CALCULATING THE COMPOSITION OF THE MINERAL PART
Bakhromjon Adhamovich Bekzod Xomidjonovich Hojiakbar Solijon o'g'li Otakulov Kodirov Solijonov
Fergana Polytechnic Institute
ABSTRACT
The aim of the work is to study the effect of mineral composition on the quality of asphalt concrete.
Keywords: mineral composition, tabular, analytical, graphical, graphoanalytical
One of the most important factors determining the required quality of asphalt concrete is the right choice of rational ratio between mineral components of the mixture (crushed stone, sand and mineral powder) which provides optimal density (porosity) of its mineral composition.
The calculation of the mineral content of asphalt concrete can be done by several methods: by the curves of dense mixtures (tabular or analytical), graphic, graph-analytical using a computer. Irrespective of the chosen method of calculation of asphalt concrete mixtures composition, the main indicator of correctness of calculation of the mineral part is getting a mixture with a minimum of voids.
Advantages of the method: it is more accurate, it allows you to clearly verify the correct selection of the mineral part according to the graphical image of the smooth curve, lying within the GOST borders.
Disadvantages of the method: often have to perform the calculation several times, because the percentage passing the requirements for small fractions, does not pass for the larger.
Calculation by curves of dense mixtures
Calculation 1:
Table 1.
Mineral material Mineral content, %, finer than this size, mm
20 15 10 5 2,5 1,25 0,63 0,315 0,16 0,071
Mineral raw materials
Crushed stone 94 91 43 2 0 0 0 0 0 0
Silica sand 100 100 100 100 80 60 40 15 2 0
Mineral powder 100 100 100 100 100 100 96 93 81 75
Calcul ation data
Crushed stone 46% 43.2 41.9 19.8 0.9 0 0 0 0 0 0
Silica sand 46% 46 46 46 46 36.8 27.6 18.4 6.9 0.9 0
Mineral powder 8% 8 8 8 8 8 8 7,7 7.4 6.5 6
Total 97.2 95.9 73,8 54,9 44.8 35.6 26.1 14.3 7.4 6
The requirements of GOST 912897, type B, uninterrupted. 90100 75100 62100 5060 3848 28-37 20-28 1422 10-16 6-12
Since, the content of mineral material on the sieves with a mesh size of 0,16mm does not meet the requirements of GOST 9128-97 for type B continuous granulometry
is necessary to increase the sand content by reducing crushed stone. Calculation 2:
Table 2.
Mineral material Mineral content, %, finer than this size, mm
20 15 10 5 2,5 1,25 0.63 0,315 0,16 0,071
Mineral raw materials
Crushed stone 94 91 43 2 0 0 0 0 0 0
Silica sand 100 100 100 100 80 60 40 15 2 0
Mineral powder 100 100 100 100 100 100 96 93 81 75
Расчётные данные
Crushed stone 39% 52,6 51 24,1 1,1 0 0 0 0 0 0
Silica sand 52% 39 39 39 39 31,2 23,4 15,6 5,9 0,8 0
Mineral powder9% 5 5 5 5 5 8 7,7 7.4 6.5 6
Total 97.2 95.9 73,8 54,9 44.8 35.6 26.1 14.3 7.4 6
The requirements of GOST 9128-97, type B, continuous. 90100 75100 62100 5060 3848 2837 2028 1422 1016 6-12
For continuous granometry, these compositions of mineral materials do not meet the requirements of GOST 9128-97 type B, so we take the first calculation for
discontinuous grain composition of the mineral part. Calculation 3:
Table 3
Mineral material Mineral content, %, finer than this size, mm
20 15 10 5 2,5 1,25 0.63 0,315 0,16 0,071
Mineral raw materials
Crushed stone 94 91 43 2 0 0 0 0 0 0
Silica sand 100 100 100 100 80 60 40 15 2 0
Mineral powder 100 100 100 100 100 100 96 93 81 75
Calculation data
Crushed stone 46% 43.2 41.9 19.8 0.9 0 0 0 0 0 0
Silica sand 46% 46 46 46 46 36.8 27.6 18.4 6.9 0.9 0
Mineral powder 8% 8 8 8 8 8 8 7,7 7.4 6.5 6
Total 97.2 95.9 73,8 54,9 44.8 35.6 26.1 14.3 7.4 6
The requirements of GOST 912897, type B, interruption. 90100 80100 70-77 50-60 38-60 28-60 20-60 1434 10-20 6-12
Since, the content of mineral material on the sieves with a mesh size of 0,16mm does not meet the requirements of GOST 9128-97 for type B discontinuous granulometry should increase the content of mineral powder by reducing crushed stone.
Calculation 4:
Table 4
Mineral material Mineral content, %, finer than this size, mm
20 15 10 5 2,5 1,25 0.63 0,315 0,16 0,071
Mineral raw materials
Crushed stone 94 91 43 2 0 0 0 0 0 0
Silica sand 100 100 100 100 80 60 40 15 2 0
Mineral powder 100 100 100 100 100 100 96 93 81 75
Calculation data
Crushed stone 43% 40 39 18 1 0 0 0 0 0 0
Silica sand 46% 46 46 46 46 37 28 18 7 1 0
Mineral powder 11% 11 11 11 11 11 11 11 10 9 8
Total 97 96 75 58 48 39 29 17 10 8
The requirements of GOST 912897, type B, interruption. 90100 80100 70-77 50-60 38-60 28-60 20-60 1434 10-20 6-12
In accordance with the requirements of GOST 9128-97 for dense asphalt concrete type B crushed stone must be in the mixture 40-50%. The average value of this range Щ=(40+50) / 2=45 %
Since in rubble there are 98% of grains larger than 5 mm, and in other components (sand) there are no fractions larger than 5 mm, rubble is required Щ =(45 / 98)100=46 %
The obtained value is recorded in the table and we calculate the content in the mixture of each fraction of crushed stone (we take 46% of the value of each fraction of crushed stone).
Calculation of the amount of mineral powder
Based on the requirements of GOST 9128-97, we determine that the particles shallower than 0,071 mm in the mineral part of asphalt concrete must be within 6-12%. For the calculation it is possible to take 6%. If the mineral powder contains 75 percent of particles finer than 0.071 mm, the mineral powder in the mixture must be
MN = (6/75)*100=8%. The resulting value is entered into the table and we calculate the content in the mixture of each fraction of mineral powder, taking 8% of the value of each fraction. Calculation of the amount of sand. The amount of sand in the mixture will be:
N=100 - (R+MP)=100 - (46+8)=46 % Conclusion: as a result of the method of dense mixtures curves, we got the content
of
crushed stone in the mixture of 43%, sand 46%, mineral powder 11%. Graphic method
The graphic method allows to determine the composition of asphalt concrete mixture more precisely than the method of mixture curves, but its main disadvantage is that as a result of the constructions a large irregular-shaped zone is formed, which does not allow to determine its center exactly, and therefore with one hundred percent accuracy the composition of asphalt concrete mixture.
Conclusion: As a result of the graphic method we got the content of crushed stone in the mixture of 43 %, sand 46 %, mineral powder 11 %.
REFERENCES
1. СНиП 2.05.02-85 - «Автомобильные дороги».
2. ГОСТ 9128-97 - «Смеси асфальтобетонные, аэродромные и асфальтобетон».
3. Ярмолинская Н.И. - «Дорожный асфальтобетон с применением минеральных порошков из технологических отходов промышленности».
4. Грушко И.М. - «Дорожно-строительные материалы».
5. Khomidjonovich, K. B. (2021). Lock Paint Materials. International Journal of Discoveries and Innovations in Applied Sciences, 1(5), 98-99.
6. Бахромов, М. М., Отакулов, Б. А., & Рахимов, Э. Х. У. (2019). Определение сил негативного трения при оттаивании околосвайного грунта. European science, (1 (43)).
7. Абдукаримов, Б. А., Отакулов, Б. А., Рахмоналиев, С. М. У., & Муродалиева, Н. А. К. (2019). Способы снижения аэродинамического сопротивления калориферов в системе воздушного отопления ткацких производств и вопросы расчета их тепловых характеристик. Достижения науки и образования, (2 (43)).
8. Юсупов, А. Р., Милладжонова, З. Р., Отакулов, Б. А., & Рахимов, Э. Х. У. (2019). К расчёту неравнопрочных термогрунтовых тел на сдвигающие нагрузки. Достижения науки и образования, (2 (43)).
9. Мирзажонов, М. А., & Отакулов, Б. А. (2018). ВЛИЯНИЕ НА ПРОЧНОСТЬ КОНТАКТНОЙ ЗОНЫ РАБОЧЕГО СТЫКА ВРЕМЕНИ ВЫДЕРЖКИ НОВОГО БЕТОНА. In XLIII INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE" INTERNATIONAL SCIENTIFIC REVIEW OF THE PROBLEMS AND PROSPECTS OF MODERN SCIENCE AND EDUCATION" (pp. 22-24).
10. Мирзажонов, М. А., & Отакулов, Б. А. (2018). Восстановление разрушенных частей бетонных и железобетонных конструкций. Достижения науки и образования, (13 (35)).
11. Xalimjon o'gli, S. J. (2021). INFLUENCE ON DURABILITY OF CONTACT ZONE OF WORKING JOINT TIME OF THE ENDURANCE OF A NEW CONCRETE. EPRA International Journal of Environmental Economics, Commerce and Educational Management, 8(5), 1-2.
12. Otakulov, B. A., Abdullayev, I. A., & Sultonov, K. S. O. (2021). RAW MATERIAL BASE OF CONSTRUCTION MATERIALS AND USE OF INDUSTRIAL WASTE. Scientific progress, 2(6), 1609-1612.
13. Tulaganov, A., Hodjaev, S., Sultanov, A., Tulaganov, B., Otakulov, B., Hodjaev, N., & Abdasov, D. (2021). FESTIGKEITSBESCHREIBUNG DES SCHWERBETONS AUF ALKALISCHLACKEN-BINDEMITTEL. The Scientific-Practice Journal of Architecture, Construction and Design, 1(1), 5.
14. Abobakirovich, A. B., Adhamovich, O. B., Ugli, M. B. I., & Qizi, M. N. A. (2019). Increasing the efficiency of solar air heaters in free convection conditions. Достижения науки и образования, (2 (43)).
15. Abdukarimov, B. А., Otakulov, B. А., Mahsitaliyev, B. I., & Murodaliyeva, N. А. (2019). INCREASING THE EFFICIENCY OF SOLAR AIR HEATERS IN FREE CONVECTION CONDITIONS. Достижения науки и образования, (2), 26-27.
16. Otakulov, B. A., Karimova, M. I. Q., & Abdullayev, I. A. (2021). USE OF MINERAL WOOL AND ITS PRODUCTS IN THE CONSTRUCTION OF BUILDINGS AND STRUCTURES. Scientific progress, 2(6), 1880-1882.
17. Otakulov, B. A., Abdullayev, I. A., & Toshpulatov, J. O. O. (2021). IMPORTANCE OF HEAT-RESISTANT CONCRETE IN CONSTRUCTION. Scientific progress, 2(6), 1613-1616.
18. Solijon o'g'li, S. H. (2021). ANALYSIS OF COMPOSITIVE ARMATURES. EPRA International Journal of Multidisciplinary Research, 7(5), 494496.
19. Adhamovich, O. B., & Saydi-axmadovich, Y. B. J. EFFECT OF POLYMERY MONOMORES ON THE STRENGTH OF OLD AND CONCRETE CONCRETES.
20. Otakulov, B. A., Isoyev, Y. A., & Salimjonov, J. H. O. G. L. (2021). ABOUT MONOLITHIC REINFORCED CONCRETE STRUCTURES IN CONSTRUCTION. Scientific progress, 2(7), 722-724.
21. Otakulov, B. A., Isoyev, Y. A., & Salimjonov, J. H. O. G. L. (2021). THE SCIENCE OF BUILDING MATERIALS TAKES PLACE IN ARCHITECTURE. Scientific progress, 2(7), 725-727.
22. Otakulov, B. A., Isoyev, Y. A., & Salimjonov, J. H. O. G. L. (2021). WAYS TO SAVE CERAMICS AND FIRE BUILDING MATERIALS. Scientific progress, 2(7), 718-721.
23. Otakulov, B. A., Isoyev, Y. A., & Sailimjonov, J. X. O. G. L. (2021). IMPROVING THE EARTHQUAKE RESISTANCE AND HEAT RESISTANCE OF BUILDINGS BUILT OF MODERN ENERGY-SAVING MATERIALS. Scientific progress, 2(7), 117-120.
24. Xalikova, I. (2021, March). THE ESTABLISHMENT AND DEVELOPMENT OF JADID NEW METHOD SCHOOLS IN FERGHANA VALLEY. In Конференции.
25. SOBIROVA, D., & MILLADJONOVA, Z. Determination of the Bearing Capacity of Flexible Reinforced Concrete Beams of Rectangular Section with a One-sided Compression Flange on the Boundary Conditions of Concrete and Reinforcement. International Journal of Innovations in Engineering Research and Technology, 7(12), 122-124.