4. Ткаченко Н.М. Линейные непрерывные функционалы в Lp-пространствах аналитических функций / Н.М. Тка-ченко // Вестник Брянского государственного университета: Естественные и точные науки. - Брянск: РИО БГУ. - №4. -2009. — С. 100-105.
5. Шамоян Р.Ф. Непрерывные функционалы и мультипликаторы степенных рядов одного класса голоморфных в полидиске функций // Известия ВУЗов. Математика. - 2000. - №7. - С. 67-69.
6. Шамоян Р.Ф. О представлении линейных непрерывных функционалов в пространствах аналитических функций типа Харди-Соболева в поликруге // Украинский математический журнал. - 2003. - Т.55, №5. - С. 671-686.
7. Шамоян Ф.А. Об ограниченности одного класса операторов, связанных с делимостью аналитических функций // Известия АН СССР. Сер. Математика. - 1973. - Т.8, №6. - С. 474-490.
8. Шамоян Ф.А. Диагональное отображение и некоторые задачи представления в анизотропных пространствах голоморфных в поликруге функций // Доклады АН АрмССР. - 1987. - Т.85, №1. - С. 21-26.
9. Шамоян Ф.А. Диагональное отображение и вопросы представления в анизотропных пространствах голоморфных в полидиске функций // Сибирский математический журнал. - 1990. - Т.31, №2. - С. 197-215.
10. Шамоян Ф.А., Ярославцева О.В. Непрерывные проекторы, двойственность и диагональные отображения в некоторых пространствах голоморфных функций со смешанной нормой // Записки научных семинаров ПОМИ. - 1997. - Т.247.
- С. 268-275.
11. Duren P.L., Romberg B.W., Shields A.L. Linear functionals on spaces with 0 < p < 1 // J. reine and angew. Malh. - 1969.
- Bd. 238. - PP.32-60.
12. Frazier А.Р. The dual space of of the polydisc for 0< p < 1 // Duke Math. I. - 1972. - V. 39, №2. - PP. 369-379.
13. Tkachenko N.M., Shamoyan F.A. The Hardy-Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary // Journal of Mathematical Physics, Analysis, Geometry. - 2009. - Vol.5, No 2. - P. 192-210.
14. Shamoyan F.A., Povpritz E.V. Representation of continuous linear functionals in anisotropic weighted spaces of analytic functions in the polydisc with mixed norm // Complex Variables and Elliptic Equations. - 2014. - V. 59, I. 4. - PP. 462-483.
Об авторе
Махина Н.М. - кандидат физико-математических наук, доцент кафедры математического анализа Брянского государственного университета имени академика И.Г. Петровского; [email protected]
УДК 635.21:631.531.01
БИОЛОГИЗАЦИЯ ПРОИЗВОДСТВА КАРТОФЕЛЯ
А.А. Молявко, А.В. Марухленко, Л.А. Еренкова, Н.П. Борисова
Сидеральные удобрения повышают продуктивность и качество клубней и могут заменить навоз в системе удобрения картофеля. В семеноводческих хозяйствах следует переходить к биологизированной технологии возделывания картофеля с использованием узколистного люпина. Ключевые слова. Картофель, сорт, урожайность, сидеральные удобрения.
Биологическое земледелие основывается на сокращении или полном отказе от синтетических минеральных удобрений, средств защиты растений и максимальном использовании биологических факторов повышения плодо-родия почвы, подавления болезней, вредителей и сорняков, и других меро-приятий, не оказывающих отрицательного влияния на природу, но улучшаю-щих условия формирования урожая. Основное условие биологизированных технологий - максимальное использование внутренних энергетических ресурсов, к которым относятся органические удобрения, в том числе сидераты.
Исследования проводили на Брянской опытной станции по картофелю в 2001-2004 гг. в условиях дерново-подзолистой супесчаной почвы с содержанием гумуса (по Тюрину) - 1,0-1,1%, подвижного фосфора (по Кирсанову) - 21,7-24,6 мг, обменного калия (по Масловой) - 10,3-11,8 мг на 100 г почвы, рНка 6,0-6,2. В звене севооборота "ячмень- картофель" изучали действие люпина узколистного и ярового рапса при использовании их на сидераты. Контролем служили варианты с посевом ячменя на зерно. Технология заделки сидеральной массы включала скашивание с измельчением и запашку люпина в фазу блестящих бобиков, рапса - в конце цветения. Эту работу проводили в третьей декаде июля.
В течение 2000-2005 гг. на серой лесной легкосуглинистой почве про-водили мелкоделяночные и производственные исследования по трем техно-логиям возделывания: традиционной, переходной и биологизированной. Агрохимические показатели почвы: содержание гумуса (по Тюрину) -1,77%,подвижного фосфора (по Кирсанову) - 20 мг, обменного калия (по Масловой) - 25 мг на 100 г почвы, рНКа - 5,1, гидролитическая кислотность ( по Каппену) - 2,12 мг. экв. на 100 г почвы.
Для опыта приняли три севооборота: обычный (люпин на зеленый корм, озимая пшеница, картофель, корнеплоды, ячмень), переходной (люпин на зеленый корм, озимая пшеница + озимая рожь, озимая рожь на удобрение + картофель, корнеплоды, ячмень) и биологизированный (озимая пшеница, люпин на удобрение, картофель, корнеплоды, зернобобовые).
В мелкоделяночном опыте использовали сорта картофеля: Брянский деликатес и Рождественский - среднеранние, Аспия - среднеспелый, репро-дукция - суперсуперэлита в 2002 г., суперэлита в 2003 г., а в 2004 г. - элита. При производственной проверке высаживали сорт Невский (суперэлита) скоростной сажалкой КСМ-4. Производственные испытания проводили на площади 38 га, из которых узколистный люпин заделывали под картофель на площади 19 га.
При традиционной технологии с 60 т/га навоза поступило в почву: N - 270, Р- 150, К - 360 кг/га, при переходной - с надземной и корневой массой озимой ржи: N - 60, Р -12,К - 75 кг/га, при биологизированной - с надземной и корневой
424
Вестник Брянского госуниверситета. 2015(2)
массой люпина: N - 202, Р-31, К - 172 кг/га.
Урожайность и удобрительная ценность зеленой массы сидератов в парах зависела от сидеральной культуры. По выходу сухого вещества с 1 га наиболее продуктивным оказался рапс - 8,5 т/га против 5,8 т/га у люпина. Поступление основных элементов питания (№К) в почву при запашке зеленой массы люпина составило в сумме 281 кг/га, что по сумме №К эквивалентно 36 т/га навоза, рапса - 320 кг/га и 40 т/га навоза соответственно.
Сидераты оказали положительное действие на урожай и качество картофеля. Запашка летом зеленой массы люпина в сочетании с минеральным фоном ^оРэсК^о обеспечила дополнительный урожай клубней
50-63 ц/га или 45-59% в зависимости от сорта. Зеленая масса люпина повысила урожайность сортов картофеля на 14-20 ц/га или на 7-13% (табл.).
Таблица - Продуктивность, качество и биоэнергетическая эффективность картофеля различных сортов в зависимости
от удобрений (среднее за 2002-2004 гг.)
Варианты Урожайность, ц/га Крахмал, % Накоплено энергии в урожае, ГДж/га Энерго-затраты, ГДж/га Коэффициент энергетической эффективности
Брянский деликатес
1 113 16,0 83,6 48,8 1,71
2 175 16,2 132,6 65,3 2,03
3 164 17,0 120,6 73,1 1,77
4 190 16,3 144,4 85,6 1,69
5 155 15.5 109,4 60,3 1,81
Погарский
1 108 11,9 64,8 48,8 1,32
2 165 12,6 103,9 65,3 1,59
3 159 12,7 100,5 73,1 1,38
4 175 13,2 114,8 85,6 1,34
5 147 11,9 87,4 60,3 1,45
Слава Брянщины
1 122 15,5 88,3 48,8 1,80
2 179 16,7 136,0 65,3 2,08
3 174 16,7 132,2 73,1 1,81
4 198 16,9 156,4 85,6 1,83
5 164 15,8 121,4 60,3 2,01
Брянский красный
1 94 16,2 71,3 48,8 1,46
2 150 16,7 114,0 65,3 1,75
3 142 16,6 107,2 73,1 1,47
4 158 16,8 120,1 85,6 1,40
5 136 16,5 99,1 60,3 1,64
Брянская новинка
1 105 17,7 83,3 48,8 1,71
2 155 18,0 133,3 65,3 2,04
3 149 18,6 125,2 73,1 1,71
4 166 18,6 139,4 85,6 1,63
5 145 17,4 113,1 60,3 1,88
Брянский надежный
1 119 18,0 97,9 48,8 2,01
2 173 18,8 147,0 65,3 2,25
3 164 18,5 137,8 73,1 1,89
4 187 18,9 160,1 85,6 1,87
5 157 17,7 127,2 60,3 2,11
НСР05, ц 5,6-8,7
Примечание. 1. Без удобрений (контроль), 2. Люпин+№0Р9аКл20 ,
3. Рапс+№0Р9аК120 , 4. 60 т/га навоза+№0Р90К90 ,5. №()Р90К120
Запашка зеленой массы рапса способствовала повышению урожая на 4-12 ц/га или на 3-8%. Совместное действие рапса с минеральными удобрениями увеличивало урожайность на 43-51 ц/га или на 41 -46%.
Наибольший урожай клубней картофеля по всем сортам получен в варианте применения 60 т/га навоза в сочетании с минеральными удобрениями - от 158 до 198 ц/га. Качество картофеля под действием зеленых удобрений повышалось. Сбор крахмала с единицы площади по сравнению с минеральным фоном при запашке зеленой массы люпина увеличился на 15-21%, рапса - на 10-17% в зависимости от сорта.
Применение люпина и рапса в качестве сидеральных удобрений было энергетически более выгодно по сравнению с внесением навоза. Так, использование сидератов позволило повысить коэффициент энергетической эффективности до 1,38-2,25 против Кээ = 1,34-1,87 при внесении навоза.
Результаты исследований свидетельствуют о высокой эффективности биологизированной технологии возделывания картофеля. Использование узколистного люпина на удобрение, позволило снизить количество применяемых минеральных удобрений на N6(^50^0. Применение при этом после фрезерного формирования и наращивания гребней гербицида зенкор полностью исключило междурядные рыхления почвы. В итоге продуктивность различных сортов на биологизированной технологии не только не уменьшилась по сравнению с традиционной и переходной, но и значительно возросла.
Максимальный урожай картофеля получили на биологизированной технологии: Аспия - 304; Рождественский - 308; Брянский деликатес - 338 ц/га. Сорта на традиционной технологии имели урожай ниже с колебаниями от 279 сорта Аспия,
до 284 и 324 ц/га сортов Рождественский и Брянский деликатес соответственно. Самый низкий урожай обеспечили сорта на переходной технологии -287; 257 и 258 ц/га.
По общему количественному выходу клубней наиболее высокие результаты получили на биологизированной технологии: Рождественский - 701; Брянский деликатес - 709 тыс.шт./га. Эти сорта обеспечили и максима-льный выход семенных клубней фракции 25-125 г (28-60 мм), Брянский деликатес - 462, Рождественский - 490 тыс.шт./га или 65,2 и 69,9% к общему их числу. Относительно высокие показатели по выходу клубней как общему, так и семенной фракции получили по сорту Аспия на биологизированной технологии.
В производственных условиях самый высокий урожай получен по сортам на биологизированной технологии: 270 ц/га у сорта Архидея и 240 ц/га у сорта Скарб. На традиционной технологии урожай ниже: Архидея - 234 ц/га; Скарб - 218 ц/га. Прибавка урожая по сорту Архидея на биологизированной технологии составила 36 ц/га или 15%, по сорту Скарб - 22 ц/га или 10%. Средний урожай сортов по технологиям составил: традиционная - 226 ц/га, биологизированная - 255 ц/га или на 12,8% выше.
Выводы
1. Сидеральные удобрения, различаясь биологическим составом, количеством запахиваемой растительной массы и элементов питания, способны заменить навоз в системе удобрения картофеля, повышают продуктивность и качество клубней.
2. В условиях дефицита органических удобрений в семеноводческих хозяйствах следует переходить к производству семенного картофеля по биологизированной технологии возделывания с использованием узколистного люпина на сидерат или по переходной - с промежуточным посевом озимой ржи на зеленое удобрение.
3. При биологизированной технологии по сравнению с традиционной можно уменьшить дозы азотных, фосфорных и калийных удобрений на 60,50 и 40 кг/га д.в., следует применять двухкратное фрезерование почвы гребней и вносить гербицид зенкор - 1,2 кг/га. Это позволяет полностью исключить механизированные междурядные обработки посевов.
4. При переходной технологии по сравнению с традиционной можно уменьшить дозы азотных, фосфорных и калийных удобрений на 30,20,20 кг/га д.в., следует применять гербицид зенкор - 1,2 кг/га. Это позволяет сокращать по одной довсходовой и послевсходовой механической междурядной обработке посевов.
Green manure fertizers raise producfivify and quality of tubers and can veplace straw caffle manure in the system of potato fertilizinq. At the seed - qrominq farms they should use bioloqical potato cultivation technoloqy mith usinq of lupin. Keywords: Potato, cultivar, productivity, qreen manure fertizers.
Об авторах
Молявко А.А. - доктор сельскохозяйственных наук, профессор ВНИИКХ имени А.Г. Лорха
Марухленко А.В. - кандидат сельскохозяйственных наук, ВНИИКХ имени А.Г. Лорха
Еренкова Л.А. - кандидат сельскохозяйственных наук, ВНИИКХ имени А.Г. Лорха
Борисова Н.П. - кандидат сельскохозяйственных наук, ВНИИКХ имени А.Г. Лорха, [email protected]
УДК 578.89
ХАРАКТЕРИСТИКА ИЗОЛЯТОВ ВИРУСА КУСТИСТОЙ КАРЛИКОВОСТИ МАЛИНЫ, РАСПРОСТРАНЕННЫХ В БРЯНСКОЙ ОБЛАСТИ
Е.В. Немцова, Ю.Ф. Мытницкая, В.В. Заякин, И.Я. Нам
Вирус кустистой карликовости малины (ВККМ) широко распространен по всему миру и является одним из самых вредоносных патогенов малины. С помощью разработанного ранее набора праймеров для определения ВККМ методом ПЦР было показано, что вирус содержится во всех проанализированных образцах посадочного материала Кокинского селекционного питомника (Брянск) и в пробирочных растениях этих сортов in vitro. Сравнение нуклеотидных последовательностей амплифицированных фрагментов белка оболочки и транспортного белка изолятов, полученных в разное время (2008 - 2012гг.), свидетельствует об их близком сходстве со штаммом R15 преодолевающем резистентность (resistance break) ранее устойчивых к ВККМ сортов. Полученные данные свидетельствуют о том, что накопление изменений в генетическом материале вируса продолжается.
Ключевые слова: Вирус кустистой карликовости малины (ВККМ), белок оболочки, транспортный белок, обратная транскрипция - поли-меразная цепная реакция.
Введение. На территории Брянской области активно осуществляется селекция ремонтантной малины. Одной из основных проблем при возделывании данной культуры является ее восприимчивость к вирусным заболеваниям [1]. Наиболее вредоносным и опасным вирусом малины является вирус кустистой карликовости (ВККМ). Инфицированные растения характеризуются измененным габитусом, наличием хлорозов и некрозов. При поражении ВККМ формируются недоразвитые рассыпчатые плоды, что приводит к значительному снижению урожайности [2].
Диагностика ВККМ, профилактические мероприятия и методы борьбы зависят от типа изолята вируса, распространенного в посадках. В настоящее время описано 3 семейства изолятов ВККМ: S изоляты (наиболее распространенные); RB изоляты, подобные S изолятам серологически, но отличающиеся от них способностью инфицировать сорта малины, устойчивые к S изолятам; В изоляты (наименее распространенные) [3].
Для быстрого и эффективного обнаружения ВККМ в растениях малины нами была разработана система праймеров для анализа вируса с помощью обратной транскрипции - ПЦР, получен патент на изобретение [4].
В данной работе обобщены результаты исследования распространения ВККМ в Брянской области и характеристики амплифицированных последовательностей обнаруженных изолятов.
Материалы и методы. Образцами для исследования служили полевые растения ремонтантной малины и растения,