Научная статья на тему 'Calculation of standard thermodynamic functions of argyrodit Ag8GeSe6'

Calculation of standard thermodynamic functions of argyrodit Ag8GeSe6 Текст научной статьи по специальности «Химические науки»

CC BY
223
37
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Kimya Problemleri
Scopus
CAS
Область наук
Ключевые слова
ARGYRODITE AG8GESE6 / THERMODYNAMIC FUNCTIONS / DEBYE METHOD / TERMODINAMIKI FUNKSIYALAR / DEBAY METODU / АРГИРОДИТ AG8GESE6 / ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ / МЕТОД ДЕБАЯ

Аннотация научной статьи по химическим наукам, автор научной работы — Ibrahimova F.S.

Based on literature data, with the additional calculations are selected most reliable data for the thermodynamic parameters of crystal silver selenide, germanium and silver selenogermanate: (-Ag2Se)= -43.5, (GeSe,cr)=-82.9, (GeSe2,cr)=-103.7, (-Ag8GeSe6,cr)=-290.4, (-Ag2Se)=-50.3, (GeSe, cr)=-84.2, (GeSe2,cr)= -103.1, (-Ag8GeSe6,cr)=-306.3 kJ•mol-1, (-Ag2Se)=150.3, (GeSe,cr)=78.3, (GeSe2, cr)=112.6, (-Ag8GeSe6, cr)=711.6 J•mol-1.К-1, =377.1 J•mol-1.К-1. It was revealed that the compound Ag2GeSe3 is formed in the amorphous state, unstable and decomposed into the Ag8GeSe6 and GeSe2 compounds. The applicability of the Debye method based on quantum concepts of atomic oscillations in the crystal lattice of a solid in the Magnus-Lindemann and Eastmen-Tsagareishvili approximations for calculating the heat capacity and entropy of a ternary compound with a common chalcogenide anion is revealed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

РАСЧЕТ СТАНДАРТНЫХ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ АРГИРОДИТА Ag8GeSe6

На основании анализа литературных данных с проведением дополнительных расчетов выбраны наиболее достоверные данные для термодинамических параметров кристаллических селенидов серебра, германия и селеногерманата серебра: (-Ag2Se)= -43.5, (GeSe,кр)=-82.9, (GeSe2,кр)=-103.7, (-Ag8GeSe6,кр) =-290.4, (-Ag2Se)=-50.3, (GeSe,кр)=-84.2, (GeSe2,кр)=-103.1, (-Ag8GeSe6,кр)=-306.3 kJ•mol-1, (-Ag2Se)=150.3, (GeSe,кр)=78.3, (GeSe2,кр)=112.6, (-Ag8GeSe6,кр)=711.6 Дж•мол-1.К-1, =377.1 Дж•мол-1.К-1. Выявлено, что соединение Ag2GeSe3 образуется в аморфном состоянии, неустойчиво и распадается на соединения Ag8GeSe6 и GeSe2. Показана применимость метода Дебая, основанного на квантовые представления о колебаниях атомов в кристаллической решетке твердого тела в приближениях Магнуса-Линдемана и Истмена-Цагарейшвили, для расчета теплоемкости и энтропии тройного соединения с общим халькогенид анионом.

Текст научной работы на тему «Calculation of standard thermodynamic functions of argyrodit Ag8GeSe6»

358

CHEMICAL PROBLEMS 2019 no. 3 (17) ISSN 2221-8688

UDC 546:544.35:538.95

CALCULATION OF STANDARD THERMODYNAMIC FUNCTIONS

OF ARGYRODIT AgsGeSe6

F.S. Ibrahimova

Institute of Catalysis and Inorganic Chemistry ANAS, H.JavidAve.,113, AZ1134, Baku, Azerbaijan, e-mail: ifs@,live.ru

Received 12.06.2019

Abstract : Based on literature data, with the additional calculations are selected most reliable data for the thermodynamic parameters of crystal silver selenide, germanium and silver selenogermanate:

AH298 (a-Ag2Se) =

43.5,

AH

298

(GeSe,cr)=-82.9, AH098 (GeSe2,cr)=-103.7, AH2098 (a-

o

298 I

AgsGeSe6,cr)=-290.4, AG2°98 (a-Ag2Se)=-50.3, AG2°98 (GeSe, cr)=-84.2, AG2°98 (GeSe2,cr)= -103.1

AG2098 (a-Ag8GeSe6,cr)=-306.3 kJmol1, S298 (a-Ag2Se)=150.3, S2°98 (GeSe,cr)=78.3, S29)8 (GeSe2, cr)=112.6, S2098 (a-Ag8GeSe6, cr)=711.6 Jmol-1.K-1, Cp„_ =377.1 Jmol^.K1. It was revealed that the

P'298

compound Ag2GeSe3 is formed in the amorphous state, unstable and decomposed into the Ag8GeSe6 and GeSe2 compounds. The applicability of the Debye method based on quantum concepts of atomic oscillations in the crystal lattice of a solid in the Magnus-Lindemann and Eastmen-Tsagareishvili approximations for calculating the heat capacity and entropy of a ternary compound with a common chalcogenide anion is revealed.

Keywords: argyrodite Ag8GeSe6, thermodynamic functions, Debye method. DOI: 10.32737/2221-8688-2019-3-358-365

Introduction

Ag8GeSe6 refers to Argurodites with a general chemical formula of A8BX6 (A = Cu, Ag; B = Si, Ge, Sn; and X = S, Se, and Te). Some of these compounds, including Ag8GeSe6, have ionic conduction and can be used as electrochemical sensors, electrodes and electrolyte materials in solid-state batteries and displays, etc [1-5]. In view of the contradictoriness of the literature data, in [6] phase equilibria in the Ag-Ge-Se system were restudied by differential thermal analysis and X-ray powder diffraction analysis. A number of polythermal sections and an isothermal section at room temperature of the phase diagram were constructed, and so was the projection of the liquids' surface. The primary crystallization fields of phases and types and coordinates of in- and monovariant equilibriums were determined. It showed that a single ternary compound, Ag8GeSe6 was formed in the system to have undergone congruent melting at 1175 K and polymorphic transformation at 321 K. The formation of the Ag2GeSe3 and Ag8GeSe5,compounds previously reported in the literature was not

confirmed. Proceeding from phase diagrams of boundary binary systems and the results of the differential thermal analysis of a number of samples of the ternary system, equations were obtained for calculation and 3D modeling of the liquidus Ag8GeSe6 [6].

The thermodynamic parameters of the Ag8GeSe6 compound are necessary for the development of technology of obtaining the stoichiometric phase from simple substances and from binary compounds. Enthalpy, Gibbs free energy of the formation and entropy of the two Ag8GeSe6 modifications as set forth in [7, 8] were carried out within the ternary system study Ag-Ge-Se through measuring the electromotive forces by means of silver solid electrolyte. The results of these studies differ in that the thermodynamic stability of the ternary compound Ag2GeSe3 synthesized in [8] was not confirmed in [7]. The isobaric heat capacity of Ag8GeSe6, estimated [2] by the Debye method in line with Einstein modules, is not clearly approximated.

Allowing for reasoning stated above, the objective of our work is to analyze

o

thermodynamic data for Ag8GeSe6 argyrodite together with additional thermodynamic

calculations based on the Debye method.

Theoretical Part

There are various methods for calculating the thermodynamic parameters of inorganic compounds which have been tested successfully in calculating heat capacity, entropy, enthalpy and Gibbs free energy of the formation of binary and ternary chalcogenides [9-13].

Heat capacity. To calculate the heat capacity, the Debye method is used in keeping with quantum concepts of atomic vibrations in the crystal lattice of a solid. The equation for calculating the isochoric heat capacity Cv for a three-atom compound is as follows [7]:

Cv=9R-D(0d/T

Where

D(0D / T) = 12

3 °D / T 3

x dx ex -1

30D / T

,0 / t

-1

(1)

(2)

and 0D is the Debye temperature defined as

0D=hv/k (3)

In eqn. (2,3) h is the Planck's constant, k is the Boltzmann constant and vis the vibrational frequency and the x-parameter is determined on the basis of the solid state theory.

The calculation of the isochoric heat capacity is carried out in the sequence as follows. The initial data provide (Debye) temperatures of the elements forming the compound, as well as the melting points of the elements and compounds below: 0 D=0D(Tm*/Tm)1/2 (4)

Here 0 D, 0D are characteristic temperatures of the element in the compound and the simple substance; Tm , Tm - melting point of the compound and simple substance.

Based on 0 D /T function, the values of the isochoric heat capacity (Cv) for each component are found, further summing them

up according to the Neumann - Kopp rule, the isochori c heat capacity of the compound is determined. For compounds Ag8GeSe6: Cv(Ag8GeSe6)=8Cv(Ag)+ Cv(Ag)+ 6Cv(Se) (5)

The values of the Debye temperature for silver, germanium, and selenium, together with their melting points and isochoric heat capacities, are given in Table. 1. Recalculation of isochoric heat capacity to isobaric heat was carried out according to the Magnus -Lindemann equation [11]:

Cp=Cv+ 6,076 (nT/Tm )3/2 (6)

Here n i s the numb er of atoms in the compound. Tm is the melting point of Ag8GeSe6. In the equation (3): n=15, Tm=1175 K [6], T=298K.

The temperature dependence of the isobaric heat capacity can be determined by the equation:

Cp=a+bT-cT-2 (7)

c=4,19-105n; b=[25,64n+4,19-105n(Tm )"2-Cp,29s]/( Tm -298); a=Cp,298 -2986+4,7n (8)

Table 1. Melting points (Tm), Debye temperature element in the compound and in a simple substance (0 D, 0D), isochoric heat capacities and standard entropies of silver, germanium, and selenium.

Cv S0 0 298

element Tm,K 0d 0d* * 0d /298

J- mol-1 -K-1

Ag 1234 221 215.6 0.723 21.31 42.5

Ge 1210 403 397.1 1.332 22.87 31.1

Se 494 90 139.2 0.467 24.67 42.1

As a result of calculations of molar isochoric and isobaric heat capacity of Ag8GeSe6, the following values were obtained: Cv(Ag8GeSe6) = 365.6 and Cp(Ag8GeSe6) =

377.0 J.mol"1.K"1

Entropy. Tsagareishvili [12] extended the range of applicability of the Eastman equation [11] based on the Debye method to obtain the following equation for calculation of standard entropy of inorganic compounds:

S2098 = 0.75nR< ln

200(M / n)

5/3

P

2/3

T m

4/3

(9)

n = 15- number of atoms in a molecule, R = compounds from simple substances we have: 8.31 J.mol-1.K-1, M = 1410 - molar mass, Tn

=1175K [6] - melting temperature, p= 6.21 g.

3

sm [14] - density Ag8GeSe6.

As a result of the calculation, the following value was obtained for the standard entropy S2098 (Ag8GeSe6)=711.6 J.mol-1.K-1.

For the entropy of the formation of

A S2098 (Ag8GeSe6)=85.77 J.mol"1.K"1.

Enthalpy of compound formation.

The value for Ag8GeSe6 was determined by calculation based on the data of binary compounds Ag2Se and GeSe2 (Table 2) in line with a method described in [15,16] with due regard for deviation from additivity (/ AH 098 ):

AH 2098 (Ag8GeSe6,Kp) = 4 AH 298 (Ag2Se,Kp) + AH ^ (GeSe^p) + / AH0

298

(10)

The third term in (1o) depends on the number of anion and the binding energy of metal -selenium (Me-Se). In (10): /AH2098 = -6 E(Me-Se), where E(Me-Se)= -2 kC

The free energy of the formation of the Ag8GeSe6 compound is calculated using the Gibbs-Helmholtz equation:

AG0r ( Ag8GeSe6)= AH2098 ( Ag8GeSe6)+ TAS2098 ( Ag8GeSe6)

as is the case with the formation of (Eq. 10) enthalpy based on the data of binary

compounds by the equation:

AG2098 (Ag8GeSe6,cr) = 4 AG2098 (Ag2Se,cr) + AG2098 (GeSe2,cr) + / AG20

(11)

(12)

In this work, they also calculated the free energy of the formation of the compound Ag2GeSe3, the reliability of which is in doubt.

AG2098 ( Ag2GeSe3,cr) = AG2098 (Ag2Se,cr) + AG2098 (GeSe2,cr) + / AG0

Equation (12) with respect to the compound Ag0GeSe3 has the form:

(13)

Thermodynamic Calculations and Discussion

The results of the calculation of the thermodynamic parameters of Ag8GeSe6 substantially depend on the reliability of these binary compounds Ag2Se, GeSe and GeSe2. Therefore we analyzed original sources from which the reference data are taken. Thermodynamic data for Ag2Se and GeSe compounds quoted in various references are consistent with each other [17,18]. At the same

time, the enthalpy of the formation of the GeSe2 obtained by different authors [19, 20] significantly differ. The following values were obtained in [19] using the fluorine calorimetry method for the standard enthalpy of the formation of crystalline (cr) and glassy (gl) GeSe2 at 298 K, respectively: AH 2098 (GeSe2,cr.) = - (103.7 ± 3.1) kJ-mol-1 u

AH 2098 (GeSe2, gl) = - (91.6 ± 3.2) kJ-mol-1 . Standard enthalpy of phase transition GeSe2(gl) = GeSe2 (cr) equals (-12.1 ± 4.2) kJ.mol- . In [20] while the following values were obtained by the method of direct calorimetry in the standard enthalpy of the formation of crystalline and glassy (amorphous) GeSe2: AH °98 (GeSe2,cr) = -1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(84.4 ± 2)kJ-mol 1 and AH2098 (GeSe2,gl) = (76.5 ± 1) kJ-mol-1. Standard enthalpy of phase transition GeSe2 (gl) — GeSe2 (cr) equals (-7.9 ± 2.1) kJ.mol-1. Value AH098

GeSe(cr) + Se (cr) -

(GeSe2,cr) = - (62.8 ± 3.1) kJ.mol-1, it seems to be rather understated. The standard entropy values of Ag2Se, GeSe, and GeSe2 given in various papers [17, 18, 20] gave no rise to doubt. Values of these compounds are given in Table. 2. Standard free energies of the formation of Ag8GeSe6 given in Table. 2 calculated by the Gibbs-Helmholtz equation.

To analyze the dependence of the free energy of the formation of compounds on the composition in Fig. 1, we first calculate the free energy of the reaction:

GeSe2(cr) + AG.

0

298

(14)

-10

S -20 ea

o -g

i—a

-30

< -40

-50

l 1 I 1 1 < 1 1 1 1 1 < 1 < 1 I I 1 1 < 1

%/ //

t 1 O.SGeSe É . 1 . 1 r 1 . 1 . 1 .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mole fraction Se

Fig. 1. Dependence of the free energy of formation of selenide and germanium disulfide in the crystalline state on the composition: 1- [19], 2- [20], 3- [18]

According to [19]: AG2098 = AG2098 (GeSe2,cr)-AG2098 (GeSe,cr)= -103.7-(-84.2)= -19.5 kJ.mol-1 (Fig. 1, curve 1). According to [8]: AG2°98 = -83.6-(-84.2 = 0.6 kJ. mol-1 (Fig. 1,

curve 2). According to [20]: AG2098 = -62.8-(-84.2 = 21.4 kJ.mol-1 (Fig. 1, curve 3). The last two values for the free energy of reaction (14) are not consistent with reality (Fig. 1, curve 2,3). Note that GeSe is a peritectic compound, and GeSe2 is a congruently melting compound.

The results of the calculation of the standard thermodynamic functions of the ternary compound Ag8GeSe6, as well as those of Ag2GeSe3 are shown in Fig.2. From Fig. 2 it

follows that the values AG298 (Ag2GeSe3)

given in the work are below additive values that indicate the thermodynamic instability of the Ag2GeSe3 compound. In this work, an alloy of this composition was synthesized and investigated. Based on the X-ray diffraction analysis, it revealed that the Ag2GeSe3 compound is obtained in the glassy state with rapid cooling of the melt. After annealing of the obtained alloy, there was no line in the XRD diffractogram for the Ag2GeSe3 compound. The value of the standard entropy Ag8GeSe6, calculated by equation (9), nearly coincides (Table 2) with the results of measuring EMF [7].

■30

0.0 0.1 0.2 0.3 OA Û.S 0.6 0.7 0.8 0.9 1.0 Ag2Se mole fraction GeSe2 GeSe?

Fig.2. Dependences of the free energy in the formation of ternary compounds in the crystalline state on the composition: 1-additive calculation by Eq. (12.13 with / AG298 =0), 2-[7], 3-[8].

Table 2. Thermodynamic functions of compounds in the crystalline state

Compound T,K - agT - ahT SO r 298 Cp,298

kJ.mol-1 J.mol-1.K-1

a-Ag2Se 298 50.3±2[18] 43.5±0.5[18] 150.3±1.5[18] 81.8[21]

GeSe 298 84.2±5[18] 82.9±5[18] 78.3±1[18] 50.0[21]

GeSe2 298 103.1±2.0[19] 103.7±3.1 [19] 112.6±2[19] 71.2[21]

a-Ag8GeSe6 298 306.3±3[7] 285.7±6[7] 694.1±19[7]

298 288.6±5[8] 261.8±5[8] 714.4±10[8]

298 316.1±5 calculation by Eq(12) 290.4±5 calculation by Eq(10) 711.6±10 calculation by Eq(9) 377.1 Debye calculation method

ß-Ag8GeSe6 400 316.6±3[7] 249.0±3[8] 270.7±4[7] 240.9±3[8] 740.9±14[7]

Ag8GeSe6 a^ ß 320 15.0±5[7] 46.9±15[7]

Conclusion

A comparative analysis of the related to Argurodites allowed us to choose the experimental and calculated thermodynamic most reliable information about the free data for the ternary compound Ag8GeSe6 energy, formation of enthalpy, standard

entropy, and heat capacity. The work revealed applicability of the Debye method based on quantum concepts of atomic oscillations in the crystal lattice of a solid in the Magnus-

Lindemann and Eastmen-Tsagareishvili approximations for calculation of heat capacity and entropy of ternary compound with a common chalcogenide anion.

Acknowledgement

This work was carried out in conformity with the grant No EiF-BGM-3-BRFTF-2+/2017-15/05/1-M-13).

References

Chekaylo M.V., Ukrainets V.O., Il'chuk G.A., Pavlovskyc Yu.P., Ukrainets N.A.. Differential thermal analysis of Ag-Ge-Se, Ge-Se charge materials in the 7. process of their heating and Ag8GeSe6, GeSe2 compound synthesis. Journal of Non-Crystalline Solids. 2012, vol. 358, pp.321-327.

doi:10.1016/j.jnoncrysol.2011.09.039 Xingchen Shen, Chun-Chuen

Yang, Yamei Liu, Guiwen Wang, Huan Tan, Yung-Hsiang Tung, Guoyu 8.

Wang, Xu Lu, Jian He, and Xiaoyuan Zhou. High-Temperature Structural and Thermoelectric Study of Argyrodite Ag8GeSe6. ACS Appl. Mater. Interfaces, 2019, vol. 11(2), pp. 21682176. DOI: 10.1021/acsami.8b19819 Li L., Liu Y., Dai J., Hong A., Zeng M., Yan Z., Xu J., Zhang D., Shan 9. D., Liu Sh. Ren, Z., and Liu J-M. High thermoelectric performance of superionic argyrodite compound Ag8SnSe6. J. Mater. Chem. C, 2016, vol. 4, pp. 5806. DOI: 10.1039/c6tc00810k 10.

Li, W., Lin, S., Ge, B., Yang, J., Zhang, W., Pei, Y. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Adv.Sci., 11. 2016, vol. 3, p.1600196 Semkiv I., Ilchuk H., Pawlowski M., Kusnezh V. Ag8SnSe6 argyrodite synthesis and optical properties. Opto- 12. Electronics Review, 2017, vol. 25, p. 37. Yusibov Yu.A., Alverdiev I.Dzh., Ibragimova F.S., Mamedov A.N., Tagiev D.B., Babanly MB. Study and 3D Modeling of the Phase Diagram of the Ag-Ge-Se System. Russian Journal of

Inorganic Chemistry. 2017, vol. 62, no. 9, pp. 1223-1233.

DOI: 10.1134/S0036023617090182 Alverdiev Dzh, Bagkheri S.M., Imamalieva S.Z., Yusibova Yu.A. and Babanly M.B. Thermodynamic study of Ag8GeSe6 by EMF with an Ag4RbIs solid electrolyte. Russian Journal of Electrochemistry. 2017, vol. 53, no. 5, pp.551-554.

DOI: 10.1134/S1023193517050032 Moroz M.V. and Prokhorenko M.V. Determination of thermodynamic properties of saturated solid solutions of the Ag-Ge-Se system using EMF technique. Russ. J.Electrochem. 2015, vol. 51, no. 7, pp. 697-702. https://doi.org /10.1134

/S1023193515070046 Heribert Wiedemeier, Guy Pultz, Umesh Gaur and Bernhard Wunderlich. Heat capacity measurements of SnSe and SnSe2. Thermochimico Acta. 1981, vol. 43, pp. 297-303.

Kurbanova R.D., Mamedov A.N., Alidzhanov A.M., Agdamskaya S.G. System PbTe-CoSe2. Inorg. Materials. 2002, no.7, pp. 792-802. Moracheskij A.G., Sladkov IB. Thermodynamic calculations in metallurgy. Moscow, Metallurgiya Publ., 1985, 136 p. (In Russian). Cagarejshvili D.S. Methods for calculating the thermal and elastic properties of inorganic substances Tbilisi: Mecniereba Publ., 1977, 264 p. (In Georgia).

14.

15.

13. Mamedov A.N., Alieva D.M., Bagirov Z.B., Mamedov V.S. Calculation methods for determining the standard thermodynamic functions of compounds. Chemical Problems. 2005, no. 1, pp. 9396.

Otfried Madelung. Semiconductors: Data Handbook. 3rd edition. Springer-Verlag Berlin Heidelberg GmbH. 2004, 690 p. DOI 10.1007/978-3-642-18865-7 Mamedov A.N. Thermodynamics of systems with non-molecular compounds: calculation and approximation of thermodynamic functions and phase diagrams. LAP. Germany, 2015, 124 p.

16. Gurbanov G.R., Mamedov Sh.G., Adygezalova M.B. and Mamedov A.N. The PbSb0Se4-Pb5Bi6Se14 Section of the Sb0Se3-PbSe-Bi0Se3 Quasi-Ternary System. Russian Journal of Inorganic Chemistry. 2017, vol. 62, no. 12, pp. 1659-1664.

DOI: 10.1134/S0036023617120099

17. Mamedov A.N., Azhdarova D.S., Ahmedova Dzh.A., Abilov CH.I.

18.

19.

20.

21.

Inorganic substances synthesized and studied in Azerbaijan. Reference book. Baku: Elm Publ., 2004, 462 p. Physicochemical fundamentals of semiconductor substances. Directory. Team of authors. Moscow: Nauka Publ., 1978, 339 p. (In Russian) O'Hare P.AG., Susman S., Volin K.J. The energy difference between the crystalline and vitreous forms of germanium diselenide as determined by combustion calorimetryin fluorine. The Ge-Se bond energy. J. Non-Crystall. Solids. 1987, vol. 89, iss. 1-2, pp. 24-30. Boone Steve, Kleppa O.J. Enthalpies of formation for G roup IV selenides (GeSe2,GeSe2(am), SnSe, SnSe2, PbSe) by direct combination drop calorimetry Thermochimica Acta. 1992, vol. 197, iss. 1, pp. 109-121.

Glushko V.P. Thermal constants of substances. Database. URL: http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcome.html.

Ag8GeSe6 ARQiRODiTiNSTANDART TERMODiNAMiKi FUNKSiYALARININ

HESABLANMASI

F.S. ibrahimova

AMEA-nin akad. M.Nagiyev adina Kataliz va Qeyri-üzvi Kimya institutu AZ1143 Baki, H. Cavidpr.113, e-mail: [email protected]

Nazari hesablamalar va adabiyyat malumatlarinin tahlili asasinda kristal hali ûçûn gümü§, germanium selenidlari va gûmûç selenogermanatlarinin termodinamik parametrlarinin an etibarli qiymatlari

seçilmiçdir: AH°98 (a-Ag2Se)= -43.5, AH°98 (GeSe,cr)=-82.9, AH298 (GeSe2,cr)=-103.7, AH298 (a-

AgsGeSe6,cr)=-290.4, AG2098 (a-Ag2Se)=-50.3, AG2098 (GeSe,cr)=-84.2, AG2098 (GeSe2,cr)=-103.1,

S298 (a-Ag2Se) =150.3, S°98 (GeSe, cr)=78.3, S0

298

377.1 Jmol-1 .K1. Amorf halinda

AG2098 (a-Ag8GeSe6,cr)=-306.3 kJmol 1 (GeSe2,cr)=112.6, S2°98 (a-Ag8GeSe6,cr)=711.6 Jmol-1.K1, Cp

mövcud olan Ag2GeSe3 birlaçmasi qeyri-sabit oldugu ûçûn Ag8GeSe6 va GeSe2 birlaçmalarina parçalanir. Ag8GeSe6 birlaçmasinin misalinda müayyan edildi ki, Magnus-Lindemann va Eastmen-Tsagareishvili yaxinlaçmalari asasinda Debay metodu ümumi xalkogenid anionlu ûçlû birlaçmanin istilik tutumu va entropiyasini hesablamaq ûçûn istifada oluna bilar.

Açar sözldr: argyrodite Ag8GeSe6 termodinamiki funksiyalar, Debay metodu

РАСЧЕТ СТАНДАРТНЫХ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ

АРГИРОДИТА AgsGeSee

Ф. С. Ибрагимова

Институт Катализа и Неорганической Химии им. акад. М. Нагиева

Национальной АН Азербайджана AZ1143 Баку, пр.Г.Джавида, 113, e-mail: asif.mammadov.47@,mail.ru

На основании анализа литературных данных с проведением дополнительных расчетов выбраны наиболее достоверные данные для термодинамических параметров кристаллических селенидов серебра, германия и селеногерманата серебра: АН298 (a-

Ag2Se)= -43.5, АН2098 (Ое8е,кр)=-82.9, АН2098 (0е8е2,кр)=-103.7, АН298 (a-AggGeSe^)

=-290.4, AG2098 (a-Ag2Se)=-50.3, AG2098 (GeSe,кр)=-84.2, AG2098 (GeSе2,кр)=-103Л,

AG2098 (a-Ag8GeSeб,кр)=-306.3 kJ-mof1, S(°98 (a-Ag2Se)=150.3, S098 (GeSe,кр)=78.3, S(°98

(GeSe2,кр)=112.6, S098 (a-Ag8GeSe6,кр) = 711.6 Дж-мол 1.K1, Cp =377.1 Дж-мол 1.K1.

Выявлено, что соединение Ag2GeSe3 образуется в аморфном состоянии, неустойчиво и распадается на соединения AggGeSeg и GeSe2. Показана применимость метода Дебая, основанного на квантовые представления о колебаниях атомов в кристаллической решетке твердого тела в приближениях Магнуса-Линдемана и Истмена-Цагарейшвили, для расчета теплоемкости и энтропии тройного соединения с общим халькогенид анионом.

Ключевые слова: аргиродит AggGeSeg, термодинамические функции, метод Дебая

i Надоели баннеры? Вы всегда можете отключить рекламу.