Автоматизированные системы управления для тягового подвижного
состава
А.Л. ДОНСКОЙ, генеральный директор «АВП-Технология»
Проблема экономии энергетических ресурсов в железнодорожной отрасли появилась с момента зарождения этого вида транспорта как такового. Снижение расходов угля и воды бригадами существовавших в те времена паровозов считалось одним из основных способов ее решения. Не менее важным подходом стала автоматизация перевозочного процесса, по мере развития которой многократно повышалась производительность труда работников. Актуальна эта проблема и сейчас, но ее решение осуществляется на более качественном уровне: с помощью автоматизации ведения поезда с оптимизацией расхода энергетических ресурсов на тягу. Ниже речь пойдет об автоматизированных системах управления тяговым подвижным составом и их модельном ряде.
Система автоматизированного ведения пригородного электропоезда, пассажирского и грузового электровозов любого рода тока, пассажирского тепловоза (УСАВП, модификации) представляет собой аппаратно-программный комплекс для управления локомотивом или мо-торвагонным подвижным составом с максимальной энергетической эффективностью и с соблюдением требований безопасности движения. Алгоритм (включение тяги, ее величина, переход на выбег, место и время повторного включения тяги, торможение и т.д.) рассчитывается на борту, исходя из заданных условий следования. В основе проведения расчетов лежит график движения поезда, профиль пути, расположение раздельных пунктов, напольных сигналов светофоров, места временных и постоянных ограничений скорости, масса состава и другие параметры. При изменении поездной ситуации (появлении запрещающих сигналов, вводе с клавиатуры новых ограниче-
ний скорости, отклонении реальных параметров следования от расчетных) система корректирует алгоритм движения в реальном масштабе времени. Расчет оптимального алгоритма производится по критериям обеспечения безопасности движения, соблюдения графика, экономии электроэнергии на тягу
Система внедрена на сети дорог России и Белоруссии. Автоведением оборудовано около 1400 электропоездов, что составляет 98 % их общероссийского парка, а также более 1200 пассажирских и грузовых электровозов.
Органичной составной частью системы является регистратор параметров движения и автоведения (РПДА), специально разработанный для измерения и фиксирования данных по совершаемой поездке на борту локомотива или электропоезда. Измерения проходят полностью в автоматическом режиме, в процессе движения регистрируется до 40 параметров. Для различных типов подвижного состава фиксируется расход электроэнергии на основе показаний электрических датчиков в силовых и вспомогательных цепях локомотивов и электричек или расход дизельного топлива на основе показаний датчиков измерения его уровня, плотности и температуры в баке тепловоза.
Собранные регистратором данные о поездке сохраняются на съемном накопителе, которые могут быть перенесены и обработаны с помощью автоматизиро-
ванного рабочего места (АРМ РПДА). Анализ расшифрованных данных позволяет оценивать результаты поездки, в том числе: соблюдение норм безопасности при управлении подвижным составом, выполнение графика движения и расход энергетических ресурсов. Регистратор позволяет проводить мониторинг технического состояния подвижного состава в реальном времени. Диагностика состояния бортовой аппаратуры позволяет исключить из цепочки потребления неисправные силовые агрегаты, а также мгновенно выявить завышенный расход. Адекватная оценка, основанная на фактических данных, дает возможность принимать управляющие решения по оптимизации режимов ведения поезда, проведению ремонта, корректировке расписания, объективному нормированию расхода энергоресурсов и т.д.
Система автоведения грузового поезда послужила основой для создания интеллектуальной системы автоматизированного ведения с распределенной тягой по длине поезда (ИСАВП-РТ), предназначенной для вождения поездов массой до 18 тыс. тонн и составом вагонов общим числом до 780 осей. Система управляет тягой и торможением электровозов соединенного поезда из головной кабины управления как в синхронном, так и в асинхронном режиме и способна безопасно водить соединенные грузовые поезда по участкам любого профиля.
Использование ИСАВП-РТ на существующих направлениях позволит увеличить пропускную способность участков на 4-6%, повысить производительность труда локомотивных бригад за счет управления ведомыми локомотивами в одно лицо, сократить оборот подвижного состава на 20% благодаря повышению маршрутной скорости до 1000 км/сутки.
Полученные при внедрении систем автоведения и РПДА результаты стали основой дальнейшего развития новых технологий и интеллектуальных устройств автоматического управления движением поездов. На ряде направле-
ний Московской железной дороги внедряется речевой информатор для автоматического оповещения пассажиров с прибывающего электропоезда (РИ-ДОП). Система устанавливается в головных вагонах электропоездов и на железнодорожных платформах. Аппаратура РИДОП работает под управлением системы автоведения пригородного электропоезда. Основная идея системы заключается в передаче информации от системы автоведения по радиоканалу на станционную аппаратуру громкоговорящего оповещения пассажиров, ожидающих электропоезд. Эта передача происходит полностью в автоматическом режиме, без участия машиниста. При подъезде к станции система автоведения формирует сигнал о маршруте следования электропоезда, а РИДОП ретранслирует этот сигнал и выдает соответствующие речевые сообщения в станционную систему громкоговорящего оповещения.
Внедрение речевого информатора, помимо улучшения обслуживания пассажиров, облегчает труд дежурных по станции, освобождая их от монотонных операций по объявлению информации. Кроме того, повышается безопасность движения и экономится электроэнергия за счет более организованной посадки пассажиров в поезд и уменьшения времени стоянки электропоезда на остановочном пункте. Также исключается необходимость нагона из-за задержек по отправлению.
Функциональным дополнением речевого информатора и системы автоведения пригородного электропоезда стала система ведения сдвоенного электропоезда, которая предназначена для автоматизированного управления режимами тяги и электропневматического торможения единым составом из двух пригородных электропоездов, сцепленных между собой. В основе принципа ее работы лежит синхронизация систем автоведения электропоездов путем установления беспроводного соединения по радиоканалу РИДОП. Экономический эффект использования системы достигается за счет сокращения количества вагонов в электропоезде в местах с низкой населенностью составов, обусловленной как слабым пассажиропотоком на ряде участков, так и временем суток следования поезда.
Средством для существенного снижения затрат в тяговом энергоснабжении на участках обращения электровозов переменного тока служит автономный компенсатор реактивной мощности с диодным регулированием (КРМ-РД), предназначенный для улучшения тяго-во-энергетических показателей электровоза. Управляемый микропроцессорной системой компенсатор обеспечивает поддержание оптимальных значений коэффициента мощности электровоза (на уровне 90-96 %) во всем диапазоне режимов его работы.
Применение регулируемого компенсатора реактивной мощности позволит: снизить в два раза потребление реактивной энергии, уменьшить на 10-15 % токовую нагрузку на систему тягового электроснабжения, уменьшить падение напряжения в контактной сети и снять остроту проблемы усиления системы тягового электроснабжения; снизить на 25-30% дополнительный расход электроэнергии в системе тягового электроснабжения и сократить на 1-1,3% расход электроэнергии на тягу поездов; увеличить на 5-7% напряжение на тяговых двигателях и пропорционально повысить производительность электровоза.
Для достоверного определения энергетических затрат на тяговом подвижном составе переменного тока разработан измерительный комплекс активной и реактивной электроэнергии класса 0,5Э. Комплекс предназначен для установки на электровозах и электропоездах с целью коммерческого учета. Данный класс точности тождественен классу точности измерительных комплексов тяговых подстанций и соответствует современным требованиям действующих стандартов.
Комплекс можно использовать в составе единой информационно-измерительной системы контроля и учета электроэнергии. Полученные пока-
зания дают возможность адекватного сопоставления потребления электроэнергии на тягу поездов по обобщенным сведениям служб локомотивного хозяйства и энергоснабжения, что также частично решает проблему массового несоответствия таких данных.
При внедрении систем автоведения и другой микропроцессорной техники реализованы перспективные организационные и финансовые модели производства, решен большой объем технических и техналогических задач, создана устойчивая кооперация предприятий — изготовителей и поставщиков. Отработаны технологии внедрения и сервисного обслуживания, включающие в себя установку, пуск, наладку и монтаж аппаратуры, настройку баз данных применительно к конкретным участкам обращения подвижного состава. Организовано обучение штатного персонала локомотивных депо.
Реализация технологий управления подвижным составом посредством микропроцессорных систем управления существенно снижает интеллектуальную загрузку машиниста, а в отдельных ситуациях автоведение полностью замещает машиниста. Система стратегического и проектного менеджмента, охватывающая все этапы жизненного цикла систем, обеспечивает минимизацию коммерческих и производственных рисков и ведет к получению максимального эффекта от внедрения.
Значимость перехода к новым технологиям вождения поездов определяется возможностью наращивать провозную способность железных дорог, получить экономию энергоресурсов на тягу до 10-15% и повысить безопасность движения. Системы позволили освоить вождение тяжеловесных поездов, создать основу для реализации скоростного пассажирского движения, а также качественно изменить труд машиниста, исключив влияние человеческого фактора на сложнейший процесс управления грузовым и пассажирским поездом.
«АВП-Технология»
111024, Москва, ул. 2-я Кабельная, 2, стр. 37 Тел.: (495) 620-4644, факс: (495) 620-4646 ¡[email protected] www.avp-t.ru
¿МО
технология