CHEMICAL PROBLEMS 2024 no. 4 (22) ISSN 2221-8688
509
UDC 54.056
APPLICATION EXTRACTIVE DESULFURIZATION USING PIPERIDINIUM BASED
IONIC SALT WITH FeCls AS LEWIS ACID
*Sariya W. Zaidan, 2Anwer M. Ameen, *2Assim A. Sabah
1 Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq 2Department of Science, College of Basic Education, University of Mosul, Mosul, Iraq e-mail: anwermameen@,uomosul.edu.iq
Received 15.05.2024 Accepted 15.07.2024
Abstract: The study involves the synthesis of inorganic salts by reacting the organic salts with ferric chloride and organic salts (1) [mAMPi]Br, (2) [pAMPi]Br derived from the nitrogenous base of Piperidinium. Spectroscopic and physical techniques were used to characterize the prepared compounds, including mass spectrometry, infrared FT-IR, micro-elemental analysis, and 1H-NMR nuclear magnetic resonance spectroscopy. The extractive desulfurization method was used in this study, and the produced compounds were examined using model oil that contained 1000 ppm of the sulfur compound. Dibenzothiophene (DBT) was dissolved in an n-hexane solvent, and ultraviolet (UV) was used as a quantitative analysis method to calculate the percentages of sulfur removal. Future research may be able to enhance the sulfur removal rate provided by the prepared compounds, which were showed an acceptable result.
Keywords: Ionic liquids, organic salts, Lewis acid, desulfurization DOI: 10.32737/2221-8688-2024-4-509-515
Introduction
Environmental concern has increased worldwide, and strict standards and regulations have been enacted to reduce the negative impacts of automobile exhaust on human health and the environment [1].
With increasing environmental awareness, limitations on restricting fuel sulfur content have been issued worldwide. The treatments must go ahead to reach the rigid regulation of the sulfur level in liquid fuels. To overcome the defects of monolayer ionic liquids (ILS) mentioned above, the devised SiO2-immobilized bilayer ILS (SiO2- Bill) [2]. With the development of industry, the global atmospheric environment gradually deteriorated. The sulfur component of fuel oil turns to sulfur oxides that will seriously pollute the atmosphere.
The essential desulphurization method is hydrodesulfurization (HDS) [3]. Social
development demands large consumption of fossil fuels in industries as well as for other applications in different fields like transportation, power stations, power engines, aircraft, agricultural fields, etc. It is established that the presence of sulfur compounds in fossil fuels after the combustion process produces gaseous Sox in the environment, which is the cause of air pollution via acid rain and produces various other hazardous products that create several health issues [4].
Modern urbanization and industrial development have greatly stimulated global fossil energy consumption. Various methods have been tried for desulfurization, including hydro, bio-absorptive, extractive, and oxidative desulfurization (ODS). As OSCs' most popular removal method, hydro-desulfurization (HDS) is applied intensively in fossil fuel refining plants worldwide. The HDS technology has
www.chemprob.org
CHEMICAL PROBLEMS 2024 no. 4 (22)
been considered an efficient method for nearly a process, sulfur is removed as H2S gas; therefore, century in removing various sulfurous hydrodesulfurization comprises facilities for compounds from several fuel resources. In this capturing and removing H2S [5, 6].
Experimental part
Methodology. Each and every chemical that is used comes from an authentic, ultra-pure source. The FT-IR spectra were obtained using the JASCO Canvas FT/IR 4200 infrared spectrophotometer. 1HNMR spectra were acquired on a Bruker 400MHz spectrometer with tetramethylsilane (TMS) as an internal reference and DMSO-d6 as a solvent. The microanalysis was performed at Thermo Electron Corporation's Flash EA 1112 Series using a Trio-1000 mass spectrometer.
By reacting different ratios of organic salt with ferric chloride in ratios of (1:1) and (1:2), respectively, ionic salts of iron were created. The prepared compounds' physical characteristics and the outcomes of their elemental microanalysis are displayed in the Table 1.
Preparation of organic salts and complex salts of Fe(III).
1-allyl-3-methylpiperidinium bromide [mAMPi]I (1)
1 -allyl-4-methylpiperidinium bromide [pAMPi]I (2)
The organic salts (ionic liquids) have been prepared according to the literature [7-11], considering that the reaction is exothermic and its yield increases with cooling. The Scheme below displays the reaction equation:
In order to prepare the model oil sample, the sulfur compound Dibenzothiophene (DBT) must first be dissolved in hexane solvent to achieve the initial concentration of 1000 ppm. Next, the optimal conditions for the sulfur removal process must be identified.
Table 1. Physical properties and results of elemental microanalysis of the prepared compounds
Compounds Formula Melting point (°C) CH N (theory)/ Calculate
C% H% N% Fe%
(1) [mAMPi]Br C9H18BrN 157-159 (49.10) 48.24 (8.24) 8.23 (6.63) 6.33 —
(2) [pAMPi]Br C9H18BrN 144-146 (49.10) 46.39 (8.24) 7.86 (6.63) 7.76 —
(3) [rnAMPi]FeCl3Br C9H18BrCl3FeN 150-152 (28.27) (4.75) (3.66) (14.61)
R,
R,
R,
N H
CH2CHCH2Br 2h stirring, cooling
+
Br
n FeC13
-)
6 h, reflux
/\
H CH2CHCH2
N
/\
Br /nFeCl3
H CH2CHCH2
1: Rj = H, R2 = CH3 , [iwAMPi]Br 2: Rj = CH3, R2 = H, [pAMPi]Br 3: Rj = H, R2 = CH3 , n = 1 ,[iwAMPi]FeCl3Br 4: Rj = CH3, R2 = H, n = 2 , [fwAMPi]Fe2Cl6Br 5: Rj = H, R2 = CH3 , n = 1, [pAMPi]FeCl3Br 6: Rj = CH3, R2 = H, n = 2 , (pAMPi]Fe2Cl6Br
29.88 4.65 3.48 14.06
(4) [mAMPi]Fe2Cl6Br C9Hi8BrCl6Fe2N 140-143 (19.85) 18.28 (3.33) 3.92 (2.57) 2.63 (20.51) 20.18
(5) [pAMPi]FeClsBr CcjHisBrChFeN 148-150 (28.27) 27.88 (4.75) 4.35 (3.66) 3.68 (14.61) 15.00
(6) [pAMPi]Fe2Cl6Br C9HisBrCl6Fe2N 141-143 (19.85) 18.76 (3.33) 3.48 (2.57) 2.66 (20.51) 21.24
Results and discussion
The ability of Piperidinium ionic liquids to extract sulfur from petroleum derivatives is one of their main characteristics. These liquids contain Lewis acids, iron in particular. Every produced chemical was thoroughly characterized and found to be in accordance with the data presented in the references [8, 12, 13].
The 1H-NMR characterization data for organic salts (1,2) respectively are (DMSO-d6, 400 MHz), 50.88 (3H, C-CH3, s), 51.066 (1H, CH-C, bs), 51.06, 51.73, 53.29, 53.70 (cyclic, 2H, CH2, bs), 53.70 (2H, CH2 for terminal group, bs), 54.010 (2H, CH2, d, for allylic group), 55.74 (1H, = CH, bs), 59.59 (1H, NH, s). The GC-mass data for organic salt (1), [mAMPijBr, C9H18BrN, (m/z, intensity%): (l40, 100%), (138.2, 1.04%), (126.1, 0.11%),
The Extraction desulfurization. The
optimal conditions for the extractive desulfurization process were determined in advance by determining the concentration of the salt prepared and used in the test, the time of the extraction process, and the temperature. The results showed optimal conditions (concentration in grams, extraction time 60
(124.1, 0.39%), (112,1.08%), (98.1, 0.5%), (84, 0.32%), (82, 0.19%), (70, 0.06%), (68, 0.05%). (DMSO-d6, 400 MHz), 50.90 (3H, C-CH3, s), 51.066 (1H, CH-C, bs), 51.06, 51.73, 53.29, 53.70 (cyclic, 2H, CH2, bs), 53.21 (2H, CH2, d, for allylic group), 55.38 (1H, =CH, bs), 55.18 (2H, for terminal CH2 group, bs) 58.53 (1H, NH, s). The GC-mass data for organic salt (2), [pAMPijBr, C9H18BrN, (m/z, intensity%): (140.2, 4.41%), (138.2, 0.15%), (100.1, 100%), (98.1, 2.26%), (96.1, 0.01%), (94.1, 0.03%), (82, 0.04%), (82, 0.02%), (70, 0.06%), (58, 0.04%).
In addition to the properties listed in the previous Table 1, the compounds have been well characterized [7, 14, 15] by spectroscopic and physical measurements, as shown in Table 2.
minutes, 30 degrees Celsius). Using ultraviolet technology with a Shimadzu UV 1800 device, and using an initial concentration of the petroleum model of sulfur using Dibenzothiophene (DBT) dissolved in hexane solvent at a concentration of 1000 ppm, a standard curve was plotted (Figures 1 and 2).
Table 2. Some characteristics data for the prepared compounds
Comp. IR data (cm-1) ^eff Conductivity**
No. C-N N+-R* N-H M-X (BM) ohm- .cm .mol"
1 1586 2368 3422 — — 67
2 1592 2365 3412 — — 72
3 1214 2356 3398 239,331 5.61 80
4 1110 2368 3434 242,327 5.86 88
5 1118 2368 3412 254,316 5.56 82
6 1245 2368 3422 246,331 5.82 86
* R = CH2CHCH2
**
(DMF) as solvent at 25°C, (10-3 M)
--■J—.—1—r ........... j
1 IB»(pu SWOP" -
7MP»»
n * *
* 1 i t -
1000 ppm _ J
750 ppm i * 1
<00ppm •*» M j
1
2>0ppm J
J • ■ ■ ■ . .J
270 00 20000 m, 290.00 VOOOO
Fig. 1. Calibration curve of extraction desulfurization process by using different concentrations
(standard solutions)
A (absorbtion)
Fig. 2. The calibration curve of the extraction desulfurization process
The Table 3 illustrates how the extraction comparing the results of testing the prepared process' efficiency was determined by compounds with existing literature [8, 16-19].
Table 3. The extraction data of tested prepared salts by using optimal conditions (285 nm, 60 min,
0.1 gm of extractant at 30°C)
Comp. No. A (absorption) S content ppm S removal %
1 1.129 826 17.4
2 1.145 838 16.2
3 1.060 776 22.4
4 1.058 774 22.6
5 0.901 659 34.1
6 0.898 657 34.3
Conclusion
Comparing the prepared salts to other findings that they have an acceptable efficiency studies [10, 16-18], it is evident from the earlier level in the sulfur removal process. It is also
evident that there is no variation in the extraction efficiency when comparing organic salts to one another. It is observed that there are no variations in efficiency due to the methyl group's replacement on the ring. It is found that
the extraction efficiency rises with the addition of iron salt [10, 11, 20] and climbs as the quantity of iron salt increases. This is in agreement with the literature information.
Acknowledgement
The researchers acknowledge the University of Liverpool's Department of Chemistry for providing scientific supplies. The University of Mosul, particularly the College of Basic Education research labs, is also acknowledged and thanked by the researchers for supporting scientific research.
References
1. Moheb-Aleaba Z., Khosravi-Nikou M.R. Extractive desulfurization of liquid hydrocarbon fuel: Task-specific ionic liquid development and experimental study // Chemical Engineering Research and Design, 2023, V. 189, pp. 234-249. https://doi.org/10.1016/j. cherd.2022.11.021
2. Wang Y.-Z., Li Z.-Z., Liu Z.-W., Shi X.-Y. Heterogenous carboxyl-functionalized bilayer ionic liquids/polyoxometalate catalysts for extractant-free oxidative desulfurization // Journal of Molecular Liquids, 2023, V. 373, p. 121245. https://doi.org/10.1016/j.molliq.2023.121245
3. Li J., Liang Y., Tang X. Imidazole-methane sulfonic ionic liquids used for catalytic alkylation desulfurization and enhancement of microchannel technology // Chemical Engineering Journal, 2022, V. 446, p. 137472.
https://doi.org/10.1016/j.cej.2022.137472
4. Kaur P., Chopra H.K. SBA-15 supported benzoxazolium-based ionic liquids: Synthesis, characterization, and application in the adsorptive desulfurization // Fuel Processing Technology, 2022, V. 238, p. 107480.
https://doi.org/10.1016/j.fuproc.2022.107480
5. Cao Z., Wu X., Wei X. Ionic liquid screening for desulfurization of coke oven gas based on COSMO-SAC model and process simulation // Chemical Engineering Research and Design, 2021, V. 176, pp. 146-161. https://doi.org/10.1016/j.cherd.2021.09.032
6. Ahmed I., Kim C.-U., Jhung S. H. Metal-free oxidative desulfurization with molecular oxygen by using N-enriched porous carbons derived from ionic liquid-loaded covalent-
organic polymer // Chemical Engineering Journal, 2022, V. 450, p. 138416. https://doi.org/10.1016/i.cei.2022.138416
7. Saied S.M., Mohammed S.J., Khaleel B.T., Saleh M.Y. Comparative studies between conventional techniques and green chemistry to synthesis of novel piperidinium salts ionic liquids (PBSILs) // Journal of Chemical Health Risks, 2021, V. 11, pp. 451-456. https://doi.org/10.22034/ichr.2021.686640
8. Sabah A.A. Extractive desulfurization using piperidinium based ionic liquids with Lewis acids // Journal of the Turkish Chemical Society Section A: Chemistry, 2021, V. 8, pp. 1057-1088.
https://doi.org/10.18596/iotcsa.963930
9. Sabah A.A. Synthesis and Characterization of Some Transition Metals Complex Salts of Pyridinium Iodide Ionic Liquids: Application on Extractive Desulfurization // Journal of the Turkish Chemical Society Section A: Chemistry, 2021, V. 8, pp. 763-774. https://doi .org/10.18596/iotcsa.942318
10. Ko N.H., Lee J.S., Huh E.S., Lee H., Jung K.D., Kim H.S., et al. Extractive desulfurization using Fe-containing ionic liquids // Energy & Fuels, 2008, V. 22, pp. 1687-1690.
https://doi.org/10.1021/ef7007369
11. Wang H., Yan R., Li Z., Zhang X., Zhang S. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly (ethylene terephthalate) // Catalysis Communications, 2010, V. 11, pp. 763-767. https://doi.org/10.10167i.catcom.2010.02.01 1
12. Rodríguez-Cabo B., Rodríguez H., Rodil E., Arce A., Soto A. Extractive and
oxidative-extractive desulfurization of fuels with ionic liquids // Fuel, 2014, V. 117, pp. 882-889.
https://doi.org/10.1016/jiuel.2013.10.012
13. Paduszynski K., Krolikowski M., Zawadzki M., Orzel P. Computer-aided molecular design of new task-specific ionic liquids for extractive desulfurization of gasoline // ACS Sustainable Chemistry & Engineering, 2017, V. 5, pp. 9032-9042. https://doi.org/10.1021/acssuschemeng.7b0 1932
14. Belhocine T., Forsyth S.A., Gunaratne H.N., Nieuwenhuyzen M., Nockemann P., Puga A.V., et al. 3-Methylpiperidinium ionic liquids // Physical Chemistry Chemical Physics, 2015, V. 17, pp. 1039810416.
https://doi.org/10.1039/C4CP05936K
15. Montanino M., Carewska M., Alessandrini F., Passerini S., Appetecchi G.B. The role of the cation aliphatic side chain length in piperidinium bis (trifluoromethansulfonyl) imide ionic liquids // Electrochimica Acta, 2011, V. 57, pp. 153-159. https://doi.org/10.1016/j.electacta.2011.03. 089
16. Jiang W., Zhu W., Chang Y., Chao Y., Yin S., Liu H. et al. // Ionic liquid extraction and catalytic oxidative desulfurization of fuels using dialkylpiperidinium tetrachloroferrates catalysts // Chemical
Engineering Journal, 2014, V. 250, pp. 4854.
https://doi.org/10.1016/i.cei.2014.03.074
17. Li J., Lei X.-J., Tang X.-D., Zhang X.-P., Wang Z.-Y., Jiao S. Acid dicationic ionic liquids as extractants for extractive desulfurization // Energy & Fuels, 2019, V. 33, pp. 4079-4088. https://doi.org/10.1021/acs.energyfuels.9b0 0307
18. Ahmed O.U., Mjalli F.S., Al-Wahaibi T., Al-Wahaibi Y., AlNashef I.M. Stability of superoxide ion in phosphonium-based ionic liquids // Industrial & Engineering Chemistry Research, 2015, V. 54, pp. 20742080. https://doi.org/10.1021/ie504893k
19. Zalov A., isgenderova K., Askerova Z. Spectrophotometric research into interaction nickel (II) with 1-(2-pyridylazo)-2-hydroxy-4-mercaptofenol and aminophenols // Chemical Problems, 2021, No. 3, pp. 150-159. https://doi.org/10.32737/2221-8688-2021-3-150-159
20. Martinez-Magadan J.-M., Oviedo-Roa R., Garcia P., Martinez-Palou R. DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline // Fuel processing technology, 2012, V. 97, pp. 24-29. https://doi.org/10.1016/i.fuproc.2012.01.00 7
LYUiS TUR§USU KiMi FeCls iLO PiPERiDiNiUM OSASLI iON DUZUNDAN iSTiFADO ETMBKL9 EKSTRAKSiYALI DESULFURiZASiYANIN TOTBiQi
1 2 2 Sariyya V. Zaydan, 9nvar M. Amin, * Assim A. Sabah
1Kimya §obssi, Elmlsr Kolleci, Mosul Universiteti, Mosul, iraq 2Elm Bolmssi, dsas Tshsil Kolleci, Mosul Universiteti, Mosul, iraq e-mail: anwermameen@,uomosul.edu.iq
Xulasa: Tadqiqatda damir (III) xlorid va piperidiniumun azotlu asaslarindan alinmi§ uzvi duzlari (1) [mAMPi]Br, (2) [pAMPi]Br ila reaksiyasi naticasinda qeyri-uzvi duzlarin sintezi aparilmi§dir. Alinmi§ birla§malar mass-spektrometriya, infraqirmizi Furye spektroskopiya, mikroelement analizi va 1H-NMR nuva maqnit rezonans spektroskopiyasi usullari ila xarakteriza edilmi§dir. Bu tadqiqatda ekstraksiyali kukurdsuzla§dirma usulundan istifada edilarak, sintez edilmi§ birla§malar tarkibinda 1000 ppm kukurd birla§malari olan neftla tadqiq edilmi§dir. Dibenzotiofen (DBT) n-heksan halledicida hall edilmi§ va kukurdun xaric olma faizini hesablamaq u9un kamiyyat tahlili
üsulu kimi ultrabanóv§ayi (UV) üsuldan istifada edilmi§dir. Galacak tadqiqatlar yüksak natica góstaran birla§mal ardan istifada etmakla kükürdün 9ixarilmasi süratini artira bilar. A?ar soztari: ion mayelari, üzvi duzlar, Lyuis tur§usu, desulfurizasiya
ПРИМЕНЕНИЕ ЭКСТРАКЦИОННОЙ ДЕСУЛЬФУРИЗАЦИИ С ИСПОЛЬЗОВАНИЕМ ИОННОЙ СОЛИ НА ОСНОВЕ ПИПЕРИДИНИЯ С FeCl3 В
КАЧЕСТВЕ КИСЛОТЫ ЛЬЮИСА
12 2 Сария В. Зайдан, Анвер М. Амин, * Ассим А. Сабах
1 Кафедра химии, Колледж наук, Университет Мосула, Мосул, Ирак 2Кафедра наук, Колледж базового образования, Университет Мосула, Мосул, Ирак
e-mail: [email protected]
Резюме: Исследование включает синтез неорганических солей путем взаимодействия хлорида железа c органическими солями (1) [mAMPi]Br, (2) [pAMPi]Br, полученными из азотистого основания пиперидиния. Для характеристики полученных соединений использовались спектроскопические и физические методы, включая масс-спектрометрию, инфракрасную Фурье-спектроскопию, микроэлементный анализ и спектроскопию ядерного магнитного резонанса 1Н-ЯМР. В этом исследовании использовался метод экстракционной десульфурации, а полученные соединения были исследованы с использованием модельной нефти, содержащей 1000 ppm сернистого соединения. Дибензотиофен (DBT) растворяли в растворителе н-гексане, а ультрафиолет (УФ) использовали в качестве количественного метода анализа для расчета процентов удаления серы. Будущие исследования могут повысить скорость удаления серы, обеспечиваемую приготовленными соединениями, которые показали приемлемый результат.
Ключевые слова: Ионные жидкости, органические соли, кислота Льюиса, десульфуризация.