Научная статья на тему 'Nevanlinna’s five-value theorem for algebroid functions'

Nevanlinna’s five-value theorem for algebroid functions Текст научной статьи по специальности «Математика»

CC BY
75
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
VALUE DISTRIBUTION THEORY / NEVANLINNA THEORY / ALGEBROID FUNCTIONS / UNIQUENESS

Аннотация научной статьи по математике, автор научной работы — Rathod Ashok

By using the second main theorem of the algebroid function, we study the following problem. Let W1(z) and W2(z) be two ν-valued non-constant algebroid functions, aj (j = 1,2,...,q) be q > 4ν + 1 distinct complex numbers or ∞. Suppose that k1 > k2 >... > kq,m are positive integers or ∞, 1 6 m 6 q and δj > 0, j = 1,2,...,q, are such that (︂1 + 1 km)︂ q ∑︁ j=m 1 1 + kj + 3ν + q ∑︁ j=1 δj < (q-m-1)(︂1 + 1 km)︂+ m. Let Bj = Ekj(aj,f)∖Ekj(aj,g) for j = 1,2,...,q. If NBj(r, 1 W1 -aj ) 6 δjT(r,W1) and liminf r→∞ q ∑︀ j=1 Nkj(r, 1 W1-aj ) q ∑︀ j=1 Nkj(r, 1 W2-aj ) > νkm (1 + km) q ∑︀ j=1 kj kj+1 -2ν(1 + km) + (m-2ν q ∑︀ j=1 δj)km, then W1(z) ≡ W2(z). This result improves and generalizes the previous results given by Xuan and Gao.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Nevanlinna’s five-value theorem for algebroid functions»

ISSN 2074-1871 Уфимский математический журнал. Том 10. № 2 (2018). С. 127-132.

УДК 512.5

NEVANLINNA'S FIVE-VALUE THEOREM FOR ALGEBROID FUNCTIONS

ASHOK RATHOD

Abstract. By using the second main theorem of the algebroid function, we study the following problem. Let W1(z) and W2(z) be two ^-valued non-constant algebroid functions, aj (j = 1, 2,... ,q) be q ^ 4u + 1 distinct complex numbers or to. Suppose that k1 ^ k2 ^ ... ^ kq, m are positive integers or to, 1 ^ m ^ q and 5j ^ 0 j = 1,2,... ,q, are such that

(l + tM V + + V 5j < (q - m - 1) (1 + + m.

V w^ 1 + kj j= V w

Let Bj = Ekj (aj ,f)\Ek. (aj ,5) for j = 1, 2,...,q. If

w 1 — aj ^

and

N*< ) < «j т мп)

ч _ -,

£ Nk] (г, ^) vk lim inf —- >

r^oo q __, q k q

£ Nk, (r, w—r) (1 + km)J2 kk+1 - 2y(1 + km) + (rn - 2u - £ 5j)km j=i 2 J j=i J j=i

then W1(z) = W2(z). This result improves and generalizes the previous results given by

Xuan and Gao.

Keywords: value distribution theory, Nevanlinna theory, algebroid functions, uniqueness.

Subject Classification: 30D35

1. Introduction

The value distribution theory of meromorphie functions was extended to the corresponding theory of algebroid functions by Ullarieh [1] and Valiron [2] around 1930, and important results on uniqueness for algebroid functions were obtained. It is well known that Valiron obtained a famous (4u + 1)-valued theorem. The uniqueness theory of algebroid functions is an interesting problem in the value distribution theory. Many researchers like Valiron [2], Baganas [3], He [4] and others ([6],[7],[9-27]) made lot of work in this area. In this article, we extend a result by Indrajit Lahiri and Eupa Pal [5] in the Nevanlinna's value distribution theory of meromorphie functions on Nevanlinna's five values theorem to algebroid functions

Let Av (z),Au-1(z),... ,A0(z) be analytic functions with no common zeros in the complex plane and consider the equation

A, (z )WV + Av_i{z)Wv~1 + ... + Ai(z)W + Aa(z) = 0. (1)

Ashok Rathod, Nevanlinna's five-value theorem for algebroid functions. ©Ashok Rathod 2018 .

The author is supported by the UGC-Rajiv Gandhi National Fellowship (no. F1-17.1/2013-14-SC-KAR-40380) of India.

Поступила 06 апреля 2017 г.

This equation defines a //-valued algebroid function W(z) [8],

It is well known [8] that on the complex plane with the projection of the critical points of the function W cut out, the Nevanlinna characteristic T(r, W) is defined as

T(r, W) = m(r, W) + N(r, W),

where

i v r-2n

m(r, W) =-V log+ Iwj(reid)ldd,

2tTv f^Jo

Ar. 1 [r n(t,W) -n(0,W) , n(0,W)n

N (r,W ) = - ——--——- dt + — log r.

o

Let Wi(z) and mj(z) be one-valued branches of two (^-valued and //-valued) algebroid functions, Following Prokopovich [15], we consider their quotient in the domain of the complex plane with the projection of the critical points of both functions cut out. The one-valued branches of th function W/M (W • M) are defined as Wi/mj (wi • mj), where 1 ^ i ^ m, 1 ^ j ^ n. The Nevanlinna's characteristic T(r, W/M) is defined bv T(r, W) + T(r, M),

Lemma 1 (8). Let W(z) be a v-valued algebroid function and {aj Yj=1 C C be q distinct complex numbers and let {kj }Qj=1 C N be q positive integers. Then

q k — q 1 (q - 2V)T (r, W) ^ Nk]) (r, W = a,) + J] -j—N(r, W = a,) + S(r, W),

k=1 j k=1 j

(-*-è™sèk -

Nk]) (r, W = aj) + N(r, W = aj) + S(r, W).

= k + 1) £ik + 1 In 2006 Zu-Xing Xuan and Zong-Sheng Gao [18] improved this statement as follows.

Theorem 1. Let W(z) and M(z) be two u-valued non-constant algebroid functions, let aj (j = 1, 2,..., 4u + 1) be + 1 distinct complex nu,mbers in C. If

Ë2u+i)(a3, W ) = Ë2u+1)(a3, M ), j = 1, 2,..., 2u + 1

and

Ë2v)(aj, W) = Ë2v)(aj, M), j = 1, 2,..., 4u+1,

W( ) = M( )

2. Main Results

Let W(z) be a //-valued algebroid function and a e C be a complex number. The symbol Ek (W = a) denotes the set of zeros of W(z) — a, whose multiplicities are not greater than k. The symbol nk)(W = a) stands for the number of distinct zeros of W(z) — a in |z| ^ r, whose multiplicities do not exceed k and are counted only once. Similarly, we define the functions u[k+i(r,W = a), Nk)(r,W = a) and N{k+i(r,W = a).

In this paper, we study the problem on the Nevanlinna's five value theorem for algebroid functions. To state our main theorem, we first introduce the following definition.

Definition 1. For B C A and a e C, we denote by NB (r, ) the reduced counting function of the zeros of f — a on A belonging to the set B.

Theorem 2. Let W1(z) rnd W2(z) be two v-valued non-constant algebroid functions, let aj (j = 1,2,..., q) be q ^ 4u + 1 distinct complex numb ers or x>. Suppose that

ki ^ k2 ^ ... ^ kq,m are positive integers or 1 ^ m ^ q and öj ^ 0, j = 1, 2, are such that

0+km,) t rrij+3"+t * <«-m -10+km,)

N ' j=m J j=i N '

Let Bj = Ekj (aj, f)\Ek. (aj, g) for j = 1, 2-...- q. If

NBj(r,w-1--) ^ 5jT(r,Wl)

(2)

(3)

and

lim inf

=1

ENkj (r, Wi-j)

v km

q -->--

E Nkj (T, W—aTj ) (1 + km) E kj+1 - M1 + km =1 =1

(4)

m - 2 - j) km =1

then m(z) = W2(z).

Proof Suppose that W\(z) = (z). The by Lemma 1 for each integer m, 1 ^ m ^ q, we have

1

(q - 2 u) T (r, W) ^YN ir,—^-^ + S (r, W)

j=l V W - ajJ

1

W - j 1

(^W^)} + S <r )

=1 =1

^y \Nkj)( ^ =1

< t^N.)(n^^U-V^r 1

q r £ {Nk =1

q f

5 iNk

=1

1 + k

W - a^ 1 + kj

kj)

+ -r-^N{k j+Jr 1

ir,W1-aJ)}

(r,-L_ ) +--1—N U^- H

V ,W1 - aj) 1 + kj V,W - aj)]

+ S( , W )

+ S( , W )

^ E Y+kh^Nkj)(+ Y.T^rT (r , W) + S (r, W)

j / . , 1 + kj =1

{r-W^T) + £ t (j+hj- T+mm,)Nkj) (-w^) + ()

W - aj J ' 1 + kj

=

+ £ Nj){ r>wh, I+S (r '

« £ =1

k / 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 + km

Nkj) I r

{r - Wi - aj) ( )

+ m - 1 -

( m - 1) km

m

+E =1

kj \ 1 + kj)

T( , W ) + S( , W )

Therefore

(y k

V ^ kj + 1

= m

- 2 +

( m - 1) m

m

T (r-W) ^

k

<vm. "TT

=1

Nkj)[ r

( r- W - aj)

+ S (r-W). (5)

k

m

Similarly,

(y ki

{^k, + 1 \j=m J

k„

k, — 2u+(m — 1)k^T(rW) < ± km - f 1

=1

^-tN,i^W—a)+S^ <«>

Since Bj = Ekj )(aj ,Wi) Ekj )(aj, W2), let Dj = Ekj )(aj ,Wi) B,- for j = 1, 2,...,q. Thus, by (5) and (6), for a sequence of values of r tending to we get:

YWk.)( r,-1-^ =y NB.)( r,-1-Vy Nd. )( r,-1-^

Z^ H'Wi — aJ^ B] H'Wi — ajj H'Wi — aj

j=m N J / j=m x J / J=m N J /

( Avj + r^fr.W—W;)

j=m ^ '

^ (u+ ^ M T(r, Wi) + vT(r, W2) + 0(1)

= m

Therefore,

Since

= m

—2 +

(m — 1)km

km

+ 0W)N^)( )

± -¿Ui -W—^)

= m =1

+ < -+ 0«) ± jt+1N*) {'-w^ )■

1 >

h

> ... >

k„

1

^ -,

kx + 1 kq + 1 2'

by (7), for a sequence of values of r tending to we get

= m

(7)

kj _2ij+(m — 1)k-

m m

m

m

km

{'++m)N")(a;)

i ( u + 0(l))

m

q — { ) ^

=1

1

W2 — a,

This implies that

r . ,) [r, wh;

limini =-^-

Nh ) r _—

Nkj1 I 1 , W2 _a

(

E

= m

kj+i

—2 +

m — 2 —

= m

V km

I ^ kj

I kj+i

\3=m

(1 + km) E T+ — 2v(1 + km) + km\m — 2v

m

= m

This i contradicts equation (2), Thus, we have f(z) ^ g(z). The proof is complete.

Theorem 2 yield the following corollaries.

k

k

m

k

Corollary 1. Let m = 1, kj = œ for j = 1, 2, 3,... ,q and

Ж ^ 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

kj) [r, Wi-aJ 1

7 = lim iní-p-^ > -

™ N, л (r^^^) V — 2u +1

kj) y, W2-aj

If NB. (r, Wl—a. ) ^ öjT(r, W\), where 8 ^ 0 satisfies

l

0 ^ Y15i <k — (2U + 1) — ",

3=i 7

then f (z) = g(z)

If we take q = E(aj, f) С E(aj, f), then Bj = 0 for j = 1, 2,..., +1. Therefore,

if we choose 8j = 0 for j = 1, 2,..., + 1 and take any constant 7 obeying 0 ^ 2u — ^ in

Corollary 1, we can get that f = g. Moreover, if q = E(aj, f) = E(aj, g), then 7 = 1

and 8j = 0 for j = 1, 2,..., + 1; this implies f = g. Then Corollary 1 is an improvement of Theorem 1,

Corollary 2. Let W\(z) and W2(z) be two v-valued non-constant algebroid functions, let aj, j = 1, 2,... ,q, be q ^ 5 distinct complex питbers or <x. Suppose that k\,k2,... ,k— are positive integers or with k\ ^ k2 ^ ... ^ kg if Ek.)(aj, f) С Ek.)(aj,g) and

v—л kj k\

£ ЙТГ1 — ЖГГ) — *> 0

where 7 is as stated in Corollary 1. Then f (z) = g(z).

Corollary 3. Under the assumptions of Corollary 2, we have Ek.)(aj,W\) = Ek.)(aj,W2) and

v—л kj k\

£ ЙТГ1 — WTT)— *> 0

Corollary 4. Let W\(z) and W2(z) be two v-valued non-constant algebroid functions, let aj, j = 1, 2,... ,q, be q ^ 5 distinct complex nu,m bers or <x. Suppose that k\,k2,... ,k— are positive integers or with k\ ^ k2 ^ ... ^ k— if Ek.)(aj, f) С Ek.)(aj,g) and

JL ¡?. (m — 2u — 1 )km

У —~— — 2p + ----^ — 2P > 0,

k3 + 1 -i(km + 1) '

where 7 is as stated a in Corollary 1. Then f (z) = g(z).

СПИСОК ЛИТЕРАТУРЫ

ß

Angew. Math. 1932:167, 198-220 (1932).

2. G. Valiron. Sur quelques propriétés des fonctions algébroides // Compt. Rend. Math. 189, 824-826 (1929).

3. N. Baganas. Sur les valeurs algébriques dune fonctions algebroldes et les intégrales pseudo-abelinnes // Annales Ecole Norm. Sup. Ser. 3. 66, 161-208 (1949).

4. H.S. Gopalkrishna, S.S. Bhooanurmath. Uniqueness theorems for meromorphic functions // Math. Scand. 39, 125-130 (1976).

5. Lahiri Indrajit, Pal Rupa. A note on Nevanlinna's five value theorerm ¡j Bull. Korean Math. Soc. 52:2, 345-350 (2015).

6. Yu-Zan He and Ye-Zhou Li. Some results on algehroid functions // Comp. Variab. Ellip. Equat. 43:3-4, 299-313 (2001).

7. S. Daochun, G. Zongsheng. On the operation of algehroid functions// Acta Math. Sci. 30:1, 247256 (2010).

8. S. Daochun, G. Zongsheng. Value disribution theory of algehroid functions. Science Press, Beijing (2014).

9. Yu-Zan He and Xiu-Zhi Xiao. Algehroid functions and Ordinarry Difference Equations. Science Press, Beijing (1988).

10. S. Daochun, G. Zongsheng. Theorems for algehroid functions // Acta Math. Sinica. 49:5, 1-6 (2006).

11. Y. Hongxun. On the multiple values and uniqueness of algehroid functions // Chinese J. Eng. Math. 8, 1-8 (1991).

12. W.K. Havman. Meromorphic functions. Oxford University Press, Oxford (1964).

13. F. Minglang. Unicity theorem for algehroid functions // Acta. Math. Sinica. 3:6, 217-222 (1993).

14. Pingvuan Zhang, Peichu Hu. On uniqueness for algehroid functions of finite order / / Acta. Math. Sinica. 35:3, 630-638 (2015).

15. G.S. Prokoporich. Fix-points of meromorphic or entire functions // Ukrainian Math. J. 25:2, 248-260 (1973).

16. Z. Qingcai. Uniqueness of algehroid functions // Math. Pract. Theory. 43:1, 183-187 (2003).

17. Cao Tingbin, Yi Hongxun. On the uniqueness theory of algehroid functions // Southest Asian Bull. Math. 33:1, 25-39 (2009).

18. Zu-Xing Xuan, ZongG-Sheng Gao. Uniqueness theorems for algehroid functions // Compl. Variab. Ellipt. Equat. 51:7, 701-712 (2006).

19. C.C. Yang, H.X. Yi. Uniqueness theory of meromorphic functions. Math. Appl. 557. Kluwer Academic Publishers, Dordrecht (2003).

20. H.X. Yi, The multiple values of meromorphic functions and uniqueness // Chinese Ann. Math. Ser. A. 10:4, 421-427 (1989).

21. R.S. Dvavanal, Ashok Rathod. Some generalisation of Nevanlinna's five-value theorem algehroid functions on annuli // Asian J. Math. Comp. Resear. 20:2, 85-95 (2017).

22. R.S. Dvavanal, Ashok Rathod. Nevanlinna's five-value heorem for derivatives of meromorphic functions sharing values on annuli // Asian J. Math. Comp. Resear. 20:1, 13-21 (2017).

23. R.S. Dvavanal, Ashok Rathod, Unicity theorem for algehroid functions related to multiple values and derivatives on annuli // Int. J. Fuzzy Math. Arch. 13:1, 25-39 (2017).

24. Ashok Rathod. Several uniqueness theorems for algehroid functions //J. Anal. 25:2, 203-213 (2017).

25. Ashok Rathod. The multiple values of algehroid functions and uniqueness // Asian J. Math. Comp. Resear. 14:2, 150-157 (2016).

26. Ashok Rathod. The multiple values of algehroid functions and uniqueness on annuli // Konoralf J. Math. 5:2, 216-227 (2017).

27. Ashok Rathod. On the deficiencies of algehriod functions and their differential polynomials //J. Basic Appl. Resear. Int. 1:1, 1-11 (2016).

Ashok Rathod,

Department of Mathematics,

Karnatak University,

Dharwad-580003,India.

E-mail: ashokmrmaths@gmail.com

i Надоели баннеры? Вы всегда можете отключить рекламу.