и наполнителя, степень отверждения матрицы, упругие и прочностные свойства внутри полимерных композитных конструкций из угле-, органо- и стеклопластиков [13]. В частности, метод ультразвуковых фазированных решеток [14] и ультразвуковой резонансный метод позволяют диагностировать размеры, взаимное расположение и глубину залегания дефектов от поверхности конструкции по результатам измерения резонансной частоты преобразователя с учетом влияния на чувствительность метода величины скорости перемещения преобразователя по поверхности диагностируемой конструкции [15]. Результаты физического и математического моделирования дефектов в композитных конструкциях даны в [16, 17], где проведены экспериментальные исследования на образцах из углепластика с искусственными дефектами, имитирующими расслоения различного размера и ударные повреждения, даны рекомендации по контролю качества таких материалов [16] и проведен анализ трехуровневых дефектов структуры в изделиях из полимерных композиционных материалов, возникающих в процессе их производства; показана необходимость разработки математических моделей идентификации наблюдаемых дефектов [17].

Методы диагностики деформационных полей в приповерхностных областях композитных конструкций включают в себя, в частности, тензометрический метод дельта-розеток для определения плоских деформаций локальных участков поверхности исследуемой конструкции [18], методы диагностических покрытий, в качестве которых используются, например:

• диагностическая поверхностная сетка в виде системы пересекающихся окружностей различного диаметра, которая закрепляется на поверхности конструкции, и в результате обработки ее фотоизображений до и после деформирования конструкции делаются выводы о характере и величине деформаций на рассматриваемом участке поверхности конструкции [19];

• двухслойное диагностическое покрытие [20] из слюдопигмента и защитного слоя полимерного материала, которое наносят на участок поверхности конструкции с вероятным возникновением дефекта; появление и развитие дефектов в приповерхностном слое конструкции определяют визуально по изменению оптических свойств диагностического покрытия, и чем меньше размеры частиц слюдопигмента, тем меньший размер повреждений может быть диагностирован данным способом;

• двухслойное диагностическое покрытие [21], в котором внутренний графитизированный слой из по-лиакрилонитрила с углеродными волокнами реагирует изменением своего электрического сопротивления на изменение напряженно-деформированного состояния, а внешний цветовой индикаторный слой из жидкокристаллического полимера способен изменять свой цвет в зависимости от величины проходящего через него тока; к внутреннему графитизированному слою датчика подсоединяют источник тока и определяют напряженно-деформируемое состояние участка диагностируемой конструкции по результатам измерения цветности индикаторного слоя диагностического покрытия;

• диагностическое покрытие [22] из полимерного материала с капсулами красящего вещества наносят на участок поверхности вероятного возникновения дефекта, и появление и/или развитие дефекта на этом участке обусловливает изменение цвета покрытия из-за разрывов капсул с краской;

• диагностическое флюоресцентное покрытие [23] из эластомера с распределенной внутри него системой флюоресцентных частиц, которые обусловливают оптический отклик на деформирование покрытия в виде спектра испускания полимера. Голографические интерференционные методы [24, 25] позволяют определять поля микросмещений точек и далее - микродеформаций поверхности объекта; повышение разрешающей способности и расширение функциональных возможностей этих методов связано с прогрессом развития цифровых устройств фотоэлектрической записи оптических изображений и развитием программных средств их обработки.

Для диагностирования деформированного состояния в приповерхностных областях конструкции находят

применение различные маркеры, внедренные в исследуемый объект. В частности, тактильный датчик поверхностного типа [26] диагностирует геометрическую форму поверхности объекта, вступившей в контакт с прозрачным гибким корпусом датчика, опосредованно, через определение сложной объемной неоднородной деформации корпуса посредством обработки фотоизображений расположенных в нем окрашенных маркеров; плотность расположения цветных маркеров по различным монохромным слоям уменьшается от поверхности контакта по мере приближения к фотокамере для уменьшения теневых зон. Диагностирование поверхностных деформаций конструкций из немагнитных материалов возможно проводить с использованием [27] магнитных маркеров, внедренных в приповерхностный слой конструкции, через измерения внешними датчиками информативных изменений магнитного поля вблизи поверхности с последующим решением обратных задач для нахождения смещений маркеров и искомых поверхностных деформаций исследуемого участка конструкции. Традиционные магнитные методы в основном применяются для диагностики деформирования изделий из ферромагнитных материалов, в частности: метод измерения шумов Баркгаузена основан на связи между намагничиванием ферромагнетика и величиной механических напряжений, метод магнитной анизотропии -на связи анизотропии магнитных свойств с деформацией и метод собственных магнитных полей - на эффекте магнитстрикции ферромагнетика [28]. Эффект фотоупругости использован, в частности, в тензометрическом датчике поверхностных деформаций [29]; датчик имеет форму цилиндра и закрепляется торцевым сечением на поверхности контролируемой конструкции, деформирование которой обусловливает деформирование фотоупругого элемента внутри датчика и возникновение дополнительной разности фаз между взаимно перпендикулярными компонентами поляризации луча, проходящего сквозь фотоупругий элемент и, как следствие, изменение электрического сигнала на выходе фотоприемника; сигнал регистрируется, обрабатывается и выводится на индикаторную панель.

Поверхностные оптоволоконные датчики с брэггов-скими решетками [30-32] присоединяются к внешним поверхностям исследуемых деформируемых конструкций с обеспечением дополнительной термокомпенсации или термоизоляции датчика на участке контакта с поверхностью конструкции. Возможности численного моделирования функционирования датчика с брэггов-скими решетками в пакете А№У8 продемонстрированы в [32], где представлены результаты расчета деформационных полей в системе «подложка - клей -оптоволоконный датчик» по линейной теории термо-вязкоупругости. Различные сенсорные сети и интеллектуальные композиционные материалы рассмотрены в [33-36], при этом в [34] даны основные типы сенсорных элементов, проанализированы их преимущества

и недостатки с точки зрения интеграции в структуру полимерных композиционных материалов и показаны возможности применения интеллектуальных композиционных материалов с интегрированными волоконно-оптическими сенсорами с брэгговскими решетками в качестве датчиков деформации. Cеть из оптоволоконных брэгговских решеток [34-36] может размещаться в приповерхностном слое композитной конструкции в процессе изготовления, что позволяет определять величины и локации деформаций в различных локальных областях конструкции за счет использования массивов брэгговских решеток на прямой и поперечной оптоволоконных линиях. Тенденции развития распределенных волоконно-оптических сенсорных систем рассмотрены в обзорной работе [37], где исследованы направления развития распределенных волоконно-оптических сенсорных систем и способы обработки диагностической информации.

Перспективными являются датчики на основе «ме-ханолюминесцентного эффекта» - светоотдачи при механическом воздействии, который может проявляться как для однородных [38], так и для композитных с пьезоэлектрической и электролюминесцентной фазами [39, 40] материалов. Для визуализации и мониторинга динамической вибрационной нагрузки механолюминесцент-ный эффект использован в конструкции композитного датчика, в котором механолюминесцентный эффект появляется в результате связи пьезоэлектрического и электролюминесцентного эффектов у различных фаз и интенсивность свечения зависит от величины и частоты вибрации [40]. В [41-43] предложены новые пьезо-электролюминесцентные оптоволоконные датчики [44], внедряемые (в частности, на этапе производства композитной конструкции) внутрь [41, 42] или установливае-мые на внешней поверхности [43] диагностируемой области, для уточненного мониторинга давления [41, 45] и сложного объемного напряженно-деформированного состояния внутри композитных конструкций [42, 46, 47] с использованием алгоритмов [45, 46] обработки приемником-анализатором интенсивностей интегральных оптических сигналов на выходе из оптоволокна датчика. Информативные световые сигналы возникают на локальных участках датчика в силу механолюминес-центного эффекта, обусловленного взаимодействием пьезоэлектрического и электролюминесцентного элементов датчика, и передаются по оптоволокну к приемнику-анализатору; наличие управляющих электродов позволяет [45, 46] диагностировать локации неоднород-ностей температурных и деформационных полей в композитных конструкциях.

Цель - разработка трехмерной численной модели в ANSYS функционирования пьезоэлектролюминесцент-ного оптоволоконного поверхностного датчика [43], закрепленного на поверхности композитной пластины, численный анализ существенно неоднородных связанных электроупругих полей в системе «пластина -датчик в корпусе» и нахождение численных значений

управляющих и информативных передаточных коэффициентов датчика для диагностирования сложного пространственного деформирования композитных пластин.

1. Математическая модель датчика

Датчик (рис. 1) [43, 44] предназначен для диагностирования распределения (по длине датчика) характеристик сложного пространственного напряженно-деформированного состояния, в частности: результирующих осевых усилий N, N, крутящих Мх х, М33 и изгибных М13, М31 моментов в сечениях пластин

и оболочек по результатам обработки приемником-анализатором интенсивностей интегральных световых сигналов /],..., /6 на выходе из оптоволокна 1 датчика.

Датчик представляет в целом однородное по своей длине «слоистое волокно», состоящее из центрального оптоволокна 1 с электролюминесцентным 2 и пьезоэлектрическим 3 коаксиальными слоями, при этом оптоволокно 1 и электролюминесцентный слой 2 разделены «внутренним» светопрозрачным или перфорированным управляющим электродом 4, а на поверхности пьезоэлектрического слоя 3 расположен «внешний» управляющий электрод 5. Датчик размещен внутри корпуса 6, выполненного, например, в виде внешней однородной полуэллиптической цилиндрической защитной оболочки, посредством которой происходит передача на чувствительные пьезоэлектрические элементы 3 датчика информативных деформационных полей от диагностируемого сложного пространственного напряженно-деформированного состояния композитной пластины 7 через границу механического контакта пластины 7 с основанием корпуса 6.

Ii,..., I(

3 5

{за а

N1

Рис. 1. Поверхностный датчик пространственного деформирования пластин и оболочек

Fig. 1. The superficial sensor of 3D deformation of plates and shells

Электролюминесцентный 2 и пьезоэлектрический 3 слои разделены общими для обоих слоев радиально-продольными границами на геометрически равные n «измерительные элементы» - цилиндрические двухслойные секторы, число которых равно числу n диагностируемых характеристик деформированного состоя-

ния пластины, в частности п = 6 (см. рис. 1). В измерительных элементах направления ё . пространственных

поляризаций пьезоэлектрических фаз (пьезоэлементов) и частоты светоотдач электролюминесцентных фаз различны по всем п секторам; направления поляризаций пьезоэлементов для случая п > 3 задаются из условия некомпланарности направлений поляризаций для произвольных трех секторов датчика, у = 1, п. Пьезоэлектрические элементы могут представлять собой различные или один и тот же пьезоэлектрик, например транс-версально-изотропный полимерный материал РУОБ, но с различными пространственными направлениями ё ■

поляризации по секторам (рис. 2) [46, 47]; направление поляризации является осью симметрии трансверсально-изотропного пьезоэлектрика РУОБ. Координаты ^у

единичных направляющих векторов ё^ заданы в осях

'1,2,3

декартовой системы координат в виде

d( j = cos 0 j

d( j)1 = cos фj sin 0j , d( j)2 = sin ф j sin 0 j через значения ориентационных углов фj, 0j сферической системы координат: ф = 0, ф26=±п /3 , Фз 5 = ±2п / 3 , ф4=я , 0= 0, 023=л: / 3 , 03 5 = л / 6 , 04=п /2 (см. рис. 2), координатная ось z = ' совмещена с осью оптоволокна. На рис. 2, а даны расположения контрольных точек (•) для снятия электрических потенциалов ф 6 при нахождении численных значений передаточных коэффициентов датчика.

Г2

Г3 1

4 и

Г1

d2 i di d4 P^PC

d5

а б

Рис. 2. Расположения контрольных точек (•), нумерация (а) и направления поляризаций dj (б) пьезоэлектрических секторов

Fig. 2. Control points, numbering (a) and of polarization directions dj (b) of piezoelectric sectors

Для произвольного с продольной координатой r3 поперечного сечения датчика результирующие электрические напряжения ^люм( j на электролюминесцентном

элементе в j-м круговом секторе (см. рис. 1) представим линейным разложением

илюм( j) = 2 as( j,k)Sk + aU(Л^упр k=1

(1)

по заданным значениям управляющего электронапря-

*

жения иупр и искомым компонентам ек обобщенных макродеформаций £* локального элементарного участка композитной пластины с этой координатой г3 , У, к = 1, п. Управляющие а^(у) и информативные яЕ(у к)

передаточные коэффициенты датчика (1) зависят от его геометрических и электроупругих характеристик, ори-

ентаций направлений поляризаций ё в секторах пьезоэлектрического слоя и, дополнительно, от эффективных анизотропных электроупругих свойств композитной пластины с учетом ориентаций главных осей анизотропии пластины относительно продольной оси датчика. Информативные передаточные коэффициенты датчика аЕ(у) определяются экспериментально или в результате

численного моделирования для простых случаев макродеформирования пластины (т.е. с одной ненулевой ком*

понентой £ ) с прикрепленным к ней датчиком. При этом в каждом таком «простом» на макроуровне случае в объеме датчика реализуется существенно неоднородное сложное напряженно-деформированное состояние, обусловленное в том числе различными пространственными ориентациями главных осей анизотропии (направлениями поляризаций ё ) для различных локальных участков (шести круговых секторов) пьезоэлектро-люминесцентного слоя (см. рис. 2, б) датчика.

Буферная прослойка корпуса 6 (см. рис. 1) обеспечивает чувствительность измерительных пьезоэлектрических элементов 3 датчика лишь к макроскопической

или «плавной» составляющей £ стохастических быст-роосциллирующих полей деформирования композитной пластины [48, 49], что исключает «паразитное влияние» на результаты измерений случайных пульсаций, обусловленных стохастическим характером композитной структуры пластины в окрестности участка контакта пластины 7 с основанием корпуса 6 датчика. Эффект «фильтрации» буферной прослойкой показаний датчика от пульсаций, вызванных композитной структурой пластины, обусловлен «принципом локальности» [49], согласно которому область возмущений деформационных полей (в окрестности неоднородности) имеет локальный характер. Предполагается, что характерный размер неоднородностей, в частности диаметр поперечных сечений волокон, в композитной пластине значительно меньше толщины пластины и в несколько раз (три или более) меньше толщины, ширины буферного слоя датчика. Оптимизация характерных размеров буферного слоя для различных типов структур через оценку и минимизацию паразитного влияния на показания датчика вариаций расположения элементов структуры (волокон) в композитной пластине может быть осуществлена на основе численного моделирования с использованием расчетной схемы системы «пластина - датчик», в кото-

3

2

1

4

n

рой область композитной пластины представлена гетерогенной кусочно-однородной областью типа «матрица - волокна» с различными реализациями в расположении волокон. Для оценки точности осуществляется сопоставление разброса полученных значений результатов расчета показаний датчика, обусловленного различными реализациями в расположении волокон в композитной пластине, с соответствующим результатом расчета показаний датчика с заменой композитной пластины областью с эффективными электроупругими свойствами. Для реальной композитной пластины проверка (оценка) инвариантности, как результата «фильтрации» показаний датчика от пульсаций, обусловленных гетерогенностью пластины вблизи ее границы контакта, может быть осуществлена посредством сопоставления и оценки различий показаний нескольких присоединенных к поверхности одной пластины датчиков при однородном простом и/или сложном (комбинированном) случае ее деформирования.

Датчик работает следующим образом. Деформирование £ нагруженной пластины приводит к деформированию закрепленного на ее поверхности датчика (см. рис. 1), в том числе к деформированию его чувствительных пьезоэлектрических, в частности, шести круговых цилиндрических секторных элементов 3 и возникновению в них различных пьезоэлектрических полей. Визуализация этих электрических полей в информативные световые сигналы происходит в результате возникновения на концентрических противолежащих границах круговых секторных электролюминесцентных элементов 2 информативных электрических напряжений с учетом их суммирования с контролируемой составляющей электрического напряжения на концентрических границах электролюминесцентных элементов 2 от действия управляющего электрического напряжения иупр на электродах 4, 5. Считаем, что интенсивности свечений I. электролюминесцентных элементов однозначно связаны некоторой известной S-образной «функцией свечения» с действующими на них величинами электрических напряжений илюм(. (1).

Некомпланарные направления поляризаций в пьезоэлектрических элементах 3 задаются из требования неравенства нулю определителя |А| ф 0 квадратной матрицы Л.к = (1) системы линейных алгебраиче-

п *

ских уравнений £ ое,.к■)ък = А., т.е. из условия

Aj - UjnoM(j) aU(j)Uyiip

k=1

однозначности разложений диагностируемых характеристик деформирования пластины

Ж 1

е, = t a~ А,

k ti e(kj 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(2)

по значениям компонент информативных составляющих

электрических напряжений илюм(.) на концентрических границах электролюминесцентных элементов 2, где компоненты обратной матрицы сТ^ . Значения информативных составляющих электрических напряжений А. (2), (3) на электролюминесцентных элементах,

как функций продольной координаты г3 датчика, рассчитываются по разработанным алгоритмам обработки интенсивностей I 6 (см. рис. 1) интегральных поли-

хромных световых сигналов на выходе из оптоволокна датчика [44-46], где даны примеры численного моделирования процессов диагностирования распределенных полей пьезоэлектролюминесцентными датчиками.

2. Численное моделирование

Рассмотрим математическую модель системы «фрагмент пластины - датчик» (см. рис. 1) с заменой композитной пластины областью с эффективными электроупругими свойствами. Считаем, что на показания датчика оказывают влияние лишь макроскопические составляющие быстроосциллирующих деформационных полей в объеме нагруженной композитной пластины, что обусловлено наличием буферного слоя, и, как следствие, показания датчика будут адекватными при замене (гомогенизации) реальной неоднородной области композитной пластины на однородную область с эффективными свойствами. При этом согласно «структурно-феноменологическому подходу» [49] решение задачи механики для композитной конструкции с эффективными свойствами представляет собой отдельную задачу (уже не связанную с размером неодно-родностей композита) и может быть осуществлено традиционными численными методами механики, в частности методом конечных элементов. На характерный размер неоднородностей (статистически однородно распределенных в представительном объеме) композитной пластины в рассматриваемой модели в целом накладываются следующие условия: размер неоднород-ностей намного меньше толщины пластины, характерных размеров (толщины, ширины) буферного слоя и расстояния «значительного» изменения, в общем градиентных макроскопических деформационных полей. Для оценки и учета влияния (на неоднородное поле макродеформаций композитной пластины и, как следствие, на значения передаточных коэффициентов прикрепленного к ней датчика) градиентов поля макродеформаций в композитной пластине (особенно для случая значительных изменений макродеформаций на масштабе неоднородностей композита) могут быть применены известные методы [50, 51], в частности, асимптотические методы осреднения [50, 52] краевых задач теории упругости для периодических структур

с использованием «эффективных тензоров упругости различных уровней» дополнительно к традиционным тензорам эффективных упругих свойств композита. Отметим, что уточненные значения передаточных коэффициентов датчика с учетом градиентов макродеформаций композитной пластины могут быть найдены экспериментально с использованием реального фрагмента композитной пластины с закрепленным на ее поверхности датчиком.

Численное трехмерное моделирование взаимодействия и распределения неоднородных связанных электроупругих полей в элементах фрагмента системы «пластина - датчик» (см. рис. 1) реализовано для случая, когда датчик содержит шесть измерительных элементов и предназначен для диагностирования мембранных осевых, изгибных и крутильных обобщенных

деформаций £* = {£*,%,9*,93,к*,к3} фрагмента пластины, где мембранные осевые деформации е* = еп,

= е

'33 ,

относительные углы поворотов поперечных

сечений 0* 3 при закручиваниях фрагмента вокруг поперечной r и продольной r осей, кривизны к 3 «изогнутых» осей r 3 нейтрального слоя фрагмента пластины при его изгибах в поперечной rr и продольной r2r3 плоскостях, число измерительных элементов n = 6 (рис. 3). Численное моделирование проведено с использованием многопроцессорного вычислительного комплекса Центра высокопроизводительных вычислительных систем Пермского национального исследовательского политехнического университета в программной системе конечно-элементного анализа ANSYS. Были использованы два вычислительных узла, оснащенных восьмиядерными процессорами IntelXeon E5-2680 и 64 Гб оперативной памяти, в качестве коммуникативной среды - кластерная сеть InfiniBand стандарта 2.0.

а б

Рис. 3. Фрагмент композитной пластины с поверхностным датчиком (а), поперечное сечение датчика (б)

Fig. 3. The composite plate's fragment with the superficial sensor (а), the cross section of the sensor (б)

Были заданы следующие значения геометрических параметров численной модели для фрагмента композитной пластины с поверхностным датчиком (см. рис. 3). Фрагмент композитной пластины имеет форму параллелепипеда с численными значениями длин ребер:

12,5 мм, 4,5 мм, 20,2 мм, ориентированными вдоль соответствующих координатных осей г 2 3; фрагмент датчика длиной 20,2 мм расположен внутри полуэллиптического цилиндрического корпуса с буферным слоем вблизи границы контакта с пластиной, поперечное сечение корпуса - это половина эллипса с главными полуосями 2,25 мм, 4,3 мм вдоль г 2, радиусы концентрических круговых цилиндрических поверхностей: Г(1) = 1 мм, Г(2) = 1,2 мм, г(3) = 1,4 мм; ось датчика направлена по оси г3 и расположена на расстоянии 2,5 мм от основания датчика (поверхности пластины), при этом значения минимальных расстояний от цилиндрической поверхности электрода с радиусом г(3) до поверхности пластины 1,1 мм и до верхней полюсной точки корпуса 0,4 мм; фрагмент датчика с корпусом и буферным слоем прикреплен (с идеальным контактом) своим прямоугольным основанием посередине верхней грани параллелепипеда (пластины).

Электроупругие свойства фаз составного датчика: 1) изотропные упругие свойства оптоволокна были заданы численными значениями модуля Юнга Е^ = 50 ГПа, коэффициента Пуассона = 0,25, диэлектрической проницаемости А,(1) = 7 Х0; 2) изотропные свойства полимерного электролюминофора - Е(2) = 0,8 ГПа, У(2) = = 0,43, Х(2) = 2,3 Х0; 3) трансверсально-изотропные свойства пьезоэлектрика PVDF рассчитывались через главные значения [53] с учетом преобразований [46] для различных направлений поляризаций секторов (см. рис. 2, б); 4) изотропные упругие свойства корпуса с буферной прослойкой из полиэтилена - Е(4) = 0,73 ГПа, У(4) = 0,46,

Х(4) = 0,5 Х0 [54]. Трансверсально-изотропные с осью

симметрии г cвойства фрагмента пластины с эффективными свойствами однонаправленного волокнистого стеклопластика с объемной долей волокон 0,6 [48] задавались через его эффективные модули Юнга

Е = 10,017 ГПа, Е* = 31,217 ГПа, коэффициенты Пуассона у12 = 0,521, у13 = 0,304, модули сдвига С12 = 3,294 ГПа, С13 = 3,581 ГПа,

относительные диэлектрические проницаемости Хп / Х0 = 6,11, Х33 / Х0 = = 6,20. Выполняются условия идеального контакта на всех концентрических цилиндрических и плоских межсекторных межфазных поверхностях с учетом, что на цилиндрических границах с радиусами Г(Г), Г(У) заданы

значения управляющих электрических потенциалов, на внутреннем электроде принимали равенство = 0;

на гранях параллелепипеда электрический потенциал приравнен нулю. На рис. 3 символами (•) показаны места расположений и нумерация контрольных точек

для снятия численных значений электрических потенциалов ф 6 на границе электролюминофор - пьезо-

электрик в серединном поперечном сечении фрагмента датчика при численном моделировании функционирования датчика.

Расчетная область (см. рис. 3, а) была дискретизи-рована на 26 106 конечных элементов, из которых 17,5 106 - для составной области «датчик в корпусе», состоящей из самого датчика и полуэллиптического корпуса с буферным слоем; максимальный размер элемента - 0,2 мм, а минимальный - 0,02 мм. Такая степень дискретизации и призматическая гексагональная форма ячеек были выбраны в результате проведенной оценки сходимости численного решения для каждого расчетного случая (рис. 4-9) и минимизации погрешностей получаемых численных решений. При задании материальных констант определяющих соотношений электроупругости для конечных элементов численной модели в глобальной системе координат ' 2 3 учитывались ориентации осей симметрии трансверсально-изотропных электроупругих свойств: вдоль оси ' - для пластины и вдоль заданных [46, 47] шести различных направлений поляризаций dj 6 секторов пьезоэлектрического

слоя датчика с учетом различных направлений поляризаций секторов (см. рис. 2, б), при этом были использованы формулы преобразования компонент тензоров электроупругих свойств пьезоэлектрических секторов при переходе от их локальных (или главных) осей координат к глобальным осям координат r12 3 [46]. Для решения систем линейный алгебраических уравнений использован итерационный решатель метода сопряженных градиентов JacobiConjugateGradient (JCG) solver, который позволил существенно сократить время счета в сравнении с решателем Sparsedirectequationsolver (SPARSE); время счета для базового варианта задачи составило около 10 ч для SPARSE и 6 ч для JCG.

Для расчета информативных обобщенных деформационных передаточных коэффициентов aE(j) разложения (1) для фрагмента пластины с датчиком (см. рис. 3) последовательно рассматривались (при заданных нулевых значениях управляющих потенциалов на электро*

дах датчика) простые £ обобщенные деформации фрагмента: мембранные деформации е**3 = 105 (см. рис. 4, 5), радиусы кривизн изогнутых осей нейтрального слоя фрагмента пластины р 3 = 1/ к 3 = 1м

при изгибах фрагмента в поперечной гхг2 и продольной г2г3 плоскостях (см. рис. 6, 7), относительные углы поворотов поперечных сечений 0*3 = 1рад/м при закручиваниях фрагмента вокруг поперечной ' и продольной г3 осей (см. рис. 8, 9). Для расчета управляющих передаточных коэффициентов aU(j) разложения (1)

рассматривался случай действия на управляющих электродах датчика единичного электрического напряжения иупр, заданного через электрические потенциалы на

«внутреннем» электроде 0 и на «внешнем» электроде 1 В, для случая отсутствия обобщенных деформаций

£ = 0 (рис. 10), т.е. в отсутствие перемещений точек внешних поперечных сечений фрагмента пластины

с датчиком (см. рис. 3, а). Мембранные осевые дефор-

*

мации е13 задавались через перемещения вдоль осей Г 3 соответствующих боковых сечений фрагмента пластины с закрепленным на ней датчиком (см. рис. 3, а), а изгибы и закручивания - через закрепление одного и приложение изгибающего или крутящего момента (которые обозначены красным цветом на рис. 4-9) к противолежащему ему боковому сечению фрагмента пластины с закрепленным на ней датчиком.

На рис. 4-9 представлены результаты численного моделирования: значения электрических потенциалов с^ 6 в контрольных точках (*) на границе электролюминофор - пьезоэлектрик в серединном (см. рис. 3, а) кольцевом поперечном сечении электролюминесцентного слоя фрагмента датчика (см. рис. 4, а - рис. 9, а), изолинии полей напряжений в характерных сечениях пластины (см. рис. 4, б - рис. 9, б), по внешней цилиндрической поверхности и сечениям датчика (см. рис. 4, в -рис. 9, в) для простых случаев нагружений фрагмента пластины с закрепленным на нем датчиком при «нулевом» значении управляющего электрического напряже-

б в

Рис. 4. Потенциалы ф 6 (а) и поле напряжений azz (б), (в) при растяжении по оси z

Fig. 4. Potentials ф 6 (a) and stress field стгг (b), (c) under tension along axis z

Отсутствие симметрии в значениях электрических потенциалов в контрольных точках и в изолиниях на рис. 4-9 обусловливается отсутствием симметрии для поля электроупругих свойств пьезоэлектрического секторного слоя датчика, в частности, отсутствием плоскостей симметрии, имеющихся для геометрии расчетной области, в результате различных пространственных

ориентаций главных осей анизотропии (направлений поляризаций) для шести различных круговых секторов пьезоэлектролюминесцентного слоя датчика.

б в

Рис. 5. Потенциалы 6 (а) и поле напряжений стхх (б), (в) при растяжении по оси x

Fig. 5. Potentials ф 6 (a) and stress field а xx (b), (c) under tension along axis x

б в

Рис. 6. Потенциалы ф 6 (а) и поле напряжений а^ (б), (в) при изгибе вокруг оси z

Fig. 6. Potentials ф 6 (a) and stress field ахх (b), (c) under bending around axis z

б в Рис. 7. Потенциалы ф 6 (а) и поле напряжений агг (б), (в) при изгибе вокруг оси x Fig. 7. Potentials ф 6 (a) and stress field azz (b), (c) under bending around axis x

б в Рис. 8. Потенциалы ф 6 (а) и поле напряжений а (б), (в) при кручении вокруг оси x

Fig. 8. Potentials ф 6 (a) and stress field а (b), (c) under twisting around axis x

б в Рис. 9. Потенциалы ф 6 (а) и поле напряжений аху (б), (в) при кручении вокруг оси z Fig. 9. Potentials ф 6 (a) and stress field а (b), (c) under twisting around axis z

Рис. 10. Потенциалы ф 6 при приложении управляющего электрического напряжения U = 1 В

Fig. 10. Potentials ф 6 under control electric voltage Uccn = 1V

На рис. 4-9 координатные оси х, у, г соответствуют ранее принятым обозначениям г12 3. На рис. 10 представлены результаты расчета значений электрических потенциалов ф 6 в контрольных точках при приложении управляющего электрического напряжения иупр = 1 В при отсутствии макродеформаций £ = 0.

Таким образом, на практике искомые значения диагностируемых обобщенных мембранных и моментных

деформаций £ композитных пластин становится возможным найти (2) из решения системы линейных алгебраических уравнений

е1105 е*105

[ A]

= {А}

(4)

по найденным компонентам А^ (3) с учетом управляющих коэффициентов датчика аи(.) (1), (3) с численными значениями: 1,0000; 0,99944; 1,0000; 1,0003; 1,0005; 1,0000 для ] = 1, 6 соответственно, где

{А} =

Л(1)

Л(б)

[A] =

-12,287 - 0,565 - 0,379 0,173 - 0,578 -7,793"

- 9,872 2,791 0,356 - 1,049 4,432 0,786

7,137 -2,530 - 2,208 0,721 3,571 7,247

4,413 0,147 - 0,297 - 0,014 7,141 -2,189

26,845 5,316 0,595 - 2,089 -1,510 - 5,564

15,969 - 17,883 - 9,144 4,166 - 9,948 - 5,526

(5)

с определителем | А ф 0, размерности численных значений элементов матрицы [А] (5) в первом и втором столбцах - [В], а в остальных четырех столбцах -[Вм/рад].

При реальном комбинированном нагружении £* фрагмента пластины с датчиком (см. рис. 3, а) значения электрических напряжений А^ (4), (5) на каждом ]-м

электролюминесцентном элементе датчика вычисляются по алгоритмам сканирования [43, 44] через обработку интенсивностей I 6 шести различных (по цветности)

световых сигналов на выходе из оптоволокна датчика. Уточнение численных значений передаточных коэффициентов (5) может быть осуществлено в результате дополнительного учета в математической модели системы

«пластина - датчик» электропроводности фаз, релаксации электрических зарядов и частотных зависимостей характеристик датчика.

Заключение

В пакете прикладных программ ANSYS разработана трехмерная численная модель функционирования пье-зоэлектролюминесцентного оптоволоконного датчика, закрепленного на поверхности фрагмента композитной пластины (см. рис. 1) [43]. Датчик состоит из центрального оптоволокна с оболочкой из коаксиальных сектор-но-составных электролюминесцентного и пьезоэлектрического слоев и размещен внутри внешней защитной оболочки в виде однородного полуэллиптического цилиндрического корпуса с буферным слоем, контактирующим с поверхностью композитной пластины. В датчике между оптоволокном и электролюминесцентным слоем расположен тонкий светопрозрачный «внутренний», а пьезоэлектрический слой покрыт снаружи тонким «внешним» управляющими электродами. Совместное деформирование композитной пластины и закрепленного на ней датчика обусловливает появление в чувствительных пьезоэлектрических элементах датчика информативных пьезоэлектрических полей, которые суммируются с электрическим полем управляющего электрического напряжения на электродах и вызывают различные монохромные свечения электролюминесцентных элементов датчика. Световые потоки проникают через фотопрозрачный внутренний электрод внутрь оптоволокна и далее передаются к приемнику-анализатору на выходе из оптоволокна.

В результате численного моделирования найдены распределения существенно неоднородных электроупругих полей в расчетной области системы «пластина -датчик в корпусе» и найдены численные значения электрических потенциалов ф 6 в контрольных точках на

границе электролюминофор/пьезоэлектрик в серединном кольцевом поперечном сечении электролюминесцентного слоя фрагмента датчика (см. рис. 4-10) при

простых случаях нагружений £ фрагмента пластины, в частности: растяжениях вдоль поперечной и продольной осей, закручиваниях вокруг этих осей и изгибах в поперечной и продольной плоскостях и, дополнительно, при действии единичного электрического напряжения иупр на электродах датчика. Определены численные значения управляющих аи(.) и информативных

аЕ(.) передаточных коэффициентов (1) поверхностного

*

датчика. Диагностирование деформирования £ композитных пластин осуществляется с использованием найденных значений управляющих аи (.) и информативных

аЕ(.) передаточных коэффициентов по алгоритмам

[44-46] обработки интегральных интенсивностей /] 6

полихромных световых сигналов на выходе из оптоволокна датчика. Далее по найденным значениям макродеформаций £ и характеристикам взаимного расположения неоднородностей в композитной пластине, в частности, с использованием периодической, квазипериодической или стохастической моделей рассчитываем по известным формулам [48-50] деформационные поля в элементах структуры пластины, в том числе с учетом градиентов полей макродеформаций на масштабе элементарных стохастических или периодических ячеек структуры [50], что в результате даст возможность осуществить оценку прочности композитной пластины как на ее структурном, так и, в целом, на ее макроуровне.

Благодарности

Результаты получены при выполнении государственного задания Министерства науки и высшего образования Российской Федерации на выполнение фундаментальных научных исследований (проект № FSNM-2020-0026).

Acknowledgments

The results were obtained during the fulfillment of the state task of the Ministry of Science and Higher Education of the Russian Federation for the implementation of fundamental scientific research (project No. FSNM-2020-0026).

Библиографический список

1. Фрайден Дж. Современные датчики: справочник. - М.: Техносфера, 2005. - 592 с.

2. Эткин Л.Г. Виброчастотные датчики. Теория и практика. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. - 408 с.

3. Неразрушающий контроль изделий из полимерных композиционных материалов / А.Н. Аношкин, А.Ф. Сальников, В.М. Осокин, А.А. Третьяков, Г.С. Лузин, Н.Н. Потрахов, В.Б. Бессонов // IV Всероссийская научно-практическая конференция производителей рентгеновской техники. Программа и материалы конференции. - СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2017. - 96 с. - С. 85-90.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4. Application of operational radiographie inspection method for flaw détection of blade straightener from polymeric composite materials / A.N. Anoshkin, V.M. Osokin, A.A. Tretyakov, N.N. Potrakhov, V.B. Bessonov // Journal of Physics: Conference Series. - 2017. - Vol. 808, no. 1. - P. 012003.

5. Технология оперативного рентгеновского контроля изделий из полимерных композиционных материалов / Н.Н. Потрахов, К.К. Жамова, В.Б. Бессонов, А.Ю. Грязнов, А.В. Ободовский // Вестник Пермского национального исследовательского политехнического университета. Аэрокосмическая техника. - 2015. - № 43. - С. 97-115.

6. Карташова Е.Д., Муйземнек А.Ю. Технологические дефекты полимерных слоистых композиционных материалов // Известия высших учебных заведений. Поволжский регион. Технические науки. - 2017. - № 2 (42). - С. 79-89.

7. Классификация дефектов металлических материалов, синтезированных методом селективного лазерного сплавления и методы неразрушающего контроля деталей, полученных по аддитивным технологиям / В.В. Мурашов, М.В. Григорьев, А.С. Лаптев, И.С. Краснов // Аддитивные технологии: настоящее и будущее: сб. докл. II Междунар. конф. - 2016. - С. 37.

8. Мурашов В.В. Контроль качества изделий из полимерных композиционных материалов акустическими методами // Контроль. Диагностика. - 2016. - № 12. - С. 16-29.

9. Мурашов В.В., Румянцев А.Ф. Дефекты монолитных деталей и многослойных конструкций из полимерных композиционных материалов и методы их выявления. Часть 1. Дефекты монолитных деталей и многослойных конструкций из полимерных композиционных материалов // Контроль. Диагностика. - 2007. - № 4. - С. 23-32.

10. Мурашов В.В., Румянцев А.Ф. Дефекты монолитных деталей и многослойных конструкций из полимерных композиционных материалов и методы их выявления. Часть 2. Методы выявления дефектов монолитных деталей и многослойных конструкций из полимерных композиционных материалов // Контроль. Диагностика. - 2007. - № 5. - С. 31-42.

11. Троицкий В.А., Карманов М.Н., Троицкая Н.В. Неразрушающий контроль качества композиционных материалов // Техническая диагностика и неразрушающий контроль. -2014. - № 3. - С. 29-33.

12. Никитина Н.Е., Казачек С.В. Преимущества метода акустоупругости для неразрушающего контроля механических напряжений в деталях машин // Вестник научно-технического развития. - 2010. - № 4 (32). - С. 18-28.

13. Мурашов В.В. Контроль и диагностика многослойных конструкций из полимерных композиционных материалов акустическими методами [Электронный ресурс]. - М.: Спектр, 2016. -344 с. - URL: http://www.idspektr.ru/index.php/home/522-138

14. Неразрушающий контроль ПКМ с использованием фазированных решеток / А.С. Бойчук, А.С. Генералов, А.В. Степанов, О.В. Юхацкова // Промышленные АСУ и контроллеры. - 2013. - № 2. - С. 54-58.

15. Мурашов В.В. Применение ультразвукового резонансного метода для выявления дефектов клееных конструкций. - Авиационные материалы и технологии. - 2018. -№ 1(50). - С. 88-94.

16. Григорьев М.В., Прилуцкий М.А., Щипаков Н.А. Обоснование выбора параметров ультразвукового контроля углепластиков для обнаружения расслоений и ударных повреждений // Машины и установки: проектирование, разработка и эксплуатация. МГТУ им. Н.Э. Баумана. Электрон. журн. - 2015. - № 5. - С. 58-65.

17. Гайдачук В.Е., Коваленко В.А. Уровни дефектов структуры в изделиях из полимерных композиционных материалов, возникающих в процессе их производства // Технология производства летательных аппаратов. Авиационно-космическая техника и технология. - 2012. - № 6(93). - С. 5-12.

18. Мехеда В.А. Тензометрический метод измерения деформаций. - Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2011. - 56 с.

19. Патент RU № 2537105. Способ измерения деформаций / Томилов М.Ф., Томилов Ф.Х., опубл.: 27.12.2014. Бюл. № 36; заявка № 2013102795 от 22.01.2013 г.

20. Патент RU № 2539106. Способ диагностирования состояния конструкции / Баурова Н.И., Зорин В.А., опубл.: 10.01.2015. Бюл. № 1; заявка № 2013126704 от 11.06.2013 г.

21. Патент RU № 2395786. Способ диагностирования состояния конструкции / Баурова Н.И., Зорин В.А., опубл.: 27.07.2010. Бюл. № 21; заявка № 2009120944 от 03.06.2009 г.

22. Патент RU № 2439518. Способ диагностирования состояния конструкции / Баурова Н.И., Зорин В.А., опубл.: 10.01.2012. Бюл. № 1; заявка № 2010146153 от 13.11.2010 г.

23. Патент RU № 2335511. Материал, чувствительный к давлению / Хамнер М.П., Маллигэн Р.Ф., опубл.: 10.10.2008. Бюл. № 28, заявка № 2005117636 от 07.11.2003 г.

24. Цифровая голографическая интерферометрия микродеформаций рассеивающих объектов / О.В. Диков, С.А. Саво-нин, В.И. Качула, О.А. Перепелицына, В.П. Рябухо // Известия Саратовского университета. Серия: Физика. - 2012. -Т. 12, № 1. - С. 12-17.

25. Кузнецов Р.А. Разработка системы неразрушающего контроля на основе методов цифровой голографической интерферометрии: дисс. ... канд. техн. наук. - Новосибирск, 2013. - 117 с.

26. Патент RU № 2263885. Оптический тактильный датчик / Тати С., Кадзимото Х., опубл.: 10.11.2005. Бюл. № 31; заявка № 2003108731 от 30.08.2001 г.

27. Патент RU № 2518616. Способ измерения деформаций объектов из немагнитных материалов и установка для его осуществления / Архангельский П.В., Марценюк М.А., Маш-кин С.В., опубл.: 10.06.2014. Бюл. № 16; заявка № 2011143080 от 26.10.2011 г.

28. Никитина Н.Е., Казачек С.В. Преимущества метода акустоупругости для неразрушающего контроля механических напряжений в деталях машин // Вестник научно-технического развития. - 2010. - № 4 (32). - С. 18-28.

29. Патент RU № 2530467. Тензометрический датчик / Поярков А.В., Федоринин В.Н., Паулиш А.Г., Сущих А.А., Шапор П.И., опубл.: 10.10.2014. Бюл. № 28, заявка № 2013131875 от 09.07.2013 г.

30. Применение оптического волокна в качестве датчиков деформации в полимерных композиционных материалах / Е.Н. Каблов, Д.В. Сиваков, И.Н. Гуляев, К.В. Сорокин, М.Ю. Федотов, Е.М. Дианов, С.А. Васильев, О.И. Медведков // Все материалы. Энциклопедический справочник. - 2010. -№ 3. - С. 10-15.

31. Шардаков И.Н., Созонов Н.С., Цветков Р.В. Экспериментально-теоретические основы автоматизированных систем деформационного мониторинга с использованием волоконно-оптических элементов // Вестник Пермского научного центра. - 2016. - Октябрь-декабрь. - С. 91-95.

32. Наймушин И.Г., Труфанов Н.А., Шардаков И.Н. Численный анализ деформационных процессов в оптоволоконном датчике // Вестник Пермского национального исследовательского политехнического университета. Механика. -2012. - № 1. - С. 104-116.

33. Матвеенко В.П., Федорова В.А., Шардаков И.Н. Теоретическое обоснование возможности построения волоконно-оптической системы мониторинга деформаций земной поверхности // Изв. РАН. МТТ. - 2013. - № 5. - С. 46-52.

34. Возможности сенсорных систем и интеллектуальных ПКМ на их основе / М.Ю. Федотов, К.В. Сорокин, В.А. Гончаров, А.М. Шиенок, П.В. Зеленский // Все материалы. Энциклопедический справочник. - 2013. - № 2. - С. 18-23.

35. Уорден К. Новые интеллектуальные материалы и конструкции. - М.: Техносфера, 2006. - 223 с.

36. Шарапов В.М., Мусиенко М.П., Шарапова Е.В. Пьезоэлектрические датчики. - М.: Техносфера, 2006. - 628 с.

37. Сорокин К.В., Мурашов В.В. Мировые тенденции развития распределенных волоконно-оптических сенсорных систем (Обзор) // Авиационные материалы и технологии. -

2015. - № 3 (36). - С. 90-94.

38. Макарова Н.Ю. Тактильные сенсоры роботов на основе механолюминесцентных датчиков. - Изд-во LAP LambertAcademicPublishing, 2011. - 200 с.

39. Крауя У.Э., Янсонс Я.Л. Механолюминесценция композитных материалов: Методы, аппаратура и результаты исследований / Латв. АН, Ин-т механики полимеров, НИИ физики твердого тела Латв. ун-та. - Рига: Зинатне, 1990. -152 с. - URL: https://search.rsl.ru/ru/record/01001566602

40. Novel mechano-luminescent sensors based on piezoelectric/electroluminescent composites / Y. Jia, X. Tian, Z. Wu, X. Tian, J. Zhou, Y. Fang, C. Zhu // Sensors. - 2011. - No. 4. -P. 3962-3969.

41. Патент RU 2630537.Волоконно-оптический датчик давления / Паньков А.А., опубл. 11.09.2017. Бюл. № 26; заявка №2016136058 от 06.09.2016 г.

42. Патент RU № 2643692. Волоконно-оптический датчик объемного напряженного состояния / Паньков А.А., опубл.: 05.02.2018. Бюл. № 4; заявка № 2017111405 от 04.04.2017 г.

43. Патент RU № 2684001. Датчик вибраций / Паньков А.А., опубл.: 03.04.2019. Бюл. № 10; заявка № 2017137934 от 30.10.2017 г.

44. Pan'kov A.A. Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields // Sensors and Actuators A: Physical. - 2019. - Vol. 288. - P. 171-176.

45. Pan'kov A.A. Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites // Mechanics of Composite Materials. - 2017. - Vol. 53, no. 2. - P. 229-242.

46. Pan'kov A.A. A piezoelectroluminescent fiber-optical sensor for diagnostics of the 3D stress state in composite structures // Mechanics of Composite Materials. - 2018. - Vol. 54, no. 2. - P. 155-164.

47. Паньков А.А., Писарев П.В. Численное моделирование в ANSYS электроупругих полей в пьезоэлектролюминес-центном оптоволоконном датчике диагностирования объемного деформированного состояния композита // Вестник Пермского национального исследовательского политехнического университета. Механика. -2017. - № 3. - С. 153-166.

48. Волков С.Д., Ставров В.П. Статистическая механика композитных материалов. - Мн.: Изд-во Белорус. гос. ун-та, 1978. - 208 с.

49. Соколкин Ю.В., Ташкинов А.А. Механика деформирования и разрушения структурно неоднородных тел. - М.: Наука, 1984. - 115 с.

50. Победря Б.Е. Механика композиционных материалов. - М.: Изд-во Моск. ун-та, 1984. - 336 c.

51. Васильев В.В. Механика конструкций из композиционных материалов. - М.: Машиностроение, 1988. - 264 с.

52. Горбачев В.И. Инженерная теория деформирования неоднородных пластин из композиционных материалов // Механика композиционных материалов и конструкций. -

2016. - Т. 22, № 4. - С. 585-601.

53. Sessler G.M. Piezoelectricity in polyvinylidenefluoride // J. Acoust. Soc. Amer. - 1981. - Vol. 70, no. 6. - P. 1596-1608.

54. Турик А.В., Радченко Г.С. Гигантский пьезоэлектрический эффект в слоистых композитах сегнетоэлектрик-

полимер // Физика твердого тела. - 2003. - Т. 45, № 9. -

References

1. Frajden Dzh., Sovremennye datchiki. Spravochnik [Modern sensors. Reference book]. Moscow, Tekhnosfera, 2005, 592 p.

2. Etkin L.G. Vibrochastotnye datchiki. Teoriya i praktika [Vibrofrequency sensors. Theory and practice]. Moscow, Izd-vo MGTU im. N.E. Baumana, 2004, 408 p.

3. Anoshkin A.N., Sal'nikov A.F., Osokin V.M., Tret'ya-kov A.A., Luzin G.S., Potrahov N.N., Bessonov V.B. Nerazrusha-yushchij kontrol' izdelij iz polimernyh kompozicionnyh materialov [Nondestructive monitoring of designs from polymeric composites]. IV Vserossijskaya nauchno-prakticheskaya konferenciya proizvoditelej rentgenovskoj tekhniki. Programma i materialy konferencii, Saint-Petersburg.: Izd-vo SPbGETU «LETI», 2017, 96 p., pp. 85-90.

4. Anoshkin A.N., Osokin V.M., Tretyakov A.A., Potrakhov N.N., Bessonov V.B. Application of operational radiographic inspection method for flaw detection of blade straightener from polymeric composite materials. Journal of Physics: Conference Series, 2017, vol. 808, no.1, p. 012003.

5. Potrahov N.N., ZHamova K.K., Bessonov V.B., Gryaz-nov A.YU., Obodovskij A.V. Tekhnologiya operativnogo rentge-novskogo kontrolya izdelij iz polimernyh kompozicionnyh materialov [Technology of operating X-ray inspection of designs from polymeric composites]. Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2015, no. 43, pp. 97-115.

6. Kartashova E.D., Mujzemnek A.YU. Tekhnologicheskie defekty polimernyh sloistyh kompozicionnyh materialov [Technological defects of polymeric layered composites]. Izvestiya vysshih uchebnyh zavedenij. Povolzhskij region. Tekhnicheskie nauki, 2017, no. 2 (42), pp.79-89.

7. Murashov V.V., Grigor'ev M.V., Laptev A.S., Krasnov I.S. Klassifikaciya defektov metallicheskih materialov, sintezirovan-nyh metodom selektivnogo lazernogo splavleniya i metody nerazrushayushchego kontrolya detalej, poluchennyh po additive-nym tekhnologiyam [Classification of defects of the metal materials synthesized by method of the selection laser alloyage and methods of nondestructive monitoring of the details received on the additive technologies]. V sb.: «Additivnye tekhnologii: nastoyashchee i budushchee» sbornik dokladov II Mezhdunarodnoj konferencii, 2016, p. 37.

8. Murashov V.V. Kontrol' kachestva izdelij iz polimernyh kompozicionnyh materialov akusticheskimi metodami [Quality control of designs from polymeric composites by acoustic methods]. Kontrol'. Diagnostika, 2016, no. 12, pp. 16-29.

9. Murashov V.V., Rumyancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyyavleniya [Defects of monolithic details and sandwiches from polymeric composites and methods of their identification]. CHast' 1. Defekty monolitnyh detalej i mnogosloj-nyh konstrukcij iz polimernyh kompozicionnyh materialov [Defects of monolithic details and sandwiches from polymeric composites]. Kontrol'. Diagnostika, 2007, no. 4, pp. 23-32.

10. Murashov V.V., Rumyancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyyavleniya [Defects of monolithic details and sandwiches from polymeric composites and methods of their identification]. CHast' 2. Metody vyyavleniya defektov monolit-nyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov [Methods of identification of defects of monolithic details and sandwiches from polymeric composites]. Kontrol'. Diagnostika, 2007, no.5, pp. 31-42.

С. 1676-1679.

11. Troickij V.A., Karmanov M.N., Troickaya N.V. Nerazrushayushchij kontrol' kachestva kompozicionnyh material-lov [Nondestructive quality control of composite materials]. Tekhnicheskaya diagnostika i nerazrushayushchij kontrol, 2014, no. 3, pp. 29-33.

12. Nikitina N.E., Kazachek S.V. Preimushchestva metoda akustouprugosti dlya nerazrushayushchego kontrolya mekhani-cheskih napryazhenij v detalyah mashin [Advantages of method of acoustoelasticity to nondestructive control of mechanical tension in details of designs]. Vestnik nauchno-tekhnicheskogo razvitiya, 2010, no. 4 (32), pp.18-28.

13. Murashov V.V. Kontrol' i diagnostika mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov akusticheskimi metodami [Monitoring and diagnostics of sandwiches from polymeric composites by acoustic methods]. Moscow, Izd.-vo: Izdatel'skij dom "Spektr", 2016, 344 p., http://www.idspektr.ru/index.php/home/ 522-138.

14. Bojchuk A.S., Generalov A.S., Stepanov A.V., Yuhackova O.V. Nerazrushayushchij kontrol' PKM s ispol'zovaniem fazirovannyh reshetok [Nondestructive monitoring of PCM with use of the phased lattices]. Promyshlennye ASU i kontrollery, 2013. no. 2, pp. 54-58.

15. Murashov V.V. Primenenie ul'trazvukovogo rezonansnogo metoda dlya vyyavleniya defektov kleenyh konstrukcij [Application of an ultrasonic resonant method for identification of defects of glued designs]. Aviacionnye materialy i tekhnologii, 2018, no. 1(50), pp. 88-94.

16. Grigor'ev M.V., Priluckij M.A., SHCHipakov N.A. Obosnovanie vybora parametrov ul'trazvukovogo kontrolya ugleplastikov dlya obnaruzheniya rassloenij i udarnyh povrezhdenij [Proof of the choice of parameters of ultrasonic examination of coal plastics for detection of stratifications and shock damages]. Mashiny i Ustanovki: proektirovanie, razrabotka i ekspluataciya. MGTU im. N.E. Baumana. Elektron. zhurn., 2015, no. 5, pp. 58-65.

17. Gajdachuk V.E., Kovalenko V.A. Urovni defektov struktury v izdeliyah iz polimernyh kompozicionnyh materialov, voznikayushchih v processe ih proizvodstva [Levels of defects of structure in designs from the polymeric composites arising in the course of their production]. Tekhnologiya proizvodstva letatel'nyh apparatov. Aviacionno-kosmicheskaya tekhnika i tekhnologiya, 2012, no. 6(93), pp. 5-12.

18. Mekheda V.A. Tenzometricheskij metod izmereniya deformacij [Strain-measuring method of measurement of deformations]. Samara, Izd-vo Samar. gos. aerokosm. un-ta, 2011, 56 p.

19. Patent RU № 2537105. Sposob izmereniya deformacij [Method of strain measurement] / Tomilov M.F., Tomilov F.H., opubl.: 27.12.2014 Byul. № 36; zayavka № 2013102795 ot 22.01.2013 g.

20. Patent RU № 2539106. Sposob diagnostirovaniya sostoyaniya konstrukcii [Method of diagnosing the state of the structure] / Baurova N.I., Zorin V.A., opubl.: 10.01.2015 Byul. № 1; zayavka № 2013126704 ot 11.06.2013 g.

21. Patent RU № 2395786. Sposob diagnostirovaniya sostoyaniya konstrukcii [Method of diagnosing the state of the structure] / Baurova N.I., Zorin V.A., opubl.: 27.07.2010 Byul. № 21; zayavka № 2009120944 ot 03.06.2009 g.

22. Patent RU № 2439518. Sposob diagnostirovaniya sostoyaniya konstrukcii [Method of diagnosing the state of the

structure] / Baurova N.I., Zorin V.A., opubl.: 10.01.2012 Byul. № 1; zayavka № 2010146153 ot 13.11.2010 g.

23. Patent RU № 2335511. Material, chuvstvitel'nyj k davleniyu [Material sensitive to Pressure] / Hamner M.P., Malligen R.F., opubl.: 10.10.2008 Byul. № 28, zayavka № 2005117636 ot 07.11.2003 g.

24. Dikov O.V., Savonin S.A., Kachula V.I., Perepelicyna O.A., Ryabuho V.P. Cifrovaya golograficheskaya interferometriya mikrodeformacij rasseivayushchih ob"ektov [Digital holographic interferometry of microdeformations of the dissipating objects]. Izvestiya Saratovskogo universiteta, 2012, vol. 12, Ser. Fizika, no. 1, pp. 12-17.

25. Kuznecov R.A. Razrabotka sistemy nerazrushayushchego kontrolya na osnove metodov cifrovoj golograficheskoj interferometrii [Development of the system of nondestructive control on the basis of methods of digital holographic interferometry]. Dissert. na soiskanie uchenoj stepeni kand. tekhn. nauk, g. Novosibirsk, 2013, 117 p.

26. Patent RU № 2263885. Opticheskij taktil'nyj datchik [Optical tactile sensor] / Tati S., Kadzimoto H., opubl.: 10.11.2005 Byul. № 31; zayavka № 2003108731 ot 30.08.2001 g.

27. Patent RU № 2518616. Sposob izmereniya deformacij ob"ektov iz nemagnitnyh materialov i ustanovka dlya ego osushchestvleniya [Method of measuring deformations of objects from non-magnetic materials and installation for its implementation] / Arhangel'skij P.V., Marcenyuk M.A., Mashkin S.V., opubl.: 10.06.2014 Byul. № 16; zayavka № 2011143080 ot 26.10.2011 g.

28. Nikitina N.E., Kazachek S.V. Preimushchestva metoda akustouprugosti dlya nerazrushayushchego kontrolya mekhanicheskih napryazhenij v detalyah mashin [Advantages of method of acoustoelasticity to nondestructive control of mechanical tension in details of designs]. Vestnik nauchno-tekhnicheskogo razvitiya, 2010, no. 4 (32), pp.18-28.

29. Patent RU № 2530467. Tenzometricheskij datchik [Tensometric sensor] / Poyarkov A.V., Fedorinin V.N., Paulish A.G., Sushchih A.A., Shapor P.I., opubl.: 10.10.2014 Byul. № 28, zayavka № 2013131875 ot 09.07.2013 g.

30. Kablov E.N., Sivakov D.V., Gulyaev I.N., Sorokin K.V., Fedotov M.YU., Dianov E.M., Vasil'ev S.A., Medvedkov O.I. Primenenie opticheskogo volokna v kachestve datchikov deformacii v polimernyh kompozicionnyh materialah [Use of optical fiber as deformation sensors in polymeric composite materials]. Vse materialy. Enciklopedicheskij spravochnik, 2010, no. 3, pp. 10-15.

31. Shardakov I.N., Sozonov N.S., Cvetkov R.V. Eksperimental'no-teoreticheskie osnovy avtomatizirovannyh sistem deformacionnogo monitoringa s ispol'zovaniem volokonno-opticheskih elementov [Experimental and theoretical bases of the automated systems of deformation monitoring with use of fiber-optical elements]. Vestnik Permskogo nauchnogo centra, 2016, Oktyabr'-dekabr', pp. 91-95.

32. Najmushin I.G., Trufanov N.A., Shardakov I.N. The numerical analysis of deformation processes in the fiber-optic sensor. PNRPUMechanics Bulletin, 2012, no. 1, pp. 104-116.

33. Matveenko V.P., Fedorova V.A., Shardakov I.N. Teoreticheskoe obosnovanie vozmojnosti postroeniya volokonno opticheskoi sistemi monitoringa deformacii zemnoi poverhnosti [Theoretical proving of possibility of creation of fiber-optical system of monitoring of deformations of the land surface]. Izv. RAN. MTT, 2013, no. 5, pp. 46-52.

34. Fedotov M.Yu., Sorokin K.V., Goncharov V.A., Shienok A.M., Zelenskij P.V. Vozmozhnosti sensornyh sistem i intellektual'nyh PKM na ih osnove [Possibilities of sensor systems and intellectual PCM on their basis]. Vse materialy. Enciklopedicheskij spravochnik, 2013, no. 2, pp. 18-23.

35. Uorden K. Novye intellektual'nye materialy i konstrukcii [New intellectual materials and designs]. Moscow, Tekhnosfera, 2006, 223 p.

36. Sharapov V.M., Musienko M.P., SHarapova E.V. P'ezo-elektricheskie datchiki [Piezoelectric sensors]. M.: Tekhnosfera, 2006, 628 p.

37. Sorokin K.V., Murashov V.V. Mirovye tendencii razvitiya raspredelennyh volokonno-opticheskih sensornyh sistem (Obzor) [Global trends in development of the distributed fiber-optical sensor systems (Review)]. Aviacionnye materialy i tekhnologii, 2015, no. 3(36), pp. 90-94.

38. Makarova N.YU. Taktil'nye sensory robotov na osnove mekhanolyuminescentnyh datchikov [Tactile sensors of robots on the basis of mechanoluminescent sensors]. Izd-vo LAP Lambert Academic Publishing, 2011, 200 p.

39. Krauya U.E. Mekhanolyuminescenciya kompozitnyh materialov: Metody, apparatura i rezul'taty issledovanij [Mechanoluminescence of composite materials: Methods, equipment and results of researches]. U. E. Krauya, YA. L. YAnsons; Latv. AN, In-t mekhaniki polimerov, NII fiziki tverdogo tela Latv. un-ta, Riga: Zinatne, 1990, 152 p., https://search.rsl.ru/ru/record/01001566602

40. Jia Y., Tian X., Wu Z., Tian X., Zhou J., Fang Y., Zhu C. Novel mechano-luminescent sensors based on piezoelectric electroluminescent composites. Sensors, 2011, no. 4, pp. 3962-3969.

41. Patent RU 2630537. Volokonno-opticheskij datchik davleniya [Pressure fiber optic sensor]. Pan'kov A.A., opubl. 11.09.2017 Byul. № 26; zayavka no. 2016136058 ot 06.09.2016 g.

42. Patent RU 2643692. Volokonno-opticheskij datchik ob"emnogo napryazhennogo sostoyaniya [Fiber optic sensor of a volume stressed state]. Pan'kov A.A., opubl.: 05.02.2018 Byul. № 4; zayavka no. 2017111405 ot 04.04.2017 g.

43. Patent RU 2684001. Datchik vibracij [Sensor of vibrations]. Pan'kov A.A., opubl.: 03.04.2019 Byul. no. 10; zayavka no. 2017137934 ot 30.10.2017 g.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

44. Pan'kov A.A. Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields. Sensors and Actuators A: Physical, 2019, vol. 288, pp. 171-176.

45. Pan'kov A.A. Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites. Mechanics of Composite Materials, 2017, vol. 53, no. 2, pp. 229-242.

46. Pan'kov A.A. A piezoelectroluminescent fiber-optical sensor for diagnostics of the 3D stress state in composite structures. Mechanics of Composite Materials, 2018, vol. 54, no. 2, pp. 155-164.

47. Pan'kov A.A., Pisarev P.V. Numerical modeling in ANSYS of electroelastic fields in the piezo electro luminescent fiber-optical sensor of the diagnosing of volume deformed state of composite. PNRPU Mechanics Bulletin, 2017, no. 3, pp. 153-166.

48. Volkov S.D., Stavrov V.P. Statisticheskaya mekhanika kompozitnyh materialov [Statistical mechanics of composite materials]. Minsk.: Izd-voBelorus. gos. un-ta, 1978, 208 p.

49. Sokolkin Yu.V., Tashkinov A.A. Mehanika deformirova-niya i razrusheniya strukturno neodnorodnih tel [Mechanics of deformation and destruction of structurally heterogeneous bodies]. Moscow, Nauka, 1984, 115 p.

50. Pobedrya B.E. Mehanika kompozicionnih materialov [Mechanics of composite materials]. Moscow, Izd-vo Mosk. Universiteta, 1984, 336 p.

51. Vasilev V.V. Mehanika konstrukcii iz kompozicionnih materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroenie, 1988, 264 p.

52. Gorbachev V.I. Injenernaya teoriya deformirovaniya neodnorodnih plastin iz kompozicionnih materialov [Engineering theory of deformation of non-uniform plates from composite materials]. Mehanika kompozicionnih materialov i konstrukcii, 2016, vol. 22, no. 4, pp. 585-601.

53. Sessler G.M. Piezoelectricity in polyvinylidenefluoride. J. Acoust. Soc. Amer, 1981, vol. 70, no. 6, pp. 1596-1608.

54. Turik A.V., Radchenko G.S. Gigantskij p'ezoelektiicheskij effekt v sloistyh kompozitah segnetoelektrik-polimer [Huge piezoelectric effect in layered composites a ferroelectric material polymer]. Fizika tverdogo tela, 2003, vol. 45, no. 9, pp. 1676-1679.

i Надоели баннеры? Вы всегда можете отключить рекламу.