Научная статья на тему 'Численно-аналитическое моделирование передачи усилий от балки к пластине'

Численно-аналитическое моделирование передачи усилий от балки к пластине Текст научной статьи по специальности «Регулирующие сооружения. Шлюзы, дамбы, запруды, шпоры»

CC BY
348
29
Поделиться
Ключевые слова
КРАЕВАЯ ЗАДАЧА / ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ / МЕТОД НАЧАЛЬНЫХ ФУНКЦИЙ / КОНСТРУКЦИИ СЛОЖНОЙ КОНФИГУРАЦИИ / ПРОСТРАНСТВЕННАЯ КОНСТРУКЦИЯ

Аннотация научной статьи по водному хозяйству, автор научной работы — Матросов Александр Васильевич

В статье представлен численно-аналитический метод расчета плоских линейно-упругих конструкций сложной конфигурации, основанный на декомпозиции конструкции на прямоугольные области и использовании общего решения для прямоугольника, построенного на основе метода начальных функций. Этот подход применим также и к пространственным конструкциям, элементы которых работают в условиях плоской задачи теории упругости. На примере задачи определения распределения касательных напряжений при передаче усилий от балки усиления к пластине показана применимость развиваемого подхода к расчету пространственных конструкций.

Похожие темы научных работ по водному хозяйству , автор научной работы — Матросов Александр Васильевич,

An algorithm for building a numerical-analytical solution for plane linearly-elastic constructions of irregular shape on basis of its decomposition on rectangular elements and using a general solution for a rectangular area based on a method of initial functions is presented. This approach may be applied to three dimensional constructions all elements of which work as plane ones. Modeling of force transmission from a strengthen beam to a plate has shown an applicability of the developed approach to 3D constructions.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Текст научной работы на тему «Численно-аналитическое моделирование передачи усилий от балки к пластине»

Список литературы

1. Зенкевич О. Конечные элементы и аппроксимация: пер. с англ. / О. Зенкевич, К. Морган. — М., 1986. — 318 с.

2. Александров А. В. Основы теории упругости и пластичности: учебник для строит. спец. вузов / А. В. Александров, В. Д. Потапов. — М.: Высш. шк., 1990. — 400 с.

3. Тимошенко С. П. Теория упругости: пер. с англ. / С. П. Тимошенко, Дж. Гудьер. — М.: Гл. ред. физ.-мат. лит. изд-ва «Наука», 1975. — 576 с.

4. Семенов А. А. Влияние отрицательных температур на напряженно-деформированное состояние стен камер судоходных шлюзов: дис. на соискание ученой степени канд. техн. наук / А. А. Семенов. — СПб.: СПГУВК, 2005.

УДК 519.6+626.4 А. В. Матросов,

канд. техн. наук, доцент, СПГУВК

ЧИСЛЕННО-АНАЛИТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПЕРЕДАЧИ УСИЛИЙ

ОТ БАЛКИ К ПЛАСТИНЕ

NUMERICAL-ANALITIC MODELING OF FORCE TRANSMISSION FROM

A BEAM TO A PLATE

В статье представлен численно-аналитический метод расчета плоских линейно-упругих конструкций сложной конфигурации, основанный на декомпозиции конструкции на прямоугольные области и использовании общего решения для прямоугольника, построенного на основе метода начальных функций. Этот подход применим также и к пространственным конструкциям, элементы которых работают в условиях плоской задачи теории упругости. На примере задачи определения распределения касательных напряжений при передаче усилий от балки усиления к пластине показана применимость развиваемого подхода к расчету пространственных конструкций.

An algorithm for building a numerical-analytical solution for plane linearly-elastic constructions of irregular shape on basis of its decomposition on rectangular elements and using a general solution for a rectangular area based on a method of initial functions is presented. This approach may be applied to three dimensional constructions all elements of which work as plane ones. Modeling offorce transmission from a strengthen beam to a plate has shown an applicability of the developed approach to 3D constructions.

Ключевые слова: краевая задача, плоская задача теории упругости, метод начальных функций, конструкции сложной конфигурации, пространственная конструкция.

Key words: boundary problem, plane elastic problem, method of initial functions, irregular shape structures, 3D constructions.

1. Введение. В работах [1, с. 8-14; 2, с. 20-27] показано применение метода декомпозиции к расчету плоских линейно-упругих систем сложной конфигурации: голова шлюза, балка на слоистом упругом основании. Однако этот подход применим также и к пространственным конструкциям, элементы

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

которых работают в условиях плоской задачи теории упругости. На примере задачи передачи усилий от балки усиления к пластине показана применимость развиваемого подхода к расчету пространственных конструкций.

2. Общее решение для прямоугольной области. В работе [3] разработан и реализо-

Выпуск 4

¡Выпуск 4

ван алгоритм построения общего решения в виде тригонометрических рядов для граничной задачи анизотропного линейно-упругого прямоугольного в сечении тела с размерами (0, И) х (0, a) вдоль координат x и у соответственно, находящегося в условиях плоской деформации или обобщенного плоского напряженного состояния. Общее решение строится на основе метода суперпозиции, предложенного Г. Ламе еще в 1851 г. [4]. Суть его заключается в том, что если имеются два решения, обладающие функциональным произволом для удовлетворения граничным условиям (ГУ) на альтернативных противоположных гранях прямоугольника, то сумма их даст общее решение для всего прямоугольника.

В качестве указанных решений в [3, с. 55-65] используются два решения, построенные методом начальных функций (МНФ). В первом начальные функции задаются на линии х = 0, а во втором — на линии у = 0, причем выбираются они в виде тригонометрических рядов.

Обозначим через

и0 ={«° 00, V0 (у), Ъ°х 0), (7)} и

и0 = (х), V0 (х), ст° (х), 0)}

векторы начальных функций, заданных соответственно на линиях х = 0 и у = 0. Векторы перемещений и напряжений

и ={м (х,у), V (х,у), стх (х,у), ау (х,у), тху (х,у)} и и ={« (х,у), V (х, у), Ъх (х,у), ау (х,у), \у (х,у)}

в соответствии с решением МНФ выражаются через векторы начальных функций следующим образом

и=Ьи°,

и=ш°,

\цЛ и ь = Ці

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1_ чл У

(1)

(/■ = 1, 5, і = 1, 4) -

матрицы операторов МНФ с элементами вида

¿=0

к=0

которых коэффициенты 1у и 1у зависят от упругих постоянных анизотропного тела и соответственно операторов дифференцирования д по переменной у и д по переменной х.

Начальные функции выберем в виде тригонометрических рядов

и„=£и<->,

т=0 (2) _ 00 _

5. =£0?>,

п=0

в которых и1т) = ^т)4, 4т)<, «Зт)4, «4т)С} и и^ = ^-4*.^*?Ч‘}, 4т) и ^ ( = 1, ..., 4) — произвольные числовые коэффициенты, а л“ =8ш(ат.у), сат=соъ(ату), ^ = sm(|3„x), с\ = cos(P„x), ат = m%|a, Р„ = т/к, т и п — любые целые неотрицательные числа.

В этом случае в соответствии с решениями МНФ (1) векторы перемещений и напряжений и и и будут получены в виде

и=у и<т),

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

"=° (3)

п=0

где

и'”> = $">с Д”>с Щ->с Д"'<},

(?■> ЦХ. Д"У. Д-)с,*},

а 1^ и Цп\ і = 1, 5 — числовые степенные

ряды по переменным х и у соответственно

Пт)=УамЬ =Уа(т)УР

> ¿-¡ Р ‘Р ду=±ат ¿-I Р ¿-1>Р

р=1 У р= 1 ¿=0

хк=1±а^-*

к-0 р=1

р=1

=£*т

р=1 к=0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

оо 4

к=0 />=1

В рядах Цр и Цр операторы дифференцирования дх и д появляются в виде целых степеней. Их замена на числовые значения, представляющие целые степени ат и Ря с соответствующими знаками, должна выполняться последовательным дифференцированием исходной тригонометрической функции, на которую оператор воздействует. Так, например, оператор дъ должен быть

заменен на -ат , если функцией, на которую он воздействует, является функция sin(am y)

на

' lit Ш У III, III, у rn lit lit' '

+a:’

З а л2 a 2 л a 3 a\

ySm ~ ^rrfiyCm ~ ~^тУ ySm ~ ~®‘mCm)'

3 в случае его воздействия на cos (a y )

~m J v m

(дъса = -a d2sa = -a2d ca =a3sa)- Аналогич-

Уиу^т у m y^m u'm‘W

ное правило применяется и к оператору дифференцирования дх по переменной х, только функции, на которые он воздействует, суть sin (Ря х) и cos (Ря х).

Каждое из решений (3) позволяет решить задачу удовлетворения ГУ на альтернативных противоположных гранях прямоугольника: первое — на гранях х = 0 и х = h, тогда как второе — на гранях y = 0 и y = a. В соответствии с методом суперпозиции Ламе сумма двух этих решений

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

и=и+и

(4)

будет обладать достаточным функциональным произволом для удовлетворения ГУ на всех четырех гранях упругого анизотропного прямоугольника, являясь, таким образом, общим решением задачи для упругой анизотропной прямоугольной области. Неизвестные коэффициенты и (р = 1, ..., 4, т,

п = 0, ..., да) решения находятся из условия удовлетворения ГУ, заданным на четырех гранях прямоугольника. В результате получается бесконечная система линейных уравнений относительно указанных неизвестных, решение которой осуществляется методом редукции [5] (подробности см. в [3]).

3. Алгоритм расчета упругих систем сложной конфигурации. В [6] предложен алгоритм расчета тел с сечением сложной конфигурации, находящихся в условиях плоской задачи теории упругости с использованием общего решения (4), в прямоугольной декартовой системе координат. Предполагается, что сечение тела представлено совокупностью соприкасающихся прямоугольников, причем каждая из четырех граней любого

из них может либо принадлежать границе сечения всего тела, либо соприкасаться с гранью другого прямоугольника, полностью с ней совпадая. На гранях, принадлежащих границе сечения тела, могут быть заданы граничные условия одного из следующих видов:

1) ох и тху (на грани х = const);

2) оу и тху (на грани y = const);

3) и и v (на грани х = const или y = const);

4) ох и v (на грани х = const);

5) оу и и (на грани y = const);

6) тху и и (на грани х = const);

7) тху и v (на грани у = const).

На гранях, соприкасающихся с гранями других прямоугольников, граничные условия могут обеспечивать непрерывность перемещений и напряжений при переходе из одного прямоугольника в другой через общую грань, а могут рассчитываться и из других условий сопряжения соприкасающихся граней прямоугольников, например, обеспечивая скольжение с трением или без трения.

Прямоугольные области рассчитываемого тела с граничными условиями указанного типа будем называть простыми телами. На рис. 1 показано разбиение модельной конструкции на составляющие ее простые тела R, i = 1, ..., 3.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Для каждого простого тела R. вводится локальная система координат Ох.у. с осями, параллельными соответствующим осям глобальной системы координат Оху, началом координат в одной из вершин прямоугольника так, чтобы он весь располагался в первой

Рис. 1. Декомпозиция модельной конструкции на составляющие ее простые тела

Выпуск 4

¡Выпуск 4

четверти введенной локальной системы координат.

Для простого тела Я. можно построить общее решение типа (4) с использованием тригонометрических рядов (2) с неизвестными коэффициентами для представления начальных функций

Ц.=иг+Ц.. (5)

Вектор и,- ={иі, V,-, а‘х, агу, т^,}, образованный из компонентов вектора перемещения и тензора напряжений в точках простого тела Я представлен суммой векторов й,. ={йг, V,, с‘х, о'уі, т^} и

и і ={й,., V,, о', вида

ц. = |;и«

т-0

(6)

п= О

где

ТТ(т)_/Н'и) «, Т{т) а, ТХт) а, Т[т) а, т(т) в,\

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

> 2,і ст > А'3,і Лти > ^4,1 Лт > ^5,1 ст/;

Й«)Л Й»)Д Й»)Л гооЛІ

Ч- _ уЧ,! и > -Ч,!*/! » ЛЛ > 4,ї И » 5,1 сл у,

45 = 8ІП (< И ), С% = сое (а^,) и

^ = віп (р'л ^ с* = сое (р^.):

¿(т) =Уа(т)Х. • = У а(т) У р.

7,' ^ Р.і УР,« . Р,і ¿-і ‘Р,і

р= 1 > " р=1 4=0

*=0 /7=1

Пп)=уь^1. . = Уь^УЇк.

Р,і ]Р,г , .і /М ^ *Р,ї

р=1 оо 4

а*=к“’” р=1 ¿=0

у*=ЪЪъШуу*. к=0

и (/' = 1, - 5, Р = 1, . ., 4) — операторы

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

МНФ для простого тела Я.

2Л Решение (6) получается из (3), если

начальные функции для простого тела Яг имеют вид тригонометрических рядов (2)

фи. $ч\ »йч*}-

Построив решения типа (6) для всех простых тел Я вычисляют необходимые компоненты напряженно-деформированного состояния (НДС) на их гранях. Для удовлетворения граничным условиям полученные функции компонентов НДС раскладывают в ряды Фурье и строят систему бесконечных линейных алгебраических уравнений для определения неизвестных коэффициентов и начальных функций, приравнивая соответствующие гармоники компонентов НДС.

В практических расчетах ограничиваются конечным числом гармоник в представлении как начальных функций, так и заданных граничных условий. Таким образом, решаемая система линейных алгебраических уравнений является конечной, что равносильно применению метода редукции [5] к исходной бесконечной системе уравнений.

4. Пластина со стойкой. Примером расчета пространственной конструкции, все элементы которой находятся в условиях плоского напряженного состояния, может служить прямоугольная пластина с двумя жестко-заделанными противоположными гранями, к которой присоединена стойка, проходящая посередине пластины параллельно заделанным граням. На верхнюю грань стойки действует равномерно распределенная нагрузка интенсивности д0 (рис. 2, а), которая передается посредством касательных напряжений в области стыка пластины и стойки на пластину. Интерес представляет характер распределения указанных касательных напряжений в области стыковки пластины и стойки.

Взаимодействие пластины ЛБСО и стойки Е¥ОН моделируется в предположении, что и пластина, и стойка находятся в условиях плоского напряженного состояния ЕН = 9а м. Передача пластине прилагаемых к стойке усилий осуществляется через касательное напряжение, возникающее в стойке на грани ЕН и воспринимаемое как дополнительное касательное напряжение в сечении ЕН пластины. Для учета толщин стойки и пластины касательные напряжения стойки в уравнении баланса касательных напряжений пластины учитываются с коэффициентом к = ^ст/^пл, где ^ — толщина листа стойки, а ^ — толщина

ст пл

листа пластины.

Рис. 2. Расчетная схема (а) и разбиение на простые тела (б) пластины со стойкой

Геометрические размеры пластины и стойки таковы: ЕЕ = а м, и АЕ = ЕВ = 6а м.

Конструкция разбивается на три простых тела: пластина АВСО по линии контакта ЕН со стойкой ЕЕОИ на два тела и третье тело представляет сама стойка (см. рис. 2, б). Граничные условия на гранях простых тел следующие:

— верхние и нижние грани АЕ', ОН' первого тела, Е"В, Н"С второго тела и нижняя грань НО третьего тела свободны от напряжений, поэтому на них о = 0 и т = 0;

’ ^ х ху

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

— на верхней грани ЕЕ третьего тела приложена нормальная равномерно-распределенная нагрузка, поэтому на ней ох = д0,

тху = 0; х

ху

— правая вертикальная грань ЕО третьего тела свободна от нагрузок, поэтому на ней о = 0 и т = 0;

у ху

— левая вертикальная грань АО первого тела и правая вертикальная грань ВС второго тела жестко заделаны, поэтому на них и = 0 и V = 0;

— условия контакта трех тел в соответствии с выбранной моделью взаимодейст-

вия следующие: и\іі=и2\ііі, I е'н' \е!'н"

Vі =У2 ,

І Е'Н' І ЄН'

а1 =а^ .

у І Е'Н' УI Е’Н"

^ -ті (усло-

*у\ Е'н' *У1 Е'Н" ЕН

вия «непрерывности» перемещений и напря-

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

жений при переходе от первого тела ко второму с учетом взаимодействия с третьим телом),

^е'н' = мЭ|вя (одинаковые вертикальные перемещения всех трех тел на линии их контакта) и V3 =0 (отсутствие перемещений первого

I ЕН

и второго тел из своей плоскости на линии контакта с третьим телом), где верхний индекс относится к номеру простого тела.

На рис. 3, 4 представлены графики некоторых компонентов НДС в пластине и стойке. Расчеты производились с удержанием 25 членов в тригонометрических рядах и разбиением по вертикали каждого указанного простого тела еще на три с обеспечением непрерывности перемещений и, V и напряжений о т при переходе от одного тела к другому. На

ху *'

рисунках кривая номер / построена либо в горизонтальном сечении х = Щ - 1)/12, либо в вертикальном сечении у = а( - 1)/4.

График нормального напряжения ох в горизонтальных сечениях стойки (рис. 3, а) показывает, что верхняя треть стойки изгибается, тогда как оставшиеся две трети в горизонтальных сечениях подвергаются практически равномерному сжатию. Графики 5 и 9 отличаются от других графиков, так как они представляют нормальные напряжения на линиях контакта трех простых тел, составляющих вертикальную стойку.

б

Выпуск 4

¡Выпуск 4

Рис. 3. Безразмерные нормальные напряжения ох/д0 в горизонтальных сечениях стойки (а) и пластины (б)

Рис. 4. Безразмерные касательные напряжения тху /д0 в вертикальных сечениях стойки (а) и безразмерные

вертикальные перемещения иЕ/д к в горизонтальных сечениях пластины (б)

Характер изменения нормальных напряжений ох в пластине (рис. 3, б) характеризуется тем, что наибольшие напряжения возникают в области срединной вертикали, по которой передаются пластине через каса-

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

тельные напряжения усилия, приложенные верхней грани стойки, причем максимальные наблюдаются в верхней части пластины, в окрестности верхней грани, на которой эти напряжения нулевые (график 1). И опять гра-

б

а

б

а

фики 5 и 9 отличаются от остальных в связи с тем, что они представляют напряжения на гранях контакта простых тел, составляющих по вертикали первое и второе простое тело.

Графики на рис. 4, а дают представление о распределении касательных напряжений в вертикальных сечениях стойки. Из графика 1 (сечение у = 0 в локальной системе координат) видно, что касательные напряжения на линии контакта стойки с пластиной распределены нелинейно, причем наибольшие напряжения достигаются в верхней трети линии контакта, тогда как в остальной ее части они практически нулевые. Таким образом, при приближенных расчетах с использованием формул строительной механики распределение касательных напряжений, передающихся пластине, можно считать осуществляемым по треугольнику с основанием, равным одной трети высоты пластины. В настоящее время при выполнении подобных расчетов предполагается распределение касательных напряжений также по треугольнику, но с основанием, равным всей высоте пластины.

Интересен характер вертикальных перемещений пластины, графики которых в горизонтальных сечениях представлены на рис. 4, б. Наибольшее перемещение в каждом сечении получает точка, лежащая на срединной вертикали пластины, что соответствует действующей на пластину нагрузке: касательные напряжения от стойки в срединной вертикали.

Приведенный расчет показывает возможность применения предлагаемого в работе подхода к расчету не только плоских, но и пространственных конструкций, все элементы которых работают в условиях плоской задачи теории упругости.

5. Заключение. Полученные результаты расчета передачи усилий от балки усиления к пластине по разработанному численно-аналитическому алгоритму вычисления перемещений и напряжений в конструкциях сложной конфигурации позволяют положительно судить о возможности применения предложенного подхода к анализу НДС пространственных конструкций.

Список литературы

1. Матросов А. В. Расчет гидротехнических сооружений численно-аналитическим методом / А. В. Матросов // Журнал университета водных коммуникаций. — 2010. — Вып. 4 (8).

2. Матросов А. В. Численно-аналитический расчет балок-стенок на линейно-упругом основании / А. В. Матросов // Журнал университета водных коммуникаций. — 2011. — Вып. 2 (10).

3. Матросов А. В. Численно-аналитическое решение граничной задачи деформирования линейно-упругого анизотропного прямоугольника / А. В. Матросов // Вестн. С.-Петерб. ун-та. Сер. 10: Прикладная математика, информатика, процессы управления. — 2007. — Вып. 2.

4. Lamé G. Leçon sur la théorie mathémathique de l’élasticité des corps solids / G. Lamé. — P.: Bachelier, 1852. — 335 p.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

5. Канторович Л. В. Приближенные методы высшего анализа / Л. В. Канторович, В. И. Крылов. — М.: ГИТТЛ, 1950. — 695 с.

6. Матросов А. В. Численно-аналитический алгоритм решения задач плоской деформации линейно-упругих тел сложной конфигурации / А. В. Матросов // Вестн. С.-Петерб. ун-та. Сер. 10: Прикладная математика, информатика, процессы управления. — 2008. — Вып. 3. — С. 70-84.

Выпуск 4