ISSN 2074-1871 Уфимский математический журнал. Том 11. № 1 (2019). С. 120-131.
УДК 517.53
CHARACTERISTIC FUNCTION AND DEFICIENCY OF ALGEBROID FUNCTIONS ON ANNULI
ASHOK RATHOD
Abstract In this paper, we develop the value distribution theory for meromorphic functions with maximal deficiency sum for algebroid functions on annuli and we study the relationship between the deficiency of algebroid function on annuli and that of their derivatives. Let W(z)
be an u-valued algebroid function on the annulus A ( ,R0) (1 < Ro < +ro) with maximal
deficiency sum and the order of W(z) is finite. Then i. limsup =2 - 5o(<x>,W) - 0o(m,W);
ii. limsup
V—
N0 (r> w?j
To (r,W 'j
0;
iii.
1— £o (^,^ j
2— So (<x>,W)
< Ko(W')
< 2(1—60(<x,W))
< 2—s0(^,m) ,
where
K0(W') = limsup
r—<x>
No(r, W') + No(r, ^) To(r, W')
Keywords : Nevanlinna Theory, maximal deficiency sum, algebroid functions, the annuli, etc.
Subject Classification: 30D35
1. Introduction
The uniqueness theory of algebroid functions is an interesting problem in the value distribution theory. The uniqueness problem of algebroid functions was first considered by Valiron, afterwards several uniqueness theorems of algebroid functions in the complex plane C were proved (see [3],[11]). In 2005, A.Ya. Khrystivanvn and A.A. Kondratyuk have proposed the Nevanlinna theory for meromorphic functions on annuli (see [4], [5]) and after this work others have done lot of work in this area (see [8], [12], [13] [36]). In 2009, Cao and Yi [1] studied the uniqueness of meromorphic functions sharing some values on annuli. In 2015, Yang Tan [6], Yang Tan and Yue Wang [7] proved some interesting results on the multiple values and uniqueness of algebroid functions on annuli. Thus, it is interesting to consider the uniqueness problem of algebroid functions in multiply connected domains. By doubly connected mapping theorem [10], each doubly connected domain is conformally equivalent to the annulus {z : r < |z| < R], 0 < r < R < +ro. We consider only two eases: r = 0 R = and 0 < r < R < +ro. In the latter case the homothetv z ^ reduces the given domain to the
Ashok Rathod, Characteristic function and deficiency of algebroid functions on annuli.
© Ashok Rathod 2019.
The author is supported by the UGC-Rajiv Gandhi National Fellowship (no. F1-17.1/2013-14-SC-KAR-40380) of India.
Поступила 26 октября 2017 г.
120
CHARACTERISTIC FUNCTION AND DEFICIENCY OF ALGEBROID FUNCTIONS ON ANNULI 121
annulus A ^-1, R0^ = jz : -- < |z| < R0^ , where R0 = . Thus, in both cases each annulus
is invariant with respect to the inversion z ^ 1 We assume that the reader is familiar with the Nevanlinna theory of meromorphic functions and algebroid functions (see [2] and [9]),
Let Av (z),Av-i(z),... ,A0(z) b e a group of analytic functions which have no common zeros
and are defined on the annulus A ^ W ,R0^. 1 < R0 ^ and
'—(z, W) = Av(z)Wv + Av-i(z~)Wv 1 + ... + A\(z)W + Ao(z) = 0. (1)
Then irreducible equation (1) defines a w-valued algebroid function on the annulus A ^, Roj (1 < R0 ^
Let W(z) be a w-valued algebroid function on the annulus A ^-1, R0^ (1 < R0 ^ +<x>), we use the notations
f2n
1 ^ i * ^ i
m(r,W) =— / m(r,Wj) =— / — I log+ [wj (гегв )[d6,
u u 2^ J o
N\(r, W) = -
U!(t,W )
dt,
w ) = - r Arm dt,
v Ji t
Ni ^r,
nJ r,
1
wf ( r
N^ ( r.
N1fc I r,
N 2 ( r
W - a 1
W - a 1
W - a 1
W - a 1
W - a 1
W-a
1 Г1 ni (t, wh)
v J1
r
t
dt,
П2 (t, W—<J^
1 Г ,
V Ji t
1 Г1 & W-a)
F .1
t
dt,
1
^k)
n.
2
(t, -1- )
V ’ -—-J
t
dt,
1 f1 n[k (t, w-a) dt
V J1
r
t
1 Г n2 w-a)
dt,
1
m0(r, W) = m(r, W) + m -,W - 2m(1, W)
+ N 2 r
No(r, W) = N1(r, W) + N2(r, W),
No r
1
NU r,
W - a 1
W-a
N1 r
1
Nf I г
W - a 1
W-a
1
+ Щ r
W - a 1
W-a
where Wj (z)(j = 1, 2,... ,f) is a single-valued branch of W (z), n1(t, W) is the counting functions of poles of the function W(z) in {z : t < |z| ^ 1} and n2(t,W) is the counting functions of poles of the function W(z) in {z : 1 < |z| ^ t} (both counting multiplicity). The symbol n1 (t, w~a) stands for the counting functions of poles of the function w~- in {z : t < |z| ^ 1}
1
r
V
T
V
t
V
122
ASHOK RATHOD
and n2 (t, is the counting functions of poles of the function in {z : 1 < |z| ^ t}
(both ignoring multiplicity). By (t,a,W) we denote the number of zeros of W — a in
{z : t < |z| ^ 1} and n2, (t, a, W) is the number of zeros of W — a in {z : 1 < |z| ^ t}, where zero of order < fc is counted according to its multiplicity and a zero of order ^ к is counted exactly к times, respectively.
Let W(z) be a u-valued algebroid function defined by (1) on the annulus A^,Roj (1 < Rq ^ +ro), as
a e C,
no\ r,
(n жЬ) ="»(n yyh)) • Nq{ r-w—z) =1 r ^b)) •
Ф(z,a),
In particular, as a = 0, we have Nq (r, ^) = 1 Nq (r, and as a = ro, the identity holds
Nq (r, W) = 1 Nq (r, -1^ .He re nQ (r, ) and nQ (r, are the counting function of zeros
of W(z) — a and гф(z, a) on the annulus A ( —, Rq j (1 < Rq ^ +ro), respectively.
Definition 1. [6] Given an algebroid function W(z) on the annulus A^, RoJ (1 < Rq ^ +ro), the function
TQ(r, W) = mQ(r, W) + N0(r, W), 1 ^ r < Rq
is called Nevanlinna characteristic of W(z).
Definition 2. Given an algebroid function W (z) on the ann ulus A^ , RQj
(1 < Rq ^ +ro), the order ofW(z) is defined by
шг) г log Tq(t,W )
a(W) = limsup--------------•
г^+те log r
Definitions. Given an algebroid function W (z) on the ann ulus A^ -1, RoJ
(1 < Rq ^ +ro), the value
SQ(a, W) = liminf
mQ(r, wry)
г^+те TQ(r,W)
is called the deficiency of the function W(z) for the value a. For a = <x>, we let
xf Тлп i- • tmQ(r,W) , i- No(r,W)
^Q(w, W) = llmlnf = 1 — llmSUP •
r^+^ To(r,W) г^+ж To(r,W)
IfSQ,a E Сте, we call a a deficient value of W(z).
Definition 4. Given an algebroid function W (z) on the ann ulus A^ , RqJ
(1 < Rq ^ +ro), the value
Nq(t, ^y)
©q^ W) = 1 — llmsup
г^+те Tq(v,W )
and
N°(r, w_a) N°(r, w_a)
Tq (r, W)
are called the reduced deficiencies of the function W (z) for the va lue a.
dQ(a, W) = llmlnf
г^+те
CHARACTERISTIC FUNCTION AND DEFICIENCY OF ALGEBROID FUNCTIONS ON ANNULI 123
2. Auxiliary lemmata
Lemma 1 (The first fundamental theorem on annuli [7]). Let W(z) be v-valued algebroid function defined by (1) on the annulus A (-A, R0\ (1 < R0 ^ +<o), a G C. Then
Tn r,
(r- жЬ) = m°{r- ub) + N° (r- W-t) = Tn(r-w) + 0(1).
Lemma 2 (The second fundamental throrem oa annuli [13]). LetW(z) be v-valued algebroid function defined by (1) on the annulus A^A, R0^ (1 < R0 ^ +<o), ak, (k = 1,2,..,p) are p
distinct complex numbers (finite or infinite), then we have
(p - 2v)Tn (r,W) ^ V nJ r,—1---) - Nl(r,W) + Sa(r,W)
\ W - ak)
(2)
where Ni (r, W) is the density index of all multiple values including finite or infinite, every т-multiple value is counted r — 1 times and
( w' \ ( W' \
S0(r,W) = m0 (^—J +Y, m° [r,W- aj + °(1)'
The remainder satisfies the identity
S0 (r, W) = О (log T0 (r, W)) + О (log r), outside a set of a finite linear measure if г ^ Д0 = +o, while
1
S0(r, W) = О (logTo(r, W)) + o(log—^)
V R0 - rj
outside a set E such that
dr
< +<o as r ^ Ro < +o.
Je - r
Lrnma 3. [7] Let W(z) be v-valu,ed algebroid function defined by (1) on the annulus A ( A ,R0\ (1 < R0 ^ +<o). If the following conditions are satisfied
r ■ fTo (r,W) limini —--------< oo,
log V
r • <To (r,W) ^ liminf-------1— < o,
r^R0 log (Ro_r)
then W(z) is an algebraic function.
До = +o, Ro < +o,
3. Main results
In the present paper we study the problem on the maximal deficiency sum for algebroid function on annuli as well as the relationship between the deficiency of algebroid function on annuli and that of their derivatives.
Theorem 1. Let W(z) be an v-valu,ed algebroid function defined by (1) on the annulus a(А,Щ^ (1 < ^ ^ +<o). Then the -set of all numbers a G C obeying O0(u,W) > 0 is
countable and Y ®o(a,W) ^ 2.
«ее
124
ASHOK RATHOD
Доказательство. By the second fundamental theorem for algebroid function on annuli we have
Q
(q — 2u) Ta(r,W) О о r
E " о (
г=1 4 7
0 (r.W).
and this implies
(q - 2k) < £
N oG W) , So ir.W \ No(r. ^) So(r. W)
+
i= 1
^ lim
Г—У CO
Since
and
we have Therefore,
To(r,W) To(r,W) ,=1
0o (a. W) = 1 — lim sup
sup
rp ( иЛ +limsuP Tw wV
To(r.W) To(r.W)
N~o(r, w_ai)
To(r.W)
So(r. W) = 0(To(r. W)).
(q — 2v) ^ ^[1 — 0o(ai. W)] ^ q — ^ 0o(<^. W).
i= 1 i= 1
0o(ai.w) ^ 2u.
i= 1
and this holds for all extended complex numbers as q ^ 3, Hence,
^ 0o(a.W) ^ 2.
«e€
and this is a defect relation for algebroid functions on annuli.
Let E = [a G C : 0(a. W) > 0} and we are going to show that that E is countable set. We denote
En = <j a G C : 0(a. W) > — } . n G N.
}
Then, bv the defect relation ^contains at most 2n elements and hence Uc^=1En is a countable set. Let us show that
U~=1^n = E.
In order to do this, we take a G E and hence 0o(a.W) > 0, Bv the Archimedian property, there exist n G N such that
0o(a. W) > —.
n
Thus, a G En C U~=1 En and this yields
E C U~=1En. (3)
On the other hand, given a G U(^=1En, we have a G En for some n G N. Therefore,
and hence, a G E. Now we infer that
0o (a. W) > — > 0 n
U~=i E„c E.
Jn= 1 ^ n
By (3) and (4) we get E = Uc^=1En and therefore, E is a countable set.
(4)
□
CHARACTERISTIC FUNCTION AND DEFICIENCY OF ALGEBROID FUNCTIONS ON ANNULI 125
Remark 1. By Theorem 1, the total deficiency of each, algebroid function W(z) on annuli satisfies the inequality
(5)
^5o(a,W) + 5o(<x>,W) < 2.
«ее
If (5) holds, then we say that W(z) has a maximal deficiency sum.
Theorem 2. Let W(z) be an v-valued algebroid function defined by (1) on the annulus A (W, Д^ (1 < R0 < +ж). Then
To(r, W')
limsup
г^-ж To (r, W)
< 2n — $о(ж, W) — ^(ж, W).
Доказательство. We have
By Lemma 2, the identity
, ( W'\ (
mo(r, W) = mJ r, W— j < mJ r, — \ + mo(r, W) + 0(1).
( W(k) \
{ТЧГ) = S„(r,W)
m0 r,
mo(r, W') < mo(r, W) + So(r, W).
holds true and hence,
We also have
N0(r, W') = N0(r, W) + No(r, W) + Nx(r, W).
By (6) and (7) we conclude that
T0 (r, W') =m0 (r, W') + No (r, W') < mQ (r, W) + m0 (r, ^0 + N0 (r, W'),
<m0(r, W) + No(r, W) + No(r, W) + Nx(r, W) + S0(r, W)
<T0(r, W) + No(r, W) + Nx(r, W) + S0(r, W).
This yields
Therefore,
But
and hence,
T0(r, W') < 1+ Np(r, W) + Nx(r, W) + Sp(r, W)
T0 (r,W) < + To (r,W) + T0 (r,W) + T0 (r,W)'
v To (r,W' )^л. No(r,W)
lim suP^NNN\ <1 + lim suP rp ( ил г^ж и (r,W) To (r,w)
<1 + 1 — 0o(ж, W) < 2 — ©o(ro, W)
d0 (ж, W) + во (ж, W) < 0o(^, W)
To (r, W')
lim sup
< 2 — ^(ж,Ш) — во(ж,Ш).
(6)
(7)
To (r, W)
The proof is complete, □
Theorem 2 yields the following corollary,
Torollary 1. Let W(z) be an v-valued algebroid function defined by (1) on the annulus A (, До) (1 < Ro < +ж). Then
T0 (r, W')
limsuP
г^ж To (r,w)
< 2u — do (ж, W) — $o (ж, W).
126
ASHOK RATHOD
Theorem 3. Let W(z) be an v-valued algebroid function defined by (1) on the annulus
A (,Ro) (1 < Ro ^ +ro) with a maximal deficiency sum and of a finite order. Then
i. limsup =2 - 5о(ж, W) - 9о(ж, W);
N0 Д )
To(r,W;)
гг. limsup ;) = 0;
■■■ 1~г0(те,Ж) ^ ^ (w/) < 2{lS0{<x,W)) ...uprp
m- 2-Sa(oo,w) ^ N°(w ) ^ 2-(oo,m) , wnere
2So(<x,W) ^ Л0
2So(<x,W)
No(r,W/) + No(r, -ф)
To(r, W/)
K0(W/) = limsup
v—
Доказательство. We have
To(r, W/) =mo(r, W/) + No(r, W/) ^ mo(r, W) + r, ^ + No(r, W/)
^mo(r, W) + No(r, W) + No(r, W) + W(r, W) + ^o(r, W)
^mo(r, W) + No(r, W) + Wo(r, W) + 2(^ - 1)To(r, W) + S'o(r, W) ^(2^ - 1)To(r, W) + No(r,W) + So(r,W) ^ 2uTo(r,W) + So(r,W). By Lemma 2 we get
So(r, W(k)) = О (log rTo(r, W(k))) = О (log rTo(r, W)) = So(r, W)
and hence
W(k)
f W(k) \
m'0 (Г'Й^й) = S0(r-W)
holds for each positive afif We let
F M = E
^ W(z) - a[i] ■
г=1 4 7
Then, as in [11], we have
m(r
b,F) + 0(1) fi E
ml r
i= 1
P
1
™(V) fiE
V ' i= 1
ml r,
W(z) - a[i] 1
(8)
(9)
(10)
W(z) - a!*]
In fact, (10) holds if p = 1 If p fi 2, we let
6 = mini=j |а[г] - а^\.
It is Obvious that 5 > 0. Given a fixed z, there exist k E {1,2,... ,u} and г E {1, 2,... ,q} such that
5 5
К - «И| < - « j,
and the inequality
of
\wk(z) - a[3]\ fi \ащ - a[3]\ - \wk(z) - | fi
holds true for i = f. Therefore, the set of points in d Cr, where Cr = {z : \z \ = r}(r = r or r = 1) obeying \wk(z)-a^ \ < 2- is either empty or each two such sets are mutually disjoint for different
1
CHARACTERISTIC FUNCTION AND DEFICIENCY OF ALGEBROID FUNCTIONS ON ANNULI 127
i. In any case
-1 f ’ log+ |F(re*)|сЮ J-1 £ f log+ |F(re*)\M
2 Jo 2 i=l J \wfc-aW\< 2^ ,\z\ =r
> 2- E/ iog+
2Ж i=l JK-“w\<2,\z\=r
\ Wk (reie) — aW|
dd.
Since
- E f
2 i=i JК-“[i]\<2|,\z\=r
log
+
| Wk (reie) — aM |
-redd
1
m r,
> m r
1
W(z) — J 2n 1
iL
i=l J\^fc-\^2^,\z\=r
* u,_„bg+ |wk(rew) — aN|
dd
W (z) — a И
i + 2<i — Q log+
we obtain that
1 .v . 1 ('2ж 1
m(r,F)=—V"1— log+ |F(гегв^dd ^ -
^ t=i 2nJo u
EE m{r-wwzss)
fc=i j=i v w 7
— log+ 2_
W(z) — aF) v 5
=E m{r,wuhA)
— — log+ ^.
W (z) — а[г] J v 5
Now relation (10) follows the above inequality in the case r = r and r = -. Since
1
m(r, F) =m(r, W (fc)F) + m\r
E m (
W(k)
r / W (fc) \ / -
° m[r’W—Ml + mir'
i=l
) +
and
(H =m((t)?) + ^-.^)
A (1 W(k) \ (11 \
^E SiwJ + )
we get
,A ( W(k) \ ( 1 \
mo (r, F) ^ г, + mo (y )
(11)
It follows from (8), (11) and Lemma 3,1 that
p
£mo f
i=l '
W(;/ — aw) «m°(+ So(r,W)
ZFo(r, W(fc)) — No F^) + S0(r, W).
(12)
1
1
128
ASHOK RATHOD
Thus,
PT°£ W) « £ N„(r, w(z)_ a,„) + To(r, W(‘>) - N„(r, -L) + S0(r, W).
Bv (13) we obtain
pTo^ w) < £ N° (", w(г/_ a[,l) + ЗДп ^^ (", w) + ^ lv)■
and hence,
p < '
S„(r, W)
+ £(1 _ * (^,W)) + lim inf ^ )
г^ж l0(r,W) j' г^ж lo(r,W)
=p + lim sup
T0(r, W') To(r, W)
£ <5o(aW ,W )■
i=1
Therefore, we have
J]£o(a[tl,W) ^ lim
To(r, W')
i= 1
Hence, identity (8) and Lemma 2 imply that
To(r, W')
limsup
ж To (r, W)
sup гг t ил ■ г^ж lo(r,W)
^ 2u _ 8o(<x, W).
As p is arbitrary, we combine (17) and (16) to have
To(r W') To(r W')
2u _ 8o(<x, W) ^ lim inf . ’ т ^ limsup . ’ T ^ 2v _ 8o (ж, W),
that is,
lim
To(r,W) To(r, W')
To(r, W)
^ 2u _ 8o(<x, W).
г^ж To(r, W)
Given e > 0, we choose q sufficiently large so that
p
8o(a[^, W) > 2v _ ^(ж, W) _ e.
i= 1
For these q, inequality (12) implies
t No(r, ^ . To(r,W) • tm° w b)-“M)
lim su^ i u/л + lim inf rr ( un\ lim inf------r ( ил-----
г^ж To(r,W') г^ж To(r,W') г^ж To(r,W)
^ 1 + lim sup
Sp(r,W) To (r, W') ■
Thus, from (18)-(20) we deduce
T ^o(F 177) ^ £
limAUp ШЩ K 2, _ So (ж, W) •
Since e > 0 is arbitrary, we have
r No(r, 177) 0
limsuD = °.
г^ж To (Г, kK )
V—YOO
V—too
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
CHARACTERISTIC FUNCTION AND DEFICIENCY OF ALGEBROID FUNCTIONS ON ANNULI 129
And since No(r, W') < 2dNo(t, W), we get
N0(r, W') T0(r,W') < 2 N0(r, W)
To(r,W') To(r,W) < UTo(r,W) .
Now it follows from (18) and (23) that
N0(r W')
(2d — So(<x>, W)) limsup _ . ’ < 2d(1 — So(<x>, W)).
T0 (r, W')
(23)
(24)
Relations (22) and (24) imply
Therefore, we obtain
No(r, W') + No(r, Д) < 2^(1 — 6о(ж, W)) imSUP To(r,W') < (2d — 8o(^,W))'
K0(W) < 2"(1 — ))
(2d — 5o(<x, W)) ‘ Furthermore, we have No(r,W) < No(r.W'). By (18) we infer that
W) < (2, — ))No(r-W')
(25)
To(r,W)
Thus,
v No(r,W' )^
lim sup —ttt— A
lim sup
To(r, W')'
No(r,W) 1 — 5o(m.W)
To(r,W') (2d — 5o(<x>,W)) To(r,W) 2d — 5o(<x>,W)'
Hence,
Ko(W') <
Due to (25) and (26) we have
1 — £o(ro.W)
1 — £o(ro.W)
2d — 8o(x>, W)
2^ (1 — 5o(m,W))
(26)
2d — So(x>, W)
< Ko(W') <
(2d — 8o(<x, W)) '
□
Theorem 4. Let W(z) be an D-valued algebroid function defined by (1) on the annulus A ^(1 < Ro < +ж) of finite order and 8o (ж, W) = 1. Then
Y 5o(TW) < 5o(0,W').
«e€
Доказательство. If
Y 6o(a,W ) = 0,
«e€
Theorem 3 is valid in this case. In what follows we assume that ^ So(a, W) > 0. Let [аД be
«e€
a sequence of distinct complex complex numbers in C containing all the finite deficient values of W(z). For each positive integer q the inequality
£ m<°(r- wpy—y;) + Wo (r' w) < To(r-w'>+s°<r-w>
fl—1
V—too
1
130
ASHOK RATHOD
holds for any q finite complex numbers in a«. Therefore, we have
No < r> W) To (r, W)
+
£ mo (г, щТ^) \
To(r,W') To(r,W')
V
To(r,W)
- o(1)
C 1,
7
as r —— то. Hence, by inequality (18) we obtain that
1 ^ lim sup
V——
No (r, hr) To (r, W)
To(r,W') + To (r,W)
(Yi ^0 (г, щ^) \
M=1 4 7
To(r, W)
- o(1)
7 J
^ lim sup
Г—У CO
^0 1г,т1г
_____wff_ +y . f 70 (o ^)
To(r,W') + ^1^ To(r,W')
(9 V
^ mo (o WWVff) 1 4 7
T0(r, W)
\
- 0(1)
7
^ lim sup
^0 [r, -1
"" ' + lim inf ААЩ lim inf
£m« (r'
. r n=1 4 7
r—~ To(r,W') -—1 To(r,W') -—1 To(r,W)
^ (V мЛ 50 (a^,W)
^ У’ W ) + ^=1_________
^ limSUP To (r,W') ' 2u - 50 (to,W)‘
Since g is arbitrary and 0o (то, W) = 1, we have
^ 0o (a,W) C S0 (0,W').
«e€
□
REFERENCES
1. E. Ullrich. Uber den Einflufi der verzweigtheit einer algebloide auf ihre wertvertellung // J. Reine Angew. Math. 1932:167, 198-220 (1932).
2. G. Valiron. Sur quelques proprieties des fonctions algdbroides // Compt. Rend. Math. 189, 824-826 (1929).
3. N. Baganas. Sur les valeurs algebriques d’une fonctions algebroldes et les integrates pseudo-abelinnes j j Annales Ecole Norm. Sup. Ser. Ш. 66, 161-208 (1949).
4. M. L. Fang. A note on a result of Singh and Kulkarni j j Int. J. Math. Sci. 23:4, 285-288 (2000).
5. S.K. Singh, V.N. Kulkarni. Characteristic function of a meromorphic function and its derivative // Ann Polon Math. 28, 123-133 (1973).
6. Yu-Zan He and Ye-Zhou Li. Some results on algebroid functions// Compl. Variab. Theory Appl. 43:3-4, 299-313 (2001).
7. S. Daochun, G. Zongsheng. On the operation of algebroid functions // Acta Math. Sci. 30:1, 247-256 (2010).
8. S. Daochun, G. Zongsheng. Value disribution theory of algebroid functions. Science Press, Beijing (2014).
9. Yu-Zan He and Xiu-Zhi Xiao. Algebroid functions and Ordinarry Difference Equations. Science Press, Beijing (1988).
10. S. Daochun, G. Zongsheng. Theorems for algebroid functions // Acta Math. Sinica. 49:5, 1-6 (2006).
11. Meili Liang. On the value distribution of algebroid functions // SOP Trans. Appl. Math. 1:1, (2014).
CHARACTERISTIC FUNCTION AND DEFICIENCY OF ALGEBROID FUNCTIONS ON ANNULI 131
12. W.K. Havman. Meromorphic functions. Oxford University Press, Oxford (1964).
13. F. Minglang. Unicity theorem for algebroid functions // Acta. Math. Sinica. 3:6, 217-222 (1993).
14. Pingvuan Zhang, Peichu Hu. On uniqueness for algebroid functions of finite order / / Acta. Math. Sinica. 35:3, 630-638 (2015).
15. G.S. Prokoporich. Fix-points of meromorphic or entire functions // Ukrainian Math. J. 25:2, 248-260 (1973).
16. Z. Qingcai. Uniqueness of algebroid functions j j Math. Pract. Theory. 43:1, 183-187 (2003).
17. Cao Tingbin, Yi Hongxun. On the uniqueness theory of algebroid functions j j Southest Asian Bull. Math. 33:1, 25-39 (2009).
18. Zu-Xing Xuan, ZongG-Sheng Gao. Uniqueness theorems for algebroid functions // Compl. Variab. Ellipt. Equat. 51:7, 701-712 (2006).
19. C.C. Yang, H.X. Yi. Uniqueness theory of meromorphic functions. Math. Appl. 557. Kluwer Academic Publishers, Dordrecht (2003).
20. Zhaojun Wu, Sheng’an Chen. Characteristic function and deficiency of meromorphic functions in the punctured plane// Acta Math. Scientia. 35:B(3), 673-680 (2015).
21. R. S. Dvavanal, Ashok Rathod. Uniqueness theorems for meromorphic functions on annuli// Indian J. Math. Math. Sci. 12:1, 1-10 (2016).
22. R. S. Dvavanal, Ashok Rathod. Multiple values and uniqueness of meromorphic functions on annuli // Int. J. Pure Appl. Math. 107:4, 983-995 (2016).
23. R. S. Dvavanal, Ashok Rathod. On the value distribution of meromorphic functions on annuli // Indian J. Math. Math. Sci. 12:2, 203-217 (2016).
24. R.S. Dvavanal, Ashok Rathod. Some generalisation of Nevanlinna’s five-value theorem algebroid functions on annuli // Asian J. Math. Comp. Resear. 20:2, 85-95 (2017).
25. R.S. Dvavanal, Ashok Rathod. Nevanlinna’s five-value heorem for derivatives of meromorphic functions sharing values on annuli // Asian J. Math. Comp. Resear. 20:1, 13-21 (2017).
26. R. S. Dvavanal, Ashok Rathod. Unicity theorem for algebroid functions related to multiple values and derivatives on annuli// Int. J. Fuzzy Math. Archive. 13:1, 25-39 (2017).
27. R. S. Dvavanal, Ashok Rathod. General Milloux inequality for algebroid functions on annuli // Int. J. Math. Appl. 5:3, 319-326 (2017).
28. Ashok Rathod. The multiple values of algebroid functions and uniqueness // Asian J. Math. Comp. Resear. 14:2, 150-157 (2016).
29. Ashok Rathod. The uniqueness of meromorphic functions concerning five or more values and small functions on annuli // Asian J. Current Res. 1:3, 101-107 (2016).
30. Ashok Rathod. Uniqueness of algebroid functions dealing with multiple values on annuli// J. Basic Appl. Res. Int. 19:3, 157-167 (2016).
31. Ashok Rathod. On the deficiencies of algebriod functions and their differential polynomials // J. Basic Appl. Resear. Int. 1:1, 1-11 (2016).
32. Ashok Rathod. The multiple values of algebroid functions and uniqueness on annuli // Konoralf J. Math. 5:2, 216-227 (2017).
33. Ashok Rathod. Several uniqueness theorems for algebroid functions // J. Anal. 25:2, 203-213 (2017).
34. Ashok Rathod. Nevanlinna’s five-value theorem for algebroid functions // Ufa Math. J. 10:2, 127-132 (2018).
35. Ashok Rathod. Nevanlinna’s five-value theorem for derivatives of algebroid functions on annuli // Tamkang J. Mathe. 49:2, 129-142 (2018).
36. S. S. Bhoosnurmath, R. S. Dvavanal, Mahesh Barki, Ashok Rathod. Value distribution for n-th difference operator of meromorphic functions with maximal deficiency sum // J. Anal. 1-15 (2018).
Ashok Rathod,
Department of Mathematics,
Karnatak University,
Dharwad-580003, India E-mail: ashokmrmaths@gmail.com