РАЗРАБОТКА НОВЫХ ЭНЕРГОУСТАНОВОК
НА ОСНОВЕ
ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ
DEVELOPMENT OF NEW ENERGY UNITS BASED ON RENEWABLE KINDS OF ENERGY
05.14.01 ЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ И КОМПЛЕКСЫ
COMPLEX POWER SYSTEMS
DOI: 10.33693/2313-223X-2020-7-4-21-24
Application of solar dryers for drying agricultural products and optimization
of drying time
R.Kh. Rakhimov1,а ©, D.N. Mukhtorov2, b ©
1 Institute of Materials Science, SPA "Physics-Sun", Academy of Science of Uzbekistan, Tashkent, Republic of Uzbekistan
2 Fergana Polytechnic Institute, Fergana, Republic of Uzbekistan
a E-mail: [email protected] b E-mail: [email protected]
Abstract. Given the limited mineral resources and the impossibility of using the world's hydrocarbon reserves in a steady and growing way in the near future, the most important task facing every country is to find a way to prevent the impending energy crisis or alleviate the country's energy problems. One of the ways to solve the global problems facing humanity is to use renewable energy sources. Based on the above information in this article, a method for analyzing the drying of agricultural products using solar and electricity has been developed. Modern designs of drying devices have been studied. Experimental studies were conducted on the basis of experimental research data, a sample of a solar dryer was constructed, optimal measurements were calculated, and the results of theoretical and experimental studies were presented. The thermotechnical properties of the solar dryer were studied. One of the most pressing issues today is the efficient use of solar energy and, of course, the development of energy-efficient energy-efficient devices, the introduction of the device into practice. The energy device we recommend below allows you to process and harvest agricultural products, fruits and vegetables in a timely manner, ensure the continuity of the drying process, and obtain fast and high-quality dried products with low energy consumption.
Key words: solar air heater, drying chamber, temperatures, convection, saving, energy efficiency, drying, solar, electricity, agricultural products
f ^
FOR CITATION: Rakhimov R.Kh., Mukhtorov D.N. Application of solar dryers for drying agricultural products and optimization of drying time. Computational Nanotechnology. 2020. Vol. 7. No. 4. Pp. 21-24. DOI: 10.33693/2313-223X-2020-7-4-21-24
v J
DOI: 10.33693/2313-223X-2020-7-4-21-24
Применение гелиосушилок для сушки сельскохозяйственных продуктов и оптимизация времени сушки
Р.Х. Рахимов1, а ©, Д.Н. Мухторов2, b ©
1 Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан,
г. Ташкент, Республика Узбекистан
2 Ферганский Политехнический институт, г. Фергана, Республика Узбекистан
a E-mail: [email protected] b E-mail: [email protected]
Аннотация. Учитывая ограниченность минеральных ресурсов и невозможность устойчивого и растущего использования мировых запасов углеводородов в ближайшем будущем, важнейшей задачей, стоящей перед каждой страной, является поиск путей предотвращения надвигающегося энергетического кризиса или смягчения энергетических проблем. Одним из путей решения глобальных проблем, стоящих перед человечеством, является использование возобновляемых источников энергии. На основе приведенной выше информации в данной статье разработан метод анализа сушки сельскохозяйственной продукции с использованием солнечной и электрической энергии. Изучены современные конструкции сушильных устройств. На основе данных экспериментальных исследований были проведены экспериментальные исследования, построен образец солнечной сушилки, рассчитаны оптимальные измерения, представлены результаты теоретических и экспериментальных исследований. Исследованы теплотехнические свойства солнечной сушилки. Одним из наиболее актуальных вопросов сегодня является эффективное использование солнечной энергии и, конечно же, разработка энергоэффективных энергоэффективных устройств, внедрение этого устройства в практику. Энергетическое устройство, которое мы рекомендуем ниже, позволяет своевременно обрабатывать и собирать сельскохозяйственную продукцию, фрукты и овощи, обеспечивать непрерывность процесса сушки, а также получать быструю и качественную сушеную продукцию с низким энергопотреблением.
Ключевые слова: Солнечный воздухонагреватель, сушильная камера, температура, конвекция, экономия, энергоэффективность, сушка, солнечная энергия, электроэнергия, сельскохозяйственная продукция
ССЫЛКА НА СТАТЬЮ: Рахимов Р.Х., Мухторов Д.Н. Применение гелиосушилок для сушки сельскохозяйственных продуктов и оптимизация времени сушки // Computational nanotechnology. 2020. Т. 7. № 4. С. 21-24. DOI: 10.33693/2313-223X-2020-7-4-21-24
Many agricultural products are grown around the world. Quality collection and storage of these products is very important, it is advisable to use dryers in this regard. However, most of the dryers currently in production are powered by electricity and fuel. Organizing the efficient operation of dryers and saving fuel and energy products is a pressing issue today. Also, according to the data provided today, little research has been done on the effect of the design of the gelo-receiving surface on the increase in air temperature in the dryer.
In order to ensure quality drying of products and continuous operation of dryers, recommendations have been developed for the efficient use of solar energy and to increase the F.I.K of the dryer and the effective use of such dryers in production. The advantage of the solar dryer recommended below is that it is energy-efficient, inexpensive and has the ability to dry high-quality and fast-drying varieties of fruits and vegetables with high sugar content, while maintaining the characteristics of the product.
Figure 1, 2 shows a schematic of a solar dryer. In this case, normal air from the outside comes to the solar air heater and is heated, then passes to the drying chamber. The product is then dried and the air is released into the atmosphere through a pipe.
This Solar Air Heater is designed for sunny days of the year and in our experience we use this equipment mainly for drying agricultural products. The principle of operation of the device in the form of a paralipipet is simple and the productivity is high. It is necessary to ensure that the surface of the equipment is perpendicular to sunlight, i.e. the sunlight falls at an angle to the surface of the equipment. Cold air is directed from the bottom of the equipment and the air is heated upwards. As a result, the air is heated and the air in the air collector transmits its heat. Then, using natural convection, the air slowly begins to move upwards. 4 - When it comes to the drying chamber, the hot air 5 - transmits its heat to the fruits located on the grill. The dryer is equipped with a hot and humid air control unit. This device is installed to improve natural convection.
22
Computational nanotechnology
Vol. 7. № 4. 2020
APPLICATION OF SOLAR DRYERS FOR DRYING AGRICULTURAL PRODUCTS
AND OPTIMIZATION OF DRYING TIME
Rakhimov R.Kh., Mukhtorov D.N.
Fig. 1. View of the drying chamber (a), product drying chamber of the solar drying equipment (b):
1 - camera body; 2 - placement of fruits or vegetables; 3 - barriers to uniform air supply; 4 - natural and artificial hot air inlets; 5 - humid air outlet to the atmosphere; 6 - temperature adjustment and control device in the chamber; 7 - source of hot air supply by electricity
X S
Fig. 2. appearance of solar air heater (a), natural hot air router of solar dryer equipment (b):
1 - solar air heater housing; 2 - direction of cold air entering the equipment; 3 - insulations used to reduce heat loss; 4 - surface polished ferrous metal; 5 - thermometer; 6 - perforated ferrous metal; 7- light-transmitting window; 8 - hot air outlet
In the above formula, d is the diameter of the fruit, At is the difference between the air and the surface temperature of the fruit. Temperature differences change during the day, due to changes in solar radiation.
Table 1
№ Air temperature, °C The temperature of the heater, °C The temperature of the drying chamber, °C
1 15-18 40-45 28-30
3 18-22 48-50 30-31
3 20-22 50-52 30-32
4 22-25 50-55 30-35
5 22-27 50-58 32-35
6 24-27 55-58 33-36
7 24-29 52-60 34-38
8 24-30 55-70 40-45
2
7
2
4
4
1
2
As a result of the experiments, the air temperatures in the solar air collector and the drying chamber were determined, and the results obtained in the experiment were presented in tabular form.
Based on the values obtained above, we determine the drying time of the products using the Nusselt, Reynolds, Grasgof and Prandtl criteria.
Hence, we calculate the heat transfer process under free convection conditions for the values shown in Table 1 below.
q = 3600a(tc - tM) = qM r W/m2.
In the formulas - the heat given to the fruit, r - the latent heat of water vapor. In this formula - the heat transfer coefficient, we determine from the formula of free convection:
Gr = gpAtd 3/v2; P = 1/T; t = (1/N)((wH - wKp) - 128wH lg (x)(wH - wp)) time.
Based on the value of Gr • Pr =, the values of C and n should be selected from Table 2.
Table 2
Gr • Pr 0,001-500 500-2•107 2 • 107-1 • 1013
C 1,18 0,54 0,135
n 1/8 1/4 1/3
Hence, we continue the computational work for the above values.
N = C (G • P)n. We determine the heat transfer coefficient.
a = Nu A/d W/m2 °C.
T. 7. № 4. 2020
Computational nanotechnology
23
We use the following formula to determine the drying speed of the fruit in a solar dryer.
N = qm F• 100/(p0V) %/hour.
We calculate the heat given to the fruit - qm.
qm = 3600a(tc - tM)/r W/m2.
We use the following formula to determine the drying time of the fruit in a solar dryer.
Based on the work presented in the article, it can be concluded that the production and implementation of such devices around the world is highly effective. The main reason for this is that many countries are rich in agricultural fruits and vegetables, melons. High-quality collection of products solves the problem of not losing their useful properties and, most importantly, saving energy resources.
References
1. LebedevP.D. Heat exchange, drying and refrigeration units: Textbook for students of technical universities.
2. LykovA.V. Theory of drying.
3. VasilievA.V. Dry with economy. Daresay, 2008.
4. Muhtorov D.N. Usage of combined solar power devices for drying agricultural products. Part 2. Modern Problems of Science and Education. 2019. No. 11 (144). Pp. 29-31.
5. Didovich A.N., Kalafatov E.T., Macalis A.M., Pastecki MS. Heliodryer for agricultural products. URL: https://patent ru176309u1 (data accesses: 16.01.2018).
6. World experience in drying agricultural products. URL: https:// yandex.uz/turbo/mehanik-ua.ru/s/sbornik-statej/1034-mirovoj-opyt-sushki-selskokhozyajstvennoj-produktsii.html
7. Artykov S., Makaurov T.M. Heliosushilka for tobacco. Heliotechnika. 1978. No. 1. Pp. 72-74.
8. Ismailova A.A., Bektenov L.B. Experimental analysis on the use of transparent film and glass for solar dryers. In: Questions of theory and experimental physics. Alma-Ata, 1979. Pp. 96-100.
9. Krepis I. Solar dryers, greenhouses, greenhouses. Agriculture of Moldova. 1979. No. 8. Pp. 47-49.
10. Monakov V.A., Gubenko N.V. The use of solar energy for drying herbs. Mechanization and Electrification of Social Agriculture. 1978. No. 8. Pp. 17-18.
11. Umarov G.Ya., Avezov R.R., Ikramov A.I. Use of solar energy for drying fruits and vegetables. Canning and Vegetable Industry. 1978. No. 10. Pp. 22-23.
12. Bahrns D. Solar grain drying. Crops and Soils Magaz. 1978. Vol. 30. No. 4. Pp. 15-16.
13. Bryan W. Direct solar drying of fruits and vegetables in the southeastern United States. Energy use Manag. Proc. Int. Conf. Tucson. Ariz., 1977. Vol. 3-4. New York: e.a. 1978. Pp. 521-525.
14. Dernedde W, Peters H. Wirkungsgrade von Solar-Luftkollektoren fur Trocknungsanlagen. Landtechnik. 1978. Bd. 1. H. 33. S. 29-30.
15. Pfister T. Heubeluftung und Sonnenenergie in der Ladwirtschaftlihe Schule Flawill. Schweiz. Landtechn. 1979. Bd. 41. H. 1. S. 22-23.
16. Schulz H. Sonnenenergie in Haus Hof. H. Teil. Top Agrar. 1977. H. 7. S. 64-68.
17. Solar dryers. URL: http://www.mensh.ru/articles/solnechnye-sushilki
18. Solar dryers for crop production. URL: https://yandex.uz/turbo/ mehanik-ua.ru/s/solnechnye-gelio-sushilki/1809-geliosushilki-dlya-rastenievodcheskoj-produktsii.html
19. Hubert J., Rakhimov R.Kh., Peter D., Ermakov V.P. Opportunities for effective innovation. Comp. Nanotechnol. 2020. No. 1. Pp. 15-18.
20. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R., Latipov R.N. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 6. Comp. Nanotechnol. 2016. No. 3. Pp. 6-34.
Статья проверена программой Антиплагиат
Рецензент: Раджапов С.А., доктор физко-матматических наук; ведущий научный сотрудник Физико-технического института НПО «Физика-Солнце» Академии наук Республики Узбекистан
Статья поступила в редакцию 15.11.2020, принята к публикации 20.12.2020 The article was received on 15.11.2020, accepted for publication 20.12.2020
ABOUT THE AUTHORS
Rustam Kh. Rakhimov, Dr. Sci. (Eng.); Head at the Laboratory No. 1 of the Institute of Materials Science "Physics-Sun" of the Republic of Uzbekistan. Tashkent, Republic of Uzbekistan. ORCID: https://orcid.org/0000-0001-6964-9260; E-mail: [email protected] Dilmurod N. Mukhtorov, assistant at the Department of Electrical Engineering, Electrical Mechanics and Electrical Technology of the Fergana Polytechnic Institute. ORCID: https://orcid.org/0000-0001-7916-5147; E-mail: [email protected]
СВЕДЕНИЯ ОБ АВТОРАХ
Рахимов Рустам Хакимович, доктор технических наук, профессор; заведующий лабораторией № 1 Института материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан. Ташкент, Республика Узбекистан. ORCID: https://orcid.org/0000-0001-6964-9260. E-mail: [email protected]
Мухторов Дильмурод Нумонжонович, ассистент кафедры «Электротехника, электромеханика и электротехнология» Ферганского политехнического института. ORCID: https://orcid.org/0000-0001-7916-5147; E-mail:[email protected]
24
Computational nanotechnology
Vol. 7. № 4. 2020