УДК 504.062.2
БИОЛОГИЧЕСКОЕ ВЫЩЕЛАЧИВАНИЕ ЦИНКА И МЕДИ ИЗ ОТХОДОВ ФЛОТАЦИННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ РУД БУРИБАЕВСКОГО ГОРНО-ОБОГАТИТЕЛЬНОГО КОМБИНАТА В ПЕРКОЛЯЦИОННОЙ УСТАНОВКЕ
©2013 Д.В. Четверикова, М.Д. Бакаева, С.П. Четвериков, О.Н. Логинов
Институт биологии Уфимского научного центра РАН, г. Уфа Поступила 12.06.2013
Изучен процесс биологического выщелачивания в лабораторной перколяционной установке на отходах флотации сульфидных руд Бурибаевского горно-обогатительного комбината. Для моделирования процесса биовыщелачивания выбрана культура ИБ 2 состоящая из штаммов АЫсИАпоЬасШт Ъгоох\с1ат и РеггорЫша яр., выделенные из природного водоема находящегося на территории Сибайского филиала Учалинского горно-обогатительного комбината. В результате использования технологии биовыщелачивания удалось достигнуть глубины извлечения цинка 76% и меди 84%.
Ключевые слова, биовыщелачивание, вторичная переработка отходов, медь, цинк.
Отходы горно-обогатительного и металлургического производства, включающие отвалы бедных руд, хвосты обогащения, шлаки и шламы металлургического производства, а так же промышленные стоки привлекают все большее внимание в качестве потенциального сырья для извлечения металлов [1-2]. Одним из перспективных направлений разработок в этой области могут стать биотехнологические решения проблемы [3-6]. Применение биологической технологии дает хорошие результаты на лежалых отвалах сульфидных отходов, позволяет работать с любыми объемами отходов, использовать простое (сезонное орошение куч) или более сложное (для работы в любые сезоны) оборудование [7, 8]. Такие технологии применяются во многих странах и в меньшей степени в России (Г.И. Каравайко и его ученики).
Основой биогеотехнологий являются микроорганизмы, способные к избирательному извлечению металлов из рудных пород или их отвалов, от видовых особенностей и стабильности свойств которых будет зависеть, в конечном счете, эффективность переработки отходов. В результате биологического окисления микроорганизмами сульфидов меди и цинка минералов сфалерита и халькопирита образуются сульфаты меди, цинка и железа, которые легко переходят в кислый раствор и могут быть извлечены из него общепринятыми способами.
Отходы флотационного обогащения отличаются от руд и концентратов как по содержанию целевых компонентов, так и состоянию минералов и питательных субстратов для литотрофных бактерий, что делает исключительно актуальным и перспективным разработку специальных биотехнологий с применением активных адаптированных штаммов микроорганизмов.
Четверикова Дарья Владимировна, младший научный сотрудник, e-mail: belka-strelka8031(S)yandex.ra; Бакаева Маргарит а Дмит риевна, к.б.н., старший научный сотрудник, е-mail: margo22(S)yandex.ra; Чет вериков Сергей Павлович, д.б.н., ведущий научный сотрудник, e-mail: che-kov(a!mail.ru; Логинов Олег Николаевич, д.б.н., проф., зав. лабораторией, e-mail: biolab316(S)yandex.ra
Целью работы было исследование различных режимов биологического выщелачивания отходов флотационного обогащения сульфидных медно-цинковых руд в перколяционных установках на отходах флотационного обогащения Бурибаевского горно-обогатительного комбината (ГОК).
МАТЕРИАЛ И МЕТОДЫ
В качестве сырья для биологического выщелачивания служили образцы отработанных медно-цинковых руд Бурибаевского ГОК, содержащие 67% пирита, 21% кварца, 0,8% халькопирита, 0,6% сфалерита, 6% серицита, 2% хлорита. Размер частиц: 20 - 900 мкм. Среднее содержание цинка и меди: 1,97±0,27 г/кг и 1,72±0,19 г/кг, соответственно.
Перколяционная установка представляла собой набор колонок, в которые помещалась отработанная руда (по 5000 г в каждую) (рис. 1). Через них пассивно фильтровался выщелачивающий раствор, который представлял собой раствор солей (мг/л): (№14)2804 - 132, (МёС12)х6Н20 - 53, СаСЬ^ШО - 147, КН2Р04 - 27.
Для постановки опытов была использована культура ИБ 2, состоящая из штаммов Аас/И/уоЬа-сШиъ /еггоох!с!ап8 и Реггор1аша 5р. в количестве 20 мл с титром 109 клеток/мл на один вариант опыта.
Для культивирования и хранения микроорганизмов, окисляющих железо, использована питательная среда Сильвермана и Лундгрена 9К [9].
Опыты в перколяционной установке были поставлены в двух режимах: «затопления» - когда скорость подачи раствора обеспечивала постоянное нахождение руды под слоем жидкости, и «смачивания» - с меньшей скоростью подачи раствора, приводящей лишь к смачиванию руды. Другим варьируемым фактором было соотношение по массе твердой фазы и выщелачивающего раствора (табл. 1).
Концентрацию меди и цинка в периодически отбираемых пробах измеряли на атомно-абсорбционном спектрофотометре КВАНТ-2А (Россия), а концентрацию железа - титрованием с
1690
ЭДТА. Численность железобактерий определяли по таблицам Мак-Креди после посева в серии разведений на жидкую селективную питательную среду 9К [10]. Статистическую обработку данных проводили с использованием компьютерной программы Excel 2003.
Рис. 1. Принципиальная схема установки биологического выщелачивания отходов флотационного обогащения
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Динамика перехода в раствор ионов меди и цинка в процессе выщелачивания отхода флотационного обогащения Бурибаевского ГОК представлена на рис. 2.
Больше ионов цинка было извлечено из отходов на установках II и IV, где масса руды относилась к массе выщелачивающего раствора 1:5, а объем раствора был равен 25 л (рис. 2).
В этих вариантах опыта было выделено 76% и 73% цинка от содержавшегося в отходе. В других вариантах опыта доля извлеченного цинка была немного меньше: при объеме жидкой фазы 17,5 л во I и III установке в раствор выделялось 64% и 61% цинка, соответственно.
Глубина извлечения цинка из флотационного отхода зависела от объема использованного выщелачивающего раствора, но почти не зависела от скорости его фильтрации. Однако варианты опыта в режимах «затопления» и «смачивания» немного отличались динамикой выделения цинка в раствор. В режиме «затопления» максимальный прирост цинка в растворе приходился на 10-13 сутки эксперимента, тогда как в режиме «смачивания» на 1316 сутки. Это может быть связано как с разной скоростью выщелачивания цинка, так и с разной скоростью выхода выщелоченных ионов цинка из колонки, временно удерживаемых в ней за счет сорбции на поверхности частиц.
При биологическом выщелачивании меди из отходов флотационного обогащения Бурибаевского ГОК лучшие результаты были получены в варианте II, в котором было извлечено 84% меди. В вариантах опыта I, III и IV было извлечено 73%, 62% и 77% меди, соответственно.
Таким образом, при биологическом выщелачивании меди в режиме «затопление» выход меди выше, чем в режиме «смачивание».
Количество извлеченного железа Fe3+ в растворах биологического выщелачивания в разных вариантах опыта колебалось от 1368,5 мг/кг - 1835 мг/кг до 5537 мг/кг - 8450 мг/кг (рис. 3).
Концентрация железа в растворе возрастала, в основном, до 13 суток эксперимента. После чего выделение ионов железа из отходов флотации частично компенсировалось его осаждением на стенках емкостей и колонок. Количество извлеченного железа было выше в режиме «затопление». Разница в объеме выщелачивающего раствора оказывала влияние на выщелачивание железа таким образом, что концентрация железа в растворе была выше при меньшем его объеме (17,5 л), тогда как общее количество растворенного железа было больше в вариантах с большим объемом (25 л) раствора.
Таблица 1. Варианты опыта биологического выщелачивания отходов флотации в перколяционной установке
Вариант Режим (доля от общего объема раствора за 1 сутки) Соотношение фаз твердая:жидкая
I Затопление (1/3) 1:3,5
II 1:5
III Смачивание (1/9) 1:3,5
IV 1:5
1691
-х—I —■—II III
—Ж—IV
-х—I —■—II III
—ж—IV
1600 -,
Ь 1400 -
Е
| 1200 -
| 1000 -
I 800 -
а-
СП
о. 600 J
| 400
х
¡§ 200 0
Ш 1800
1 1600 а
& 1400
| 1200
? 1000
I- 800 №
О. 600
® 400
I 200 о
* 0
10 13
Срок инкубации,сутн-и
10 13
Срок инкубации,сутки
Рис. 2. Количество извлеченных ионов цинка (а) и меди (б) в раствор из отходов Бурибаевского ГОК
10000
10 13
Срок инкубации,сутки
16
21
-X—I —■—II —А—III —Ж—IV
Рис. 3. Количество железа (Бе3 ) извлеченного в раствор
Во всех вариантах опыта к концу эксперимента наблюдалась одинаковая численность железоокис-ляющих бактерий, которая составляла порядка 108 клеток/мл (табл. 2). В установке II скорость развития железоокисляющих бактерий была выше, уже к 13 сут эксперимента численность их составила
из отходов Бурибаевского ГОК
(6,0±0,4)-10 клеток/мл. В остальных вариантах опыта скорость размножения микроорганизмов была ниже. В варианте IV к 13 сут было зарегистрировано (2,0±0,4)-105 клеток/мл. Таким образом, лучшие условия для размножения железоокисляющих бактерий создавались в варианте опыта II.
1692
Таблица 2. Численность железоокисляющих бактерий в растворах биологического выщелачивания отходов Бурибаевского ГОК
Сроки отбора проб, сутки Численность железоокисляющих бактерий, клеток/мл
I II III IV
7 (ó.oío.d-io1 (2,0±0,3)-102 (1,4±0,4)-102 (1,7±0,2)-102
10 (8,0±0,5)-102 (5,5±0,1)-104 (6,0±0,3) 102 (1,4±0,5)-103
13 (1,4±0,2)-105 (6,0±0,4)-107 (6,5±0,2)-104 (2,0±0,4)-105
16 (5,5±0,3)-106 (1,3±0,5)-108 (2,0±0,1)-106 (1,7±0,3)-107
21 (6,5±0,3)-108 (8,0±0,2)-108 (6,0±0,4)-108 (5,5±0,1)-108
Таким образом, опытным путем было установлено, что при биологическом выщелачивании цинка и меди в перколяционной установке из отходов Бурибаевского ГОК вариант опыта, в котором масса руды относилась к массе выщелачивающего раствора как 1:5, а объем раствора был равен 25 л, обеспечивал высокую степень извлечения металлов в раствор.
СПИСОК ЛИТРАТУРЫ
1. Панин В.В., Воронин Д.Ю., Адамов Э.В., Крыпова Л.Н. Бактериально-химическое извлечение цинка из пром-продукгов и хвостов флотационного обогащения // Цветные металлы. 2005. № 11. С. 27-31.
2. Брусничкина-Кирилпова Л.Ю., Большаков Л А. Исследование процесса бактериального выщелачивания техногенных отходов норильского обогатительного производства // Цветные металлы. 2009. № 8. С.72-74.
3. Зотеев В.Г., Костерова Т.К., Морозов ALB., Рудницкая Н.В. Обоснование технологии захоронения отходов обогащения медно-цинковых руд, обеспечивающий защиту окружающей среды и возможность их повторной переработки // Горный инф.-аналиг. бюлл. 2004. № 5. С. 8590.
4. Дружина Г.Я., Татариное А.П., Яроги Ю.Б., Емельянов
Ю.Е. Применение кучного выщелачивания для комплексной переработки минеральных техногенных продуктов // Цветные металлы. 2009. № 1. С. 18- 20.
5. Гудков С.С., Емельянов Ю.П., Рязанова II.IL, Шкетова Л.Е. Биогидрометаллургическая переработка сульфидных руд // Цветные металлы. 2004. № 8. С. 47-48.
6. Славкина О.В., Фомченко П.В., Бирюков В.В., Архипов М.Ю. Исследование бактериального выщелачивания медно-цинкового рудного концентрата 3. Экспериментальная проверка двухстадийной рециркуляционной технологии выщелачивания межно-цинкового концентрата//Биотехнология. 2005. № 3. С. 48-54.
7. Кондратьева Т.Ф., Пивоварова ТА., Цатина H.A., Фомченко Н.В., Журавлева А.Е., Муравьев M.II., Мела-муд B.C., Булаев А.Г. Разнообразие сообществ ацидофильных микроорганизмов в природных и техногенных экосистемах//Микробиология. 2012. Т. 81. № 1. С 3-27.
8. Живаева А.Б., Башпыкова Т.В., Пахомова ГА., Дорошенко М.В., Кстиниченко Л.С. Воздействие бактерий на массивные медно-цинковые колчеданные руды // Цветные металлы. 2007. № 3. С. 60-64.
9. Биогеотехнология металлов: Практическое руководство / Под ред. Каравайко Г.И., Росси Дж., Агате А., Грудев С., Авакян З.А. М., 1989. 378 с.
10. Практикум по микробиологии / Под ред. А.И. Нетрусо-ва.М., 2005. 608 с.
BIOLOGICAL LEACHING OF ZINC AND COPPER FROM THE SULPHIDIC ORES FLOTATION WASTE OF BURIBAY CONCENTRATING INDUSTRIAL COMPLEX IN THE PERKOLATOR
©2013 D.V. Chetverikova, M.D. Bakaeva, S.P. Chetverikov, O.N. Loginov
Institute of Biology, Ufa Sci. Centre of RAS, Ufa
Process of biological leaching of a sulphidic ores flotation waste of Buribay concentrating industrial complex in laboratory perkolator is studied. For modeling process of a bioleaching The culture IB 2 consisting of strains Acidithi-obacillus fetrooxidans and Ferroplasma sp., allocated from a natural reservoir in the territory of the Sibay branch of Uchaly concentrating industrial complex is applied. As a result of the bioleaching technology use 76% of zinc and 84% of copper was extracted.
Key words: bioleaching, waste recycling, coppe,; zinc.
Daria Chetverikova, junior researcher, e-mail: belka-strelka8031(S)yandex.ru; Margarita Bakaeva, Candidate of Biology, senior researcher, e-mail: margo22(S)yandex.ru; Sergey Chetverikov, Doctor of Biology, leading researcher, e-mail: che-kov(S!mail.ru; Oleg Loginov, Doctor of Biology, head of laboratory, e-mail: biolab316(S)yandex.ru
1693