Научная статья на тему 'CHALLENGES OF MICROBIOLOGICAL SAFETY OF WATER SUPPLY, SANITATION AND HYGIENE. LITERATURE REVIEW'

CHALLENGES OF MICROBIOLOGICAL SAFETY OF WATER SUPPLY, SANITATION AND HYGIENE. LITERATURE REVIEW Текст научной статьи по специальности «Строительство и архитектура»

CC BY
114
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ANTIBIOTIC RESISTANCE / MICROBIAL CONTAMINATION / QUALITY CONTROL / WATER SUPPLY & SANITATION AND HYGIENE (WASH)

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Omarova A.O., Belyayev I.A., Akhmetova S.B., Yerdesov N.Zh., Ismailov Ch.U.

Introduction. Microbiological safety of water supply, sanitation and hygiene (WASH) is one of the priority tasks in maintaining and strengthening the public health. The purpose of this work was to review the results of foreign and domestic sanitary and microbiological studies on the microbiological safety of water supply, sanitation and hygiene (WASH). Search Strategies. The authors of this article codeveloped a search strategy that was the same for each database. Traditional search of sources by keywords was carried out in the PubMed, Scopus, Web of Science and Google Scholar databases in English, Russian and Kazakh languages with inclusion and exclusion criteria. Fifty - three sources out of 116 were selected as analytical materials. The depth of the search was from 1977 to 2020. The criteria for including publications in the review were as follows: publications in Russian and English that are in open full - text access and contain statistically confirmed conclusions. Summary reports, newspaper articles and personal messages were excluded from the review. Results. Ensuring the microbial safety of the drinking - water supply relies on the use of many barriers from the water collection to the consumer in order to prevent contamination from drinking water or reduce it to acceptable levels, not harmful to health. Safety is enhanced when multiple barriers against contamination are established, including protecting water resources, selecting and implementing a range of appropriate treatment measures, and regulating distribution systems (piped or non - piped) to maintain and protect the quality of treated water. The preferred strategy is a regulatory approach that focuses on preventing or reducing the entry of pathogens into water sources, and on reducing reliance on water treatment to remove pathogens. Conclusion. Thus, ensuring the microbial safety of WASH requires the following: an assessment of the entire system to determine the potential harmful factors that may affect it; determination of control measures to reduce or eliminate these harmful factors as well as operational monitoring to ensure the effective functioning of barriers from infection within the system; and developing regulatory plans to describe actions to be taken both under normal conditions and in unforeseen circumstances.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CHALLENGES OF MICROBIOLOGICAL SAFETY OF WATER SUPPLY, SANITATION AND HYGIENE. LITERATURE REVIEW»

Received: 15 May 2021 / Accepted: 18 August 2021 / Published online: 31 August 2021

DOI 10.34689/SH.2021.23.4.005 UDC 614.7:628.1

CHALLENGES OF MICROBIOLOGICAL SAFETY OF WATER SUPPLY, SANITATION AND HYGIENE. LITERATURE REVIEW.

Alua O. Omarova1*, http://orcid.org/0000-0002-2087-3824 Ilya A. Belyayev2, https://orcid.org/0000-0003-3373-2059 Saule B. Akhmetova3, https://orcid.org/0000-0002-8112-742X Nurbek Zh. Yerdesov1, https://orcid.org/0000-0001-8095-3140 Chingiz U. Ismailov1, https://orcid.org/0000-0002-4766-7115 Azamat D. Kharin1, https://orcid.org/0000-0001-6259-5159

1 School of Public Health and Biomedicine, Karaganda Medical University, Karaganda c., Republic of Kazakhstan;

2 Shared Laboratory of Science Research Center, Karaganda Medical University, Karaganda c., Republic of Kazakhstan;

3 Department of Biomedicine, Karaganda Medical University, Karaganda c., Republic of Kazakhstan.

Abstract

Introduction. Microbiological safety of water supply, sanitation and hygiene (WASH) is one of the priority tasks in maintaining and strengthening the public health.

The purpose of this work was to review the results of foreign and domestic sanitary and microbiological studies on the microbiological safety of water supply, sanitation and hygiene (WASH).

Search Strategies. The authors of this article codeveloped a search strategy that was the same for each database. Traditional search of sources by keywords was carried out in the PubMed, Scopus, Web of Science and Google Scholar databases in English, Russian and Kazakh languages with inclusion and exclusion criteria. Fifty-three sources out of 116 were selected as analytical materials. The depth of the search was from 1977 to 2020. The criteria for including publications in the review were as follows: publications in Russian and English that are in open full-text access and contain statistically confirmed conclusions. Summary reports, newspaper articles and personal messages were excluded from the review.

Results. Ensuring the microbial safety of the drinking-water supply relies on the use of many barriers from the water collection to the consumer in order to prevent contamination from drinking water or reduce it to acceptable levels, not harmful to health. Safety is enhanced when multiple barriers against contamination are established, including protecting water resources, selecting and implementing a range of appropriate treatment measures, and regulating distribution systems (piped or non-piped) to maintain and protect the quality of treated water. The preferred strategy is a regulatory approach that focuses on preventing or reducing the entry of pathogens into water sources, and on reducing reliance on water treatment to remove pathogens.

Conclusion. Thus, ensuring the microbial safety of WASH requires the following: an assessment of the entire system to determine the potential harmful factors that may affect it; determination of control measures to reduce or eliminate these harmful factors as well as operational monitoring to ensure the effective functioning of barriers from infection within the system; and developing regulatory plans to describe actions to be taken both under normal conditions and in unforeseen circumstances.

Key words: antibiotic resistance; microbial contamination; quality control; water supply, sanitation and hygiene (WASH).

Резюме

ПРОБЛЕМЫ МИКРОБИОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ВОДОСНАБЖЕНИЯ, САНИТАРИИ И ГИГИЕНЫ. ОБЗОР ЛИТЕРАТУРЫ.

Алуа О. Омарова1*, http://orcid.org/0000-0002-2087-3824 Илья А. Беляев2, https://orcid.org/0000-0003-3373-2059 Сауле Б. Ахметова3, https://orcid.org/0000-0002-8112-742X Нурбек Ж. Ердесов1, https://orcid.org/0000-0001-8095-3140 Чингиз У. Исмаилов1, https://orcid.org/0000-0002-4766-7115 Азамат Д. Харин1, https://orcid.org/0000-0001-6259-5159

1 Школа общественного здоровья и биомедицины, Медицинский университет Караганды, г. Караганда, Республика Казахстан;

2 Лаборатория коллективного пользования Научно-исследовательского центра, Медицинский университет Караганды, г. Караганда, Республика Казахстан;

3 Кафедра Биомедицины, Медицинский университет Караганды, г. Караганда, Республика Казахстан.

Введение. Обеспечение микробиологической безопасности водоснабжения, санитарии и гигиены (ВСГ) является одной из приоритетных задач в сохранении и укреплении здоровья населения.

Целью настоящей работы явился обзор результатов зарубежных и отечественных санитарно-микробиологических исследований по проблеме обеспечения микробиологической безопасности водоснабжения, санитарии и гигиены (ВСГ).

Стратегия поиска. Авторы этой статьи совместно разработали стратегию поиска, которая была одинаковой для каждой базы данных. Традиционный поиск источников по ключевым словам проводился в базах данных PubMed, Scopus, Web of Science и Google Scholar на английском, русском и казахском языках по критериям включения и исключения. В качестве аналитического материала были выбраны пятьдесят три источника из 116. Глубина поиска составляла с 1977 по 2020 год. Критерии включения публикаций в обзор были следующими: полнотекстовые публикации на русском и английском языках, находящиеся в открытом доступе и содержащие статистически подтвержденные выводы. Краткие отчеты, газетные статьи и личные сообщения были исключены из обзора.

Результаты. Обеспечение микробной безопасности питьевого водоснабжения основано на использовании множества преград на пути от водосбора до потребителя в целях предупреждения заражения питьевой воды или сокращения заражения до уровней, которые не вредны для здоровья. Безопасность возрастает, если установлено множество преград по предупреждению заражения, включая защиту водных ресурсов, надлежащий выбор и осуществление ряда мер по очистке, а также регулирование систем распределения (водопроводных или не водопроводных) для поддержания и защиты качества обработанной воды. Предпочтительной стратегией является подход регулирования, при котором основной акцент ставится на предупреждении или сокращении проникновения патогенных микроорганизмов в источники воды, а также на уменьшении зависимости от процессов очистки для удаления патогенов.

Заключение. Таким образом, обеспечение микробной безопасности ВСГ требует проведения оценки всей системы для определения потенциальных вредных факторов, которые могут воздействовать на эту систему; определения мер контроля, необходимых для сокращения или устранения вредных факторов, а также оперативного мониторинга для обеспечения эффективного функционирования преград от заражения в рамках системы; и разработки планов регулирования для описания действий, предпринимаемых как в нормальных условиях, так и в непредвиденных обстоятельствах.

Ключевые слова: антибиотикорезистентность; водоснабжение, санитария и гигиена (ВСГ); контроль качества; микробное заражение.

Туйшдеме

СУМЕН ЖАБДЫКТАУ, САНИТАРИЯ ЖЭНЕ ГИГИЕНАНЫН МИКРОБИОЛОГИЯЛЫК КАУ1ПС1ЗД1ПН1Н МЭСЕЛЕЛЕР1.

ЭДЕБИЕТ ШОЛУ.

Алуа О. Омарова1*, http://orcid.org/0000-0002-2087-3824 Илья А. Беляев2, https://orcid.org/0000-0003-3373-2059 Сауле Б. Ахметова3, https://orcid.org/0000-0002-8112-742X Нурбек Ж. Ердесов1, https://orcid.org/0000-0001-8095-3140 Чингиз У. Исмаилов1, https://orcid.org/0000-0002-4766-7115 Азамат Д. Харин1, https://orcid.org/0000-0001-6259-5159

1 Когамдык денсаулык жэне биомедицина мектеб^ Караганды медицина университет^ Караганды к., Казакстан Республикасы;

2 Гылыми-зерттеу орталыгыньщ ¥жымдык пайдалану зертханасы, Караганды медицина университет^ Караганды к., Казакстан Республикасы;

3 Биомедицина кафедрасы, Караганды медицина университет^ Караганды к., Казакстан Республикасы.

Юрюпе. Сумен жабдыктау, санитария жэне гигиенаныньщ (ССГ) микробиологиялык кау^ЫздИн камтамасыз ету халы^тьщ денсаулыгын сактау мен ныгайтудагы басым мЫдеттердщ бiрi болып табылады.

Бул жумыстыщ максаты сумен жабдыктау, санитария ж8не гигиенаныныщ (ССГ) микробиологиялык кауiпсiздiгiн камтамасыз ету м8селес бойынша шетелдiк ж8не отандык санитариялык-микробиологиялык зерттеулердщ н8тижелерiне шолу жасау болды.

1здену стратегиясы. Осы макаланыщ авторлары 8р дереккорга бiрдей болатын iздеу стратегиясын бiрлесiп жасады. ТYЙiндi сездер бойынша дерекквздердi д8стYрлi iздеу PubMed, Scopus, Web of Science ж8не Google Scholar дереккорларында агылшын, орыс ж8не казак тiлдерiнде косу ж8не шыгару критерийлерiне с8йкес жYргiзiлдi. Аналитикалык материалдар ретiнде 116-дан елу Yш дерекквз тачдалды. 1здеу теречдИ 1977 жылдан 2020 жылга дейЫ болды. Жарияланымдарды шолуга косу критерийлерi мыналар болды: ашык толык м8т^ колжетiмдi ж8не статистикалык расталган корытындылары бар орыс ж8не агылшын ттдершдеп жарияланымдар. ^ыскаша есептер, газет макалалары ж8не жеке хабарламалар шолудан шыгарылды.

Нэтижелерi. Ауыз сумен жабдыктаудыщ микробтык кауiпсiздiгiн камтамасыз ету ауыз су аркылы жукпаларды жуктырудыщ алдын алу немесе оны денсаулыкка зиянды емес де^гейге дейiн азайту Yшiн су жинаудан тутынушыга дейiнгi квптеген кедергiлердi колдануга негiзделген. Егер су ресурстарын коргауды, тазарту жвнiндегi бiркатар шараларды тиiстi тачдауды ж8не жYзеге асыруды, сондай-ак вчделген судыщ сапасын сактау ж8не коргау Yшiн тарату жYЙелерiн (су кубыры аркылы немесе су кубыры аркылы емес) реттеудi коса алганда, жукпа жуктырудыщ алдын алу бойынша квптеген кедерплер орнатылса каутшдк артады. Артыкшылыкты стратегия-бул реттеу т8с^, онда коздыргыштардыщ су квздерiне енуЫщ алдын алуга немесе азайтуга, сондай-ак коздыргыштарды жою Yшiн тазарту процестерЫе т8уелдiлiктi азайтуга баса назар аударылатын реттеу T8сiлi калаулы стратегия болып табылады.

Корытынды. Осылайша, ССГ-ныщ микробтык кау™здИн камтамасыз ету осы жYЙеге 8сер етуi мYмкiн ыктимал зиянды факторларды аныктау Yшiн бYкiл жYЙенi багалауды; зиянды факторларды азайту немесе жою Yшiн кажеттi бакылау шараларын аныктауды, сондай-ак жYЙе ше^берщеп жукпа жуктырудан кедергiлердiн тиiмдi жумыс ютеун камтамасыз ету Yшiн жедел мониторинга; калыпты жавдайда да, кутпеген жагдайда да кабылданатын 8рекеттердi сипаттау Yшiн реттеу жоспарларын 8зiрлеудi талап етедг

TYÜiHdi сездер: антибиотикке me3ÍMdrnk; микробтык ластану; сумен жабдыктау, санитария жэне гигиена (ССГ); сапаны бакылау.

Bibliographic citation:

Omarova A.O., Belyayev I.A., Akhmetova S.B., Yerdesov N.Zh., Ismailov Ch.U., Kharin A.D. Challenges of microbiological safety of water supply, sanitation and hygiene. Literature review // Nauka i Zdravookhranenie [Science & Healthcare]. 2021, (Vol.23) 4, pp. 46-57. doi 10.34689/SH.2021.23.4.005

Омарова А.О., Беляев И.А., Ахметова С.Б., Ердесов Н.Ж., Исмаилов Ч.У., Харин А.Д. Проблемы микробиологической безопасности водоснабжения, санитарии и гигиены. Обзор литературы // Наука и Здравоохранение. 2021. 4 (Т.23). С. 46-57. doi 10.34689/SH.2021.23.4.005

Омарова А.О., Беляев И.А., Ахметова С.Б., Ердесов Н.Ж., Исмаилов Ч.У., Харин А.Д. Сумен жабдыктау, санитария жэне гигиенаньщ микробиологиялык кау™здИнщ мэселелерк Эдебиет шолу // Гылым жэне Денсаульщ са^ау. 2021. 4 (Т.23). Б. 46-57. doi 10.34689/SH.2021.23.4.005

Introduction

Microbiological safety of water supply, sanitation and hygiene (WASH) is one of the priority tasks in maintaining and strengthening public health. There is an obvious need for targeted action to reduce morbidity associated with the growing anthropogenic impact of biological pollution mediated through water systems [13-18].

WASH quality and safety issues are atracting more and more attention from public health authorities, microbiologists, engineers and epidemiologists. There are acute questions regarding disinfection-resistant microbial populations, antibiotic resistance, the transmission of virulence factors between microorganisms, and the need to minimize anthropogenic impact on water supplies. However, there are little research on the microbiology of WASH and its influence on public health. Microbiological safety of WASH should become one of the priority areas of scientific research, as there is an urgent need for information to support decision-making and response to emergencies [33,46,50].

The aim of this study was to review the results of foreign and domestic sanitary and microbiological studies on the microbiological safety of water supply, sanitation and hygiene (WASH).

Search Strategies

The authors of this article codeveloped a search strategy that was the same for each database. Traditional search of sources by keywords was carried out (Table 1) in the PubMed, Scopus, Web of Science and Google Scholar databases in English, Russian and Kazakh languages with inclusion and exclusion criteria noted below. Fifty-three sources out of 116 were selected as analytical materials. The depth of the search was from 1977 to 2020.

The criteria for including publications in the review were as follows: publications in Russian and English that are in open full-text access and contain statistically confirmed conclusions.

Summary reports, newspaper articles and personal messages were excluded from the review.

Table 1.

Keywords used during the search in the PubMed, Scopus, Web of Science and Google Scholar databases.

Search Number - Keywords Combination

Database

1 - PubMed "antibiotic resistance", "microbial contamination", "quality control", "water supply, sanitation and hygiene", "WASH"

2 - Scopus "antibiotic resistance" AND "microbial contamination" AND "quality control" AND "water supply, sanitation and hygiene" OR "WASH"

3 - Web of Science "antibiotic resistance" AND "microbial contamination" AND "quality control" AND "water supply, sanitation and hygiene" OR "WASH"

4 - Google Scholar "antibiotic resistance", "microbial contamination", "quality control", "water supply, sanitation and hygiene", "WASH"

Sum of databases searches PubMed AND Scopus AND Web of Science AND Google Scholar

Results and Discussion

1. Microbiocenosis of water from water supply and sewerage systems

Water supply systems are designed and operated to deliver biologically safe and chemically pure water to the consumer. However, these systems represent an ecological niche in which microorganisms live and multiply. In this case, microbial ecology is regulated by the technical state and operating conditions of the water supply system, which can make microbial communities in the form of biofilms, which are found in dry sediment and running water. According to various sources, the total number of microorganisms in tap water ranges from 104 to 106 CFU per liter [42,48]. The microbial composition of water is influenced by many aspects: from the length and shape of the distribution network to the pipe material [27,29,33,3637,47]. The main problem of determining the microbiome of drinking water is that it dynamically changes at all stages of water treatment.

The greatest risk of microbial pollution is associated with the consumption of water contaminated with human or animal (or birds) faeces. Faeces are able to be a source of various pathogenic microorganisms such as bacteria, viruses, protozoa and helminths. Faecal pathogens are a major problem in setting health-related microbial safety goals. Water quality in terms of microbial contamination often varies in a wide range. Short-term peak concentrations of pathogens can significantly increase the risk of disease and trigger outbreaks of WASH-related disease. Therefore, to ensure the microbial safety of drinking water, it is not an option to rely solely on checking the final state of the water, even if it is done frequently. Due attention should be paid to the basics of water safety and the implementation of comprehensive water safety plans (WSPs) to ensure the safety of drinking water at all times and thereby preserve the health of the population [20,42]. The main reasons for the spread of fecal water pollution are often as follows [25]:

- proximity of local sewerage systems;

- breakdowns in nearby sewers;

- proximity of municipal solid waste (MSW) landfills and livestock farms to the water source;

- breakdowns in the water treatment system and its misuse.

An important factor affecting water supply systems is the qualitative and quantitative composition of opportunistic pathogenic microflora (OPM). The gram-negative nonfermentable bacteria (GNNB) are more common than all other microorganisms, many of them are representatives of the hydrobiont microflora. Among the OPMs, the genera Acinetobacter, Burkholderia, Brevundimonas, Chryseobacterium, Sphingomonas, Stenotrophomonas, Pseudomonas, Legionella, Mycobacterium, Ochrobactrum and were found [28,45]. Special mention should go to Acinetobacter, Pseudomonas and Stenotrophomonas, which are carriers of natural genetic determinants of antibiotic resistance and have the ability to spread them. The presence of biofilm-forming microorganisms such as Bradyrhizobium in the water supply system not only leads to a change in water quality, but also forms biofilms on the water supply network. Such biofilms, when added with other microorganisms, including pathogens, become a constant source of deterioration in the quality of water supply and can be removed only through the replacement of the water supply network [28].

In many recent studies, the environment is considered as a recipient of both drug-resistant bacteria and a reservoir and source of resistance genes. Water supply and sewerage systems are recognized by World Health Organization (WHO) as one of the critical points in the spread of antibiotic resistance [51]. Water is one of the most important factors in the spread of genetic determinants of antibiotic resistance [49]. In addition, many of them have been obtained from aquatic microflora [34,52]. There are multiple data on the distribution of the determinants of antibiotic resistance NDM-1, which provides resistance to the entire range of beta-lactam antibiotics, and is often combined with Qnr-type resistance and various Aminoglycosides modifying enzymes. The spread of extended spectrum beta-lactamases (ESBLs) in wastewater has been repeatedly proven on a world-wide basis [24,30,50,53]. Therefore, drinking and waste water can be both a source of microorganisms producing determinants of antibiotic resistance, and antibiotic resistance genes themselves.

The spread of drug resistance has been observed among bacteria as indicators of faecal water contamination. Genes for resistance to antimicrobial agents have been identified among the representatives of the Enterobacteriaceae family (in particular, Escherichia coli, Salmonella spp., Klebsiella spp., Yersinia pestis and Shigella spp.) and Staphylococcus aureus (in particular, MRSA). Untreated wastewater contains concentrated levels of pathogenic and non-pathogenic microbes and antibiotics. Wastewater and untreated wastewater can enter surface one through combined sewers. During heavy rainfall, wastewater treatment plants with combined storm-water collectors may experience overflows exceeding their design capacity, and thus mixed water may be discharged without complete treatment. The annual concentrations of resistant

coliform microorganisms discharged from the combined sewers were about 5000 times higher than from wastewater treatment plants [32]. A global monitoring of urban wastewater has made it possible to assess systematic differences in the number and diversity of genes for antimicrobial resistance [26]. There were significant regional differences that correlated more with social and economic factors than with antibiotic use. Two clusters of antibiotic resistance gene abundance were identified: the first cluster consisted of high-income countries in Europe, North America and Oceania, and the second cluster included low-and middle-income countries in Africa, Asia and South America. The first cluster had a high abundance of a limited number of antibiotic resistance genes encoding macrolide resistance genes. In the second cluster, a large number of different resistance genes from different classes of drugs were found. The largest discrepancy in the distribution of resistance genes was found in India, Vietnam and Brazil, suggesting that these countries may be hot spots for the emergence of new antibiotic resistance mechanisms. This statement was proven in 2011 with the emergence of a new type of beta-lactamase NDM-1 [23,26,46].

Pathogenic bacteria found in hospitals and other health care facilities and resistant to all or almost all of the existing antibiotics are of increasing concern in the world. Antibiotics, pharmaceutical residues, bacteria and antimicrobial resistance genes were found in hospital wastewater after the following types of treatment [31]:

- urban wastewater treatment plants (i.e. the hospital was the source of indirect discharge);

- local sewerage systems;

- without any treatment before discharge into surface waters (i.e. direct discharge).

Antibiotics and antibiotic residues can enter urban wastewater as a result of the removal of pharmaceuticals, urine and feces of patients taking medications, as well as antimicrobials for washing surfaces, hands and clothing. Untreated wastewater can mix with pretreated and/or untreated medical waste, creating a hot spot for the proliferation of antibiotic resistance genes. Additionally, wastewater from health care facilities contains a higher concentration of pathogenic and opportunistic bacteria that can spread or acquire genes or be secreted (i.e. multiply faster than other bacteria in wastewater due to mutation) from wastewater [35].

In addition to faecal pathogens, other harmful microbial organisms (for example, Dracunculus medinensis, toxic cyanobacteria and Legionella) can pose a risk to public health under certain circumstances. In the infectious stages of many helminths, such as parasitic roundworms and flatworms, people can become infected through drinking water. Since a single mature larva or fertilized egg can cause infection, they must be absent from drinking water. However, the waterway is of relatively little importance for helminth infestation, with the exception of guinea worm [28].

Legionella bacteria are omnipresent in the environment and can penetrate at elevated temperatures, which are sometimes observed in drinking water distribution systems, and more often in hot and warm ones. Exposure to Legionella in drinking water is through inhalation and can be controlled by implementing basic water quality measures in buildings and by maintaining residual disinfection

throughout the water distribution system. Legionella does not cause disease in healthy people, but it can cause a sense of discomfort due to unpleasant taste and odor, or discoloration of drinking water. Growth that occurs after drinking water has been treated is often referred to as "regrowth". It is usually reflected in the measurement of the increasing number of microorganisms determined by the plate method (NMDPM) in water samples [51].

A public health concern with cyanobacteria is related to their ability to produce a range of toxins known as "cyanotoxins" [28]. Cyanobacteria, unlike pathogenic bacteria, do not spread in the human body after ingestion; they spread only in the aquatic environment. Although toxic peptides (e.g. microcystins) are usually found in cells and thus can be largely destroyed by filtration, toxic alkaloids such as cylindrospermopsin and neurotoxin also enter the water and can penetrate filtration systems.

Therefore, the safety of drinking water depends on some factors including the quality of the source water, the effectiveness of treatment, the reliability and integrity of the engineering infrastructure, and the possibility of re-growth of microorganisms in the pipes. Hazards can potentially compromise water quality at every step of production and delivery of drinking water. Distribution systems may be less prone to pollution than open surface water catchment areas. However, biofilms, deposits and corrosion products can contain pathogens from ineffective handling or disruption to the distribution system. Hidden in sediment or embedded in biofilm and bumps, pathogens can be released during repair or cleaning as a result of erosion caused by sudden changes in the flow structure or as a result of continuous natural separation of biofilm. The survival of pathogens depends on their nature, microbial activity in the biofilm and some environmental factors. Thus, there is a need to attract additional resources to control the water microbiocenosis from water supply and sewerage systems.

2. Methods of water quality control in terms of microbial contamination

When our country introduced the Sanitary Rules called "Sanitary and Epidemiological Requirements for Water Sources, Water Withdrawal Points for Household and Drinking Purposes, Household and Drinking Water Supply, Places of Cultural and Household Water Use and Safety of Water Bodies" [11] as well as "Hygienic Requirements for Surface Waters Protection" [12], a new regulatory framework has been created. It provides for the need for direct detection of viruses in drinking water, surface and waste waters. The classical and most reliable method of controlling viral water contamination is the direct isolation of viruses on cell cultures. However, it is known that many epidemiologically significant viruses (for example, hepatitis A, rotaviruses, noroviruses, etc.) are not cultivated on cells traditionally used in the practice of virus isolation or are cultivated in special cultures with great difficulty. At the same time, working with cell cultures requires special laboratory equipment, qualified personnel and significant material costs. It should also be noted that the obtained results are of a retrospective nature, which reduces both the significance of this method as a planned one in practice and water quality control in relation to viral contamination according to epidemiological indications [5].

Concerning the water quality in terms of microbial contamination, the checking necessarily includes microbiological testing. In most cases, it involves the analysis of indicator faecal microorganisms, but sometimes it may also include an assessment of the density of specific pathogens. These checking approaches involve testing water at source, water immediately after treatment, water in distribution systems, or household water reserves. The quality of drinking water is tested for microbial contamination includes Escherichia coli as an indicator of faecal contamination. Escherichia coli is strong evidence of recent contamination by faeces that must not be present in drinking water. The main requirements for indicator and sanitary-indicative microorganisms are as follows [19,41]:

1. A common source of entry into the environment with pathogenic microorganisms;

2. Equal resistance to environmental factors and disinfecting agents with pathogenic microorganisms;

3. The quantitative predominance of indicator microorganisms over pathogenic ones;

4. Indicator microorganisms must have a stable correlation with pathogenic ones in order to assume the quantitative content of the latter by the number of the former;

5. Indicator microorganisms must not multiply in the environment;

6. Simplicity and rapidity of methods for isolating indicator microorganisms;

7. Non-pathogenicity of indicator microorganisms.

However, in practice, testing for thermoduric coliform

bacteria may be an acceptable alternative in plenty of cases. While Escherichia coli is a useful indicator, it has some limitations. Enteroviruses and protozoa are much more stable to disinfection, that is why the absence of Escherichia coli does not necessarily indicate release from these microorganisms. Under certain conditions, it is desirable to include bacteriophages [6,19].

As the sanitary microbiology developed, there was a constant discussion regarding various microorganisms and indicators that could be used as criteria of viral water pollution: Escherichia coli, coliphages, clostridia, viral antigens of RNA and DNA of viruses, water turbidity, etc. Coliform bacteria and Escherichia coli cannot perform the function of indicator microorganisms in relation to viral contamination, since viruses are more resistant to the effects of chemical and physical environmental factors and disinfecting agents from water treatment than bacteria according to the data of domestic and foreign scientists [1,7-8].

The literature [2-4,9] describes outbreaks of viral hepatitis related to the use of drinking water with standard bacteriological parameters. The question of the possibility of introducing clostridia into routine sanitary and virological control as an indicator microorganism is debatable. Unlike coliform bacteria, clostridia are more resistant to various factors and water treatment agents than intestinal viruses. In this regard, water disinfection requires significantly higher doses of chlorine, ozone and other disinfectants, which can contribute to a sharp increase in the formation of trihalomethanes, haloform compounds, free radicals, aldehydes, etc., having an adverse effect on public health and causing long-term biological effects. In addition,

Clostridia do not meet the requirements for indicator microorganisms in many other parameters.

In his works, K.K. Toguzbaeva and her colleques assume [21] that there is a trend for microbial pollution of drinking water, which directly affects public health and increases the number of acute enteric infections and viral hepatitis. Preliminary calculations based on the regression dependence revealed a direct and strong positive correlation between microbial pollution of drinking water and an increase in the number of these diseases among the studied group of people. However, in terms of microbiological indicators in the region, the percentage of non-standard water samples from centralized water supply systems decreased from 0.59% in 2009 to 0.4% in 2013, from decentralized water supply systems from 1.3% in 2009 and to 1,08% in 2013. K.K. Toguzbaeva et al. [21] came to the following conclusions:

1. The most adequate indicators of viral water pollution are coliphages and markers of DNA and RNA viruses, determined by PCR and RT-PCR, respectively;

2. Markers of DNA and RNA viruses in a water sample indicate the direct presence of viruses in water and their species, as well as their possible quantitative level, which requires epidemiological alertness.

Having studied the rural population of the Almaty region and their sanitary and hygienic living conditions [10,22], a group of researchers led by B.A. Ramazanova came to the conclusion that the analysis of the water quality of decentralized water supply sources by microbiological indicators gave grounds to state a tendency towards its improvement. During the study period in this region, 9.0% of working water pipelines did not meet sanitary and epidemiological requirements, including 52.8% due to the lack of sanitary protection zones, 28.5% due to the lack of the necessary treatment facilities and 44.3% did not have disinfection facilities. In a number of districts, the unsatisfactory condition of the existing water pipelines was simultaneously caused by several of the above reasons.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ensuring the microbial safety of the drinking-water supply relies on the use of many barriers from the water collection to the consumer in order to prevent contamination from drinking water or reduce it to acceptable levels, not harmful to health [38-39,40,42-44]. Safety is enhanced when multiple barriers against contamination are established, including protecting water resources, selecting and implementing a range of appropriate treatment measures, and regulating distribution systems (piped or non-piped) to maintain and protect the quality of treated water. The preferred strategy is a regulatory approach that focuses on preventing or reducing the entry of pathogens into water sources, and on reducing reliance on water treatment to remove pathogens.

Thereby, outbreaks of waterborne diseases associated with microbial contamination are underinvestigated. Data on outbreaks caused by many etiological agents tend to rarely affect water supply networks, since backflow and growth events are likely not to be recognized and reported unless an entire building with a large number of people is affected. There is a need for epidemiological studies that aim at microbial contamination of water. Surveillance systems help to track trends in causes and risk factors for waterborne diseases, but they are not very susceptible and not able to

serve as a fast warning system for water-related health problems in a particular community due to reporting delays. Therefore, epidemiological studies of the risk of endemic diseases associated with microbial contamination of drinking-water should be carried out and developed with sufficient capacity and resources to address the shortcomings of previous studies.

Conclusion

Thus, ensuring the microbial safety of WASH requires the following: an assessment of the entire system to determine the potential harmful factors that may affect it; determination of control measures to reduce or eliminate these harmful factors as well as operational monitoring to ensure the effective functioning of barriers from infection within the system; and developing regulatory plans to describe operations to be taken both under normal conditions and in unforeseen circumstances. These measures are three components of the WSPs. Insufficiency to ensure the microbiological safety of WASH can lead to outbreaks and fatal epidemics.

Acknowledgements

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09058465).

Contribution of the authors:

Alua O. Omarova: planned the study and wrote parts of the final paper;

Ilya A. Belyayev: performed the review and wrote the first version of the paper;

Saule B. Akhmetova: performed the review and wrote the first version of the paper;

Nurbek Zh Yerdesov: performed the review and wrote the first version of the paper;

Chingiz U. Ismailov: collected and processed the sources;

Azamat D. Kharin: collected and processed the sources.

The authors declare that there is no conflict of interest.

The authors claim a lack of funding.

This article and parts of the materials of the article were not previously published and are not under consideration in other publishers.

References:

1. Амросьева Т.В., Вотяков В.И., Дьяконова О.В., Поклонская Н.В., Богуш З.Ф., Козинец О.Н. и др. Современные подходы к изучению и оценке вирусного загрязнения питьевых вод // Гигиена и санитария. 2002. № 1. С.76-79.

2. Багдасарьян Г.А., Влодавец В.В., Дмитриева Р.А., Ловцевич Е.Л. Основы санитарной вирусологии. Москва: Медицина, 1977. 200 с.

3. Дмитриева Р.А., Доскина Т.В. Вода и кишечные вирусные инфекции // РЭТ-инфо. 2005. № 2. С. 48-52.

4. Доскина Т.В., Дмитриева Р.А. Контроль вирусного загрязнения водных объектов // РЭТ-инфо. 2005. № 3. С. 40-43.

5. Жаркинов Е.Ж., Красников В.Н., Тотанов Ж.С., Ташметов К.К., Черепанова Л.Ю. Современные проблемы гигиены села и задачи научных исследований // Медицина и экология. 2002. № 2. С.27-29.

6. Корнилова Н.М. Научное обоснование значения колифагов и их регламента для оценки качества

питьевой воды в отношении кишечных вирусов: автореф. дис. ... канд. мед.наук. Москва, 1991. 41 с.

7. Кочемасова З.Н., Ефремова С.А., Рыбакова А.М. Санитарная микробиология и вирусология: учеб. пособие для сан-гигиен. фак. мед. ин-тов. Москва: Медицина, 1987. 349 с.

8. Недачин А.Е., Доскина Т.В., Дмитриева Р.А., Лаврова Д.В. Оценка значимости колифагов как косвенных показателей вирусного загрязнения воды подземных водоисточников // Итоги и перспективы научных исследований по проблеме экологии человека и гигиены окружающей среды. 2002. №4. С. 162-168.

9. Недачин А.Е., Шипулина О.Ю., Шипулин Г.А., Чуланов В.П. Сравнительная оценка чувствительности метода полимеразной цепной реакции и иммуноферментного анализа для обнаружения вируса гепатита А в воде // Материалы конференции «Актуальные проблемы современной вирусологии, посвященной 90-летию М.П. Чумакова». Москва, 1999, С. 64-65.

10. Нурбакыт А.Н., Абсатарова К.С., Бурибаева Ж.К., Казангапова Г.Е., Сарсенбаев Е.Ж., Давибаева Б.Р. Оценка населением санитарно-гигиенических условий в медицинских организациях г. Алматы и Алматинской области // Rusnauka. 2010. №21. URL: http://www.rusnauka.com/28_OINXXI_2010/Medecine/7264 9.doc.htm (дата обращения: 26.06.2021).

11. Санитарные правила "Санитарно-эпидемиологические требования к водоисточникам, местам водозабора для хозяйственно-питьевых целей, хозяйственно-питьевому водоснабжению и местам культурно-бытового водопользования и безопасности водных объектов" утвержденные Приказом Министра национальной экономики Республики Казахстан от 16 марта 2015 года № 209. URL: https://adilet.zan.kz/rus/docs/V1500010774 (дата обращения: 24.06.2021).

12. Санитарные правила "Санитарно-эпидемиологические требования к осуществлению производственного контроля" утвержденные Приказом Министра национальной экономики Республики Казахстан от 6 июня 2016 года № 239. URL: https://adilet.zan.kz/rus/docs/V1600013896 (дата обращения: 24.06.2021).

13. ООН. Цели в области устойчивого развития. Цель 6: Обеспечение наличия и рационального использования водных ресурсов и санитарии для всех. URL: https://www.un.org/sustainabledevelopment/ru/water-and-sanitation/ (дата обращения: 25.06.2021).

14. Позин С.Г., Амвросьева Т.В., Ключенович В.И. О некоторых направлениях обеспечения безопасности воды для здоровья населения Республики Беларусь // Военная медицина. 2016. № 1. С. 90-93.

15. Позин С.Г. О некоторых направлениях научно-практических исследований по обеспечению микробиологической безопасности воды в хозяйственно-питьевых водопроводах Республики Беларусь // Материалы научно-практической конференции, посвящённой 80-летию санитарно-эпидемиологической службы Республики Беларусь «Актуальные проблемы гигиены и эпидемиологии», Минск, 17 ноября, 2006. С. 306-309.

16. Позин С.Г. Основные гигиенические аспекты обоснования микробиологической безопасности воды и алгоритма мероприятий по обеспечению её качества в хозяйственно-питьевых водопроводах: монография. Минск: Бофф, 2006. 92 с.

17. Позин С.Г., Рызгунский В.В., Долгин А.С., Гладкий А.Г., Дроздова Е.В., Мазейко Л.Н., Пришивалко А.П., Богомья М.М., Колячко В.В. Совершенствование санитарно-гигиенического нормирования размещения источников нецентрализованного хозяйственно-питьевого водоснабжения, заключений санэпидслужбы о качестве среды обитания, проблемы оценки содержания в воде бора и бария, измерений температуры воды из квартирных водоразборов // Военная медицина. 2012. № 2. С. 93-97.

18. Позин С.Г., Рызгунский В.В. Итоги и задачи научно-практических исследований по обеспечению безопасности питьевой воды в Республике Беларусь // В помощь практикующему врачу. 2013. № 2. С. 116-119.

19. Рахманин Ю.А., Недачин А.Е., Доскина Т.В., Корнилова Н.М., Дмитриева Р.А., Шарлот Ю.М. Индикаторная значимость колифагов в отношении загрязнения питьевой воды кишечными вирусами // Гигиена и санитария. 1990. № 6. С. 84-88.

20. Сбойчаков В.Б. Микробиология, основы эпидемиологии и методы микробиологических исследований: учебник для медицинских учебных заведений 3-е изд., испр. и доп. Санкт-Петербург: Изд-во СпецЛит, 2017. 712 с.

21. Тогузбаева К.К., Джанбатырова А.Е., Сейдуанова Л.Б., Ниязбекова Л.С., Калдыбай А.У., Жунистаев Д.Д., Мейирман А.С., Толеу Е.Т. Гигиеническая оценка качества сельского водоснабжения по результатам лабораторных данных Енбекшиказахского района // Вестник КазНМУ. 2015. № 2. С.634-637.

22. Тогузбаева К.К., Мырзахметова Ш.К., Ниязбекова Л.С., Оракбай Л.Ж., Жунистаев Д.Д., Сейдуанова Л.Б., Сайлыбекова А.К., Смагулов А.Б., Суменова К.А., Сабирова Г.Р. Гигиеническая оценка влияния качества хозяйственно-питьевого водоснабжения на здоровье сельского населения Алматинской области // Вестник Каз НМУ. 2014. № 3. С.33-38.

23. Badhai J., Ghosh T.S., Das S.K. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India // Front. Microbiol. 2015. N 6. P. 1-15. https://doi.org/10.3389/fmicb.2015.01166

24. De Boeck H., Lunguya O, Muyembe J.J., Glupczynski Y., Jacobs J. Presence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in waste waters, Kinshasa, the Democratic Republic of the Congo // Eur J Clin Microbiol Infect Dis. 2012 N 31. P. 3085-3088. https://doi.org/10.1007/s10096-012-1669-8

25. Ding^ Z., Zhai Y, Wu C., Wu H, Lu Q., Lin J, He F. Infectious diarrheal disease caused by contaminated well water in Chinese schools: A systematic review and metaanalysis // J Epidemiol. 2017. N 27. P. 274-281. https://doi.org/10.1016/jJe.2016.07.006

26. Divyashree M., Mani M. K., Shama Prakash K., Vijaya Kumar D., Veena Shetty A., Shetty A.K.,

Karunasagar I. Hospital wastewater treatment reduces NDM-positive bacteria being discharged into water bodies // Water Environ Res. 2020. N 92. P. 562-568. https://doi.org/10.1002/wer.1248

27. Douterelo I., Husband S., Boxall J.B. The bacterial composition of biomass recovered by flushing an operational drinking water distribution system // Water Res. 2014. N 54. P. 100-114. https://doi.org/10.1016/j.watres.2014.01.049

28. Gomez-Alvarez V., Schrantz K.A., Pressman J.G., Wahman D.G. Biofilm community dynamics in bench-scale annular reactors simulating arrestment of chloraminated drinking water nitrification // Environ. Sci. Technol. 2014. N. 48. P. 5448-5457. https://doi.org/10.1021/es5005208

29. Gomez-Alvarez V., Revetta R.P., Santo Domingo J.W. Metagenomic analysis of drinking water receiving different disinfection treatments // Appl. Environ. Microbiol. 2012. N 78. P. 6095-6102. https://doi.org/10.1128/AEM.01018-12

30. Haberecht H.B, Nealon N.J., Gilliland J.R., Holder A.V., Runyan C, Oppel R.C., Ibrahim H.M., Mueller L., Schrupp F., Vilchez S., Antony L., Scaria J., Ryan E.P. Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado // J Environ Public Health. 2019. N 18. P. 1-13. https://doi.org/10.1155/2019/3862949

31. Hendriksen R.S., Munk P., Njage P.M.K., van Bunnik B., McNally L., Lukjancenko O., Röder T, Nieuwenhuijse D., Karlsmose Pedersen S., Kjeldgaard J. S., Kaas R.S., Clausen P.T.L.C., Vogt J.K., Leekitcharoenphon P., van de Schans M.G.M., Zuidema T., de Roda Husman A.M., Rasmussen S., Petersen B., Aarestrup F.M. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage // Nature Communications. 2019. N 1124. P. 1-12. https://doi.org/10.1038/s41467-019-08853-3

32. Honda R., Tachi C., Yasuda K., Hirata T., Noguchi M., Hara-Yamamura H., Yamamoto-Ikemoto R., Watanabe T. Estimated discharge of antibiotic-resistant bacteria from combined sewer overflows of urban sewage system // NPJ Clean Water. 2020. N 3. P. 1-7. https://doi.org/10.1038/s41545-020-0059-5

33. Hwang C., Ling F., Andersen G. L., LeChevallier M. W., Liu W. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments // Appl. Environ. Microbiol. 2012. N 78. P. 7856-7865. https://doi.org/10.1128/AEM.01892-12

34. Khan A.U., Maryam L., Zarrilli R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-ß-lactamase (NDM): a threat to public health // BMC Microbiol. 2017. N 27. P. 1-12. https://doi.org/10.1186/s12866-017-1012-8

35. McArdell C. S., Molnar E., Suter M. J., Giger W. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland // Environ Sci Technol. 2003.N 37. P. 5479-86. https://doi.org/10.1021/es034368i

36. Nescerecka A., Rubulis J., Vital A., Juhna T., Hammes F. Biological instability in a chlorinated drinking water distribution system // PLoS One. 2014. N 9. P. 1-11. https://doi.org/10.1371/journal.pone.0096354

37. Niquette P., Servais P., Savoir R. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system // Water Res. 2000. N 34. P. 1952-1956. https://doi.org/10.1016/S0043-1354(99)00307-3

38. Omarova A. Morbidity of Rural Population Associated with the Quality of Drinking Water Supply // Медицина. 2019. № 4. С. 8-13.

39. Omarova A., Kalishev M. The Status of Household and Drinking Water Supply of the Rural Population of Karaganda Region // Астана медицинальщ журналы. 2017. №4. С. 123-128.

40. Omarova A., Tussupova K., Berndtsson R., Kalishev M. Medical and Social Significance of Water Supply, Sanitation and Hygiene in Human Activity // Вестник КазНМУ. 2017. № 3. С. 193-197.

41. Omarova A., Tussupova K., Berndtsson R., Kalishev M. Burden of Water-Related Diseases in Developing Countries. Literature Review // Наука и Здравоохранение. 2017. № 3. С. 95-109.

42. Omarova A., Tussupova K., Berndtsson R., Kalishev M., Sharapatova K. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries // International Journal of Environmental Research and Public Health. 2018. N 15. P. 1-18. https://doi.org/10.3390/ijerph15030495

43. Omarova A., Tussupova K., Hjorth P., Kalishev M., Dosmagambetova R. Water Supply Challenges in Rural Areas: A Case Study from Central Kazakhstan // International Journal of Environmental Research and Public Health. 2019. N 16. P. 1-14. https://doi.org/10.3390/ijerph16050688

44. Omarova A., Tussupova K. The future of piped water in villages in low- and middle-income countries // European Journal of Public Health. 2018. N 2. P. 336-337. https://doi.org/10.1093/eurpub/cky214.081

45. Paduano S., Marchesi I, Casali M.E, et al. Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital Hot Water Network // Int J Environ Res Public Health. 2020. N 17. P. 1-17. https://doi.org/10.3390/ijerph17062158

46. Paduano S., Valeriani F., Romano-Spica V., Bargellini A., Borella P., Marchesi I. Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics: A pilot study. // Water Sci. Technol. Water Supply. 2018. N 18. P. 1456-1465. https://doi.org/10.2166/ws.2017.209

47. Pinto A. J., Xi C., Raskin L. Bacterial community structure in the drinking water microbiome is governed by filtration processes Environ // Sci. Technol. 2012. N 46. P. 8851-8859. https://doi.org/10.1021/es302042t

48. Proctor C., Hammes F. Drinking water microbiology - from measurement to management // Curr. Opin. Microbiol. 2015. N 33. P. 87-95. https://doi.org/10.1016/j.copbio.2014.12.014

49. Rathinasabapathi P., Hiremath D. S., Arunraj R., Parani M. Molecular Detection of New Delhi Metallo-Beta-Lactamase-1 (NDM-1) Positive Bacteria from Environmental and Drinking Water Samples by Loop Mediated Isothermal Amplification of bla NDM-1 // Indian J Microbiol. 2015. N 55. P. 400-405. https://doi.org/10.1007/s12088-015-0540-x

50. Runcharoen C., Raven K. E., Reuter S., Kallonen T, Paksanont S., Thammachote J., Anun S., Blane B., Parkhill J., Peacock S.J., Chantratita N. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand // Genome Med. 2017. N 9. P. 1-11. https://doi.org/10.1186/s13073-017-0471-8

51. Sano D., Louise Wester A, Schmitt H., Amarasiri M., Kirby A., Medlicott K, Roda Husman A.M. Updated research agenda for water, sanitation and antimicrobial resistance // J Water Health. 2020. N 18. P. 858-866. https://doi.org/10.2166/wh.2020.033

52. Yong D., Toleman M.A., Giske C. G., Cho H.S., Sundman K., Lee K., Walsh T.R. Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India // Antimicrob Agents Chemother. 2009. N 53. P. 5046-5054. https://doi.org/10.1128/AAC.00774-09

53. Zagui G.S., de Andrade L.N., Moreira N. C., Silva T.V., Machado G.P., da Costa Darini A.L., Segura-Muñoz S.I. Gram-negative bacteria carrying p-lactamase encoding genes in hospital and urban wastewater in Brazil // Environ Monit Assess. 2020. N 192. P. 1-10. https://doi.org/10.1007/s10661 -020-08319-w

References:

1. Amros'eva T.V., Votyakov V.I., D'yakonova O.V., Poklonskaya N.V., Bogush Z.F., Kozinec O.N. i dr. [and others] Sovremennye podhody k izucheniyu i otsenke virusnogo zagryazneniya pit'evykh vod [Modern approaches to the study and assessment of viral contamination of drinking water]. Gigiena i sanitariya [Hygiene and sanitation]. 2002, 1, pp. 76-79. [in Russian]

2. Bagdasar'yan G.A., Vlodavec V.V., Dmitrieva R.A., Lovcevich E.L. Osnovy sanitarnoi virusologii [Fundamentals of sanitary virology]. Moscow, Meditsina [Medicine], 1977, 200 p. [in Russian]

3. Dmitrieva R.A., Doskina T.V. Voda i kishechnye virusnye infektsii [Water and intestinal viral infections]. RET-info. 2005, 2, pp. 48-52. [in Russian]

4. Doskina T.V., Dmitrieva R. A. Kontrol' virusnogo zagryazneniya vodnykh ob"ektov [Control of viral contamination of water bodies]. RET-info. 2005, pp. 40-43. [in Russian]

5. Zharkinov E.Zh., Krasnikov V.N., Totanov Zh.S., Tashmetov K.K., Cherepanova L.Yu. Sovremennye problemy gigieny sela i zadachi nauchnyh issledovanij [Modern problems of rural hygiene and the tasks of scientific research]. Meditsina i ekologiya [Medicine and ecology]. 2002, 2, pp. 27-29. [in Russian]

6. Kornilova N.M. Nauchnoe obosnovanie znacheniya kolifagov i ih reglamenta dlya otsenki kachestva pit'evoi vody v otnoshenii kishechnykh virusov: avtoref. dis. ... kand. med.nauk [Scientific substantiation of the importance of coliphages and their regulations for assessing the quality of drinking water in relation to intestinal viruses: abstract of the dissertation of the Candidate of Medical Sciences]. Moscow, 1991, 41 p. [in Russian]

7. Kochemasova Z.N., Efremova S.A., Rybakova A.M. Sanitarnaya mikrobiologiya i virusologiya: ucheb. posobie dlya san.-gigien. fak. med. in-tov [Sanitary microbiology

and virology: a textbook for sanitary and hygienic faculties of medical institutes]. Moscow, Meditsina [Medicine], 1987, 349 p. [in Russian]

8. Nedachin A.E., Doskina T.V., Dmitrieva R.A., Lavrova D.V. Otsenka znachimosti kolifagov kak kosvennykh pokazatelei virusnogo zagryazneniya vody podzemnykh vodoistochnikov [Assessment of the significance of coliphages as indirect indicators of viral contamination of water from underground water sources]. Itogi i perspektivy nauchnyh issledovanij po probleme ekologii cheloveka i gigieny okruzhayushchej sredy [Results and prospects of scientific research on the problem of human ecology and environmental hygiene]. 2002, 4, pp. 162-168. [in Russian]

9. Nedachin A.E., Shipulina O.Yu., Shipulin G.A., Chulanov V.P. Sravnitel'naya otsenka chuvstvitel'nosti metoda polimeraznoi tsepnoi reaktsii i immunofermentnogo analiza dlya obnaruzheniya virusa gepatita A v vode [Comparative evaluation of the sensitivity of the polymerase chain reaction method and enzyme immunoassay for detecting hepatitis A virus in water]. Materialy konferentsii "Aktual'nye problemy sovremennoj virusologii, posvyashchennoj 90-letiyu M.P. Chumakova" [Materials of the conference "Actual problems of modern virology dedicated to the 90th anniversary of M.P. Chumakov"]. Moscow, 1999, pp. 64-65. [in Russian]

10. Nurbakyt A.N., Absatarova K.S., Buribaeva Zh.K., Kazangapova G.E., Sarsenbaev E.Zh., Davibaeva B.R. Otsenka naseleniem sanitarno-gigienicheskikh uslovii v medicinskikh organizatsiyakh g. Almaty i Almatinskoi oblasti [Assessment by the population of sanitary and hygienic conditions in medical organizations of Almaty and Almaty region]. Rusnauka. 2010, 21. Available at: http://www.rusnauka.com/28_OINXXI_2010/Medecine/7264 9.doc.htm (accessed 26.06.2021). [in Russian]

11. Sanitarnye pravila "Sanitarno-epidemiologicheskie trebovaniya k vodoistochnikam, mestam vodozabora dlya hozyaistvenno-pit'evykh tselei, khozyaistvenno-pit'evomu vodosnabzheniyu i mestam kul'turno-bytovogo vodopol'zovaniya i bezopasnosti vodnykh ob"ektov" utverzhdennyi Prikazom Ministra natsional'noi ekonomiki Respubliki Kazahstan ot 16 marta 2015 goda No. 209 [Sanitary rules "Sanitary and epidemiological requirements for water sources, places of water intake for economic and drinking purposes, economic and drinking water supply and places of cultural and domestic water use and safety of water bodies" approved by Order of the Minister of National Economy of the Republic of Kazakhstan No. 209 dated March 16, 2015]. Available at: https://adilet.zan .kz/rus/docs/V1500010774 (accessed 24.06.2021). [in Russian]

12. Sanitarnye pravila "Sanitarno-epidemiologicheskie trebovaniya k osushchestvleniyu proizvodstvennogo kontrolya" utverzhdennye Prikazom Ministra natcional'noi ekonomiki Respubliki Kazahstan ot 6 iyunya 2016 goda No. 239 [Sanitary rules "Sanitary and epidemiological requirements for the implementation of production control" approved by Order No. 239 of the Minister of National Economy of the Republic of Kazakhstan dated June 6, 2016]. Available at: https://adilet.zan .kz/rus/docs/V1600013896 (accessed 24.06.2021). [in Russian]

13. OON. Celi v oblasti ustoichivogo razvitiya. Cel' 6: Obespechenie nalichiya i ratsional'nogo ispol'zovaniya vodnykh resursov i sanitarii dlya vsekh [UN. Sustainable Development Goals. Goal 6: Ensure the availability and rational use of water resources and sanitation for all]. Available at: https://www.un.org/sustainabledevelopment/ru/water-and-sanitation/ (accessed 25.06.2021). [in Russian]

14. Pozin S.G., Amvros'eva T.V., Klyuchenovich V.I.

0 nekotorykh napravleniyah obespecheniya bezopasnosti vody dlya zdorov'ya naseleniya Respubliki Belarus' [About some directions of ensuring water safety for the health of the population of the Republic of Belarus]. Voennaya meditsina [Military medicine]. 2016, 1, pp. 90-93. [in Russian]

15. Pozin S.G. O nekotorykh napravleniyakh nauchno-prakticheskikh issledovanii po obespecheniyu mikrobiologicheskoi bezopasnosti vody v hozyaistvenno-pit'evykh vodoprovodakh Respubliki Belarus' [About some directions of scientific and practical research on ensuring the microbiological safety of water in drinking water supply systems of the Republic of Belarus]. Materialy nauchno-prakticheskoi konferentsii, posvyashchyonnoi 80-letiyu sanitarno-epidemiologicheskoi sluzhby Respubliki Belarus' "Aktual'nye problemy gigieny i epidemiologii" [Materials of the scientific and practical conference dedicated to the 80th anniversary of the sanitary and epidemiological service of the Republic of Belarus "Actual problems of hygiene and epidemiology^'], Minsk, November 17, 2006, pp. 306-309. [in Russian]

16. Pozin S.G. Osnovnye gigienicheskie aspekty obosnovaniya mikrobiologicheskoi bezopasnosti vody i algoritma meropriyatii po obespecheniyu eyo kachestva v khozyajstvenno-pit'evykh vodoprovodakh: monografiya [The main hygienic aspects of the substantiation of the microbiological safety of water and the algorithm of measures to ensure its quality in household and drinking water pipes: monograph]. Minsk, Boff, 2006, 92 p. [in Russian]

17. Pozin S.G., Ryzgunskij V.V., Dolgin A.S., Gladkij A.G., Drozdova E.V., Mazejko L.N., Prishivalko A.P., Bogom'ya M.M., Kolyachko V.V. Sovershenstvovanie sanitarno-gigienicheskogo normirovaniya razmeshcheniya istochnikov netsentralizovannogo hozyajstvenno-pit'evogo vodosnabzheniya, zaklyuchenii sanepidsluzhby o kachestve sredy obitaniya, problemy otsenki soderzhaniya v vode bora

1 bariya, izmerenii temperatury vody iz kvartirnykh vodorazborov [Improvement of sanitary and hygienic rationing of the placement of sources of non-centralized household and drinking water supply, conclusions of the sanitary and epidemiological service on the quality of the habitat, problems of assessing the content of boron and barium in water, measurements of water temperature from apartment water samples]. Voennaya meditsina [Military medicine]. 2012, 2, pp. 93-97. [in Russian]

18. Pozin S.G., Ryzgunskij V.V. Itogi i zadachi nauchno-prakticheskikh issledovanii po obespecheniyu bezopasnosti pit'evoi vody v Respublike Belarus' [Results and tasks of scientific and practical research on ensuring the safety of drinking water in the Republic of Belarus]. V pomoshch' praktikuyushchemu vrachu [To help a practicing doctor]. 2013, 2, pp. 116-119. [in Russian]

19. Rahmanin Yu.A., Nedachin A.E., Doskina T.V., Kornilova N.M., Dmitrieva R.A., SHarlot Yu.M. Indikatornaya znachimost' kolifagov v otnoshenii zagryazneniya pit'evoi vody kishechnymi virusami [Indicator significance of coliphages in relation to contamination of drinking water by intestinal viruses]. Gigiena i sanitariya [Hygiene and sanitation]. 1990, 6, pp. 84-88. [in Russian]

20. Sbojchakov V.B. Mikrobiologiya, osnovy epidemiologii i metody mikrobiologicheskih issledovanii: uchebnik dlya meditsinskikh uchebnykh zavedenii 3-e izd., ispr. i dop. [Microbiology, fundamentals of epidemiology and methods of microbiological research: textbook for medical educational institutions 3rd ed., corrections and additions]. St. Petersburg: Publishing house SpetsLit, 2017, 712 p. [in Russian]

21. Toguzbaeva K.K., Dzhanbatyrova A.E., Sejduanova L.B., Niyazbekova L.S., Kaldybaj A.U., ZHunistaev D.D., Mejirman A.S., Toleu E.T. Gigienicheskaya otsenka kachestva sel'skogo vodosnabzheniya po rezul'tatam laboratornykh dannykh Enbekshikazahskogo raiona [Hygienic assessment of the quality of rural water supply based on the results of laboratory data of the Enbekshikazakh district]. Vestnik KazNMU [Bulletin of KAZ NMU]. 2015, 2, pp. 634-637. [in Russian]

22. Toguzbaeva K.K., Myrzahmetova SH.K., Niyazbekova L.S., Orakbaj L.ZH., ZHunistaev D.D., Sejduanova L.B., Sajlybekova A.K., Smagulov A.B., Sumenova K.A., Sabirova G.R. Gigienicheskaya otsenka vliyaniya kachestva hozyaistvenno-pit'evogo vodosnabzheniya na zdorov'e sel'skogo naseleniya Almatinskoi oblasti [Hygienic assessment of the impact of the quality of household and drinking water supply on the health of the rural population of the Almaty region]. Vestnik KazNMU [Bulletin of KAZ NMU]. 2014, 3, pp. 33-38. [in Russian]

23. Badhai J., Ghosh T.S., Das S.K. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India. Front. Microbiol. 2015, 6, pp. 1-15. https://doi.org/10.3389/fmicb.2015.01166

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

24. De Boeck H., Lunguya O, Muyembe J.J., Glupczynski Y., Jacobs J. Presence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in waste waters, Kinshasa, the Democratic Republic of the Congo. Eur J Clin Microbiol Infect Dis. 2012, 31,pp. 3085-3088. https://doi.org/10.1007/s10096-012-1669-8

25. Ding Z., Zhai Y., Wu C., Wu H, Lu Q., Lin J., He F. Infectious diarrheal disease caused by contaminated well water in Chinese schools: A systematic review and meta-analysis. J Epidemiol. 2017, 27, pp. 274-281. https://doi.org/10.1016/jJe.2016.07.006

26. Divyashree M., Mani M.K., Shama Prakash K., Vijaya Kumar D., Veena Shetty A., Shetty A.K., Karunasagar I. Hospital wastewater treatment reduces NDM-positive bacteria being discharged into water bodies. Water Environ Res. 2020, 92, pp. 562-568. https://doi.org/10.1002/wer.1248

27. Douterelo I., Husband S., Boxall J.B. The bacterial composition of biomass recovered by flushing an operational drinking water distribution system. Water Res. 2014, 54, pp. 100-114. https://doi. org/10.1016/j.watres.2014.01.049

28. Gomez-Alvarez V., Schrantz K. A., Pressman J. G., Wahman D. G. Biofilm community dynamics in bench-scale annular reactors simulating arrestment of chloraminated drinking water nitrification. Environ. Sci. Technol. 2014, 48, pp. 5448-5457. https://doi.org/10.1021/es5005208

29. Gomez-Alvarez V., Revetta R. P., Santo Domingo J. W. Metagenomic analysis of drinking water receiving different disinfection treatments // Appl. Environ. Microbiol. 2012, 78, pp. 6095-6102. https://doi.org/10.1128/AEM.01018-12

30. Haberecht H.B., Nealon N.J., Gilliland J.R., Holder A.V., Runyan C., Oppel R.C., Ibrahim H.M., Mueller L., Schrupp F., Vilchez S., Antony L., Scaria J., Ryan E.P. Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado. J Environ Public Health. 2019, 18, pp. 1-13. https://doi.org/10.1155/2019/3862949

31. Hendriksen R.S., Munk P., Njage P.M.K., van Bunnik B., McNally L., Lukjancenko O., Röder T., Nieuwenhuijse D., Karlsmose Pedersen S., Kjeldgaard J.S., Kaas R.S., Clausen P.T.L.C., Vogt J.K., Leekitcharoenphon P., van de Schans M.G.M., Zuidema T., de Roda Husman A.M., Rasmussen S., Petersen B., Aarestrup F.M. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications. 2019, 1124, pp. 1-12. https://doi.org/10.1038/s41467-019-08853-3

32. Honda R., Tachi C., Yasuda K., Hirata T., Noguchi M., Hara-Yamamura H., Yamamoto-Ikemoto R., Watanabe T. Estimated discharge of antibiotic-resistant bacteria from combined sewer overflows of urban sewage system. NPJ Clean Water. 2020, 3, pp. 1-7. https://doi.org/10.1038/s41545-020-0059-5

33. Hwang C., Ling F., Andersen G. L., LeChevallier M. W., Liu W. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments. Appl. Environ. Microbiol. 2012, 78, pp. 7856-7865. https://doi.org/10.1128/AEM.01892-12

34. Khan A.U., Maryam L., Zarrilli R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-ß-lactamase (NDM): a threat to public health. BMC Microbiol. 2017, 27, pp. 1-12. https://doi.org/10.1186/s12866-017-1012 -8

35. McArdell C.S., Molnar E., Suter M.J., Giger W. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland. Environ Sci Technol. 2003, 37, pp. 5479-86. https://doi.org/10.1021/es034368i

36. Nescerecka A., Rubulis J., Vital A., Juhna T., Hammes F. Biological instability in a chlorinated drinking water distribution system. PLoS One. 2014, 9, pp. 1-11. https://doi.org/10.1371/journal.pone.0096354

37. Niquette P., Servais P., Savoir R. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res. 2000, 34, pp. 19521956. https://doi.org/10.1016/S0043-1354(99)00307-3

38. Omarova A. Morbidity of Rural Population Associated with the Quality of Drinking Water Supply. Medicine. 2019, 4, pp. 8-13.

39. Omarova A., Kalishev M. The Status of Household and Drinking Water Supply of the Rural Population of Karaganda Region. Astana Medical Journal. 2017, 4, pp. 123-128.

40. Omarova A., Tussupova K., Berndtsson R., Kalishev M. Medical and Social Significance of Water Supply, Sanitation and Hygiene in Human Activity. Bulletin ofKAZ NMU. 2017, 3, pp. 193-197.

41. Omarova A., Tussupova K., Berndtsson R., Kalishev M. Burden of Water-Related Diseases in Developing Countries. Literature Review. Nauka i Zdravookhranenie [Science & Healthcare]. 2017, 3, pp. 95109.

42. Omarova A., Tussupova K., Berndtsson R., Kalishev M., Sharapatova K. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries. International Journal of Environmental Research and Public Health. 2018, 15, pp. 1-18. https://doi.org/10.3390/ijerph15030495

43. Omarova A., Tussupova K., Hjorth P., Kalishev M., Dosmagambetova R. Water Supply Challenges in Rural Areas: A Case Study from Central Kazakhstan. International Journal of Environmental Research and Public Health. 2019, 16, pp. 1-14. https://doi.org/10.3390/ijerph16050688

44. Omarova A., Tussupova K. The future of piped water in villages in low- and middle-income countries. European Journal of Public Health. 2018, 2, pp. 336-337. https://doi.org/10.1093/eurpub/cky214.081

45. Paduano S., Marchesi I, Casali M. E, et al. Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital Hot Water Network. Int J Environ Res Public Health. 2020, 17, pp. 117. https://doi.org/10.3390/ijerph 17062158

46. Paduano S., Valeriani F., Romano-Spica V., Bargellini A., Borella P., Marchesi I. Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics: A pilot study. Water Sci. Technol. Water Supply. 2018, 18, pp. 1456-1465. https://doi.org/10.2166/ws.2017.209

47. Pinto A. J., Xi C., Raskin L. Bacterial community structure in the drinking water microbiome is governed by filtration processes Environ. Sci. Technol. 2012, 46, pp. 8851 -8859. https://doi.org/10.1021/es302042t

48. Proctor C., Hammes F. Drinking water microbiology - from measurement to management. Curr. Opin. Microbiol. 2015, 33, pp. 87-95. https://doi.org/10.1016Zj.copbio.2014.12.014

49. Rathinasabapathi P., Hiremath D. S., Arunraj R., Parani M. Molecular Detection of New Delhi Metallo-Beta-Lactamase-1 (NDM-1) Positive Bacteria from Environmental and Drinking Water Samples by Loop Mediated Isothermal Amplification of bla NDM-1. Indian J Microbiol. 2015, 55, pp. 400-405. https://doi.org/10.1007/s12088-015-0540-x

50. Runcharoen C., Raven K.E., Reuter S., Kallonen T., Paksanont S., Thammachote J., Anun S., Blane B., Parkhill J., Peacock S.J., Chantratita N. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand. Genome Med. 2017, 9, pp. 1-11. https://doi.org/10.1186/s13073-017-0471-8

51. Sano D., Louise Wester A., Schmitt H., Amarasiri M., Kirby A., Medlicott K, Roda Husman A. M. Updated research agenda for water, sanitation and antimicrobial resistance. J Water Health. 2020, 18, pp. 858-866. https://doi.org/10.2166/wh.2020.033

52. Yong D., Toleman M.A., Giske C.G., Cho H.S., Sundman K., Lee K., Walsh T.R. Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009, 53, pp. 50465054. https://doi.org/10.1128/AAC.00774-09

53. Zagui G.S., de Andrade L.N., Moreira N.C., Silva T.V., Machado G.P., da Costa Darini A.L., Segura-Muñoz S.I. Gram-negative bacteria carrying p-lactamase encoding genes in hospital and urban wastewater in Brazil. Environ Monit Assess. 2020, 192, pp. 1-10. https://doi.org/10.1007/s10661 -020-08319-w

Coresponding Author:

Omarova Alua - PhD, associate professor at School of Public Health and Biomedicine of Karaganda Medical University, Karaganda c., Republic of Kazakhstan;

Postal address: Karaganda c., Republic of Kazakhstan, 100008, Gogol str., 40; Phone number: +7 (778) 867 66 00, E-mail: OmarovaA@qmu.kz

i Надоели баннеры? Вы всегда можете отключить рекламу.