EXPERIMENTAL TECHNIQUE AND DEVICES
DOI: 10.18721/JPM.12305 УДК 628.9, 612.822.3
hardware-software complex for characterisation of a person's functional status on exposure to light with the varied spectral color parameters
A.V. Aladov', D.N. Berlov2, A.L. Zakgeim', A.E. Chernyakov', A.E. Fotiadi3, V.P. Valyukhov3
1 Submicron Heterostructures for Microelectronics Research and Engineering Center of RAS,
St. Petersburg, Russian Federation;
2 The Herzen State Pedagogical University of Russia, St. Petersburg, Russian Federation;
3Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
The article deals with the main circuitry and software aspects of the creation a LED dynamically controlled system of high-quality lighting with the broad range of color temperatures Tc = 1700 — 10,000 K as a part of experimental installation of the hardware-software complex for impact on a person's functional status. The findings of investigation on impacts of lighting with a different color temperature on a human body are given. These studies were based on changes in indicators of electrical activity of the brain, heart work, arterial blood pressure and other parameters. Processing of measurement data revealed efficiency and a nature of influence of light with different color temperatures on psychophysiological and functional status.
Keywords: LED, RGB-color mixing, dynamic light control, light exposure, functional status
Citation: Aladov A.V., Berlov D.N., Zakgeim A.L., Chernyakov A.E., Fotiadi A.E., Valyukhov V.P., Hardware-software complex for characterization of a person's functional status on exposure to light with the varied spectral color parameters, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 12 (3) (2019) 58-70. DOI: 10.18721/ JPM.12305
аппаратно-программный комплекс для определения функционального состояния человека при воздействии света с варьируемыми спектрально-цветовыми характеристиками
А.В. Аладов1, Д.Н. Берлов2, А.Л. Закгейм1, А.Е. Черняков1, А.Э. Фотиади3, В.П. Валюхов3 1Научно-технологический центр микроэлектроники и субмикронных гетероструктур РАН, Санкт-Петербург, Российская Федерация; 2 Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург, Российская Федерация; 3Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Российская Федерация
В статье рассматриваются основные схемотехнические и программные аспекты создания светодиодной, динамически управляемой системы высококачественного освещения в широком диапазоне цветовых температур T с = 1700 — 10 000 K в составе экспериментальной установки аппаратно-программного комплекса для воздействия
на функциональное состояние человека. Приведены результаты исследований воздействия освещения с различной цветовой температурой на организм человека на основе изменений показателей электрической активности мозга, сердечной активности, артериального давления и других параметров. Обработка результатов измерений выявила степень влияния и характер воздействия света с разными цветовыми температурами на психофизиологическое и функциональное состояние человека.
Ключевые слова: светодиод, RGB-смешение, динамическое управление светом, световое воздействие, функциональное состояние
Ссылка при цитировании: Аладов А.В., Берлов Д.Н., Закгейм А.Л., Черняков А.Е., Фотиади А.Э., Валюхов В.П. Аппаратно-программный комплекс для определения функционального состояния человека при воздействии света с варьируемыми спектрально-цветовыми характеристиками // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2019. Т. 3 № .12. С. 58-70. DOI: 10.18721/JPM.12305
Introduction
Urban dwellers are used to spending long periods of time under artificial light. Since light is an environmental factor always accompanying people, it is crucially important to adapt and optimize light-emitting devices to preserve human health and wellbeing in view of psychophysiological aspects, fatigue and individual biorhythms. Devices based on color mixing in LED sources seem to be the most attractive for these purposes. Multichip RGB modules called "smart light" [1] provide a wide range of possibilities. Firstly, their parameters can be adjusted to specific environmental changes, such as time of year, daily dynamics, etc.; secondly, the devices can be adopted to the specific working conditions, individual psychophysiological parameters and functional state.
Advances in technologies allow tailoring the lighting sources to physiologically optimal characteristics and to specific requirements in industrial, in residential and public buildings. Lighting can greatly affect the mental and physiological state of a person and is actually capable of improving it (for example, eliminating disorders or alleviating extreme psychological stress). Light exposure can be not only static but also dynamic if the parameters of illumination and color temperature are varied depending on the given conditions (for example, time of day, state of a group of people or an individual). Lighting with controlled parameters has advantages over light sources that are traditional in some professions (for example, surgery or architecture).
Controlled LED lighting is as an important tool for new biomedical technologies for treating and modulating the psychophysiological state of a person [2]. Certain parameters of light exposure are
known to significantly rearrange the electrical activity of the brain [3].
Changes in the psychophysiological status of a person in response to light exposure can be assessed by different methods, including electroencephalography. It was found that EEG readings change in response to both photostimulation with colored monochromatic light [4] and light exposure with different color temperatures T [5] and depend on the spectral characteristics of the lighting used. At the same time, it was discovered that individual neurophysiological reactions to the same light exposure may vary [5].
The characteristics of the lighting mode that actually provides optimal physiological effect are a matter of debate. Studies often yield conflicting results. This is partly because there are diverse lighting modes with no common standards. In practice, the optimal lighting mode is achieved by choosing a light source that can quickly and accurately change the lighting parameters, relying on methods for diagnosing the psychophysiological state of a person that help decide which lighting mode is necessary in each particular case.
Available light sources are yet unable to reproduce color with the required quality and change the color temperature smoothly.
It is because instrumentation for these purposes is poorly developed that there have been practically no systemic and comprehensive studies on the effects of dynamically controlled ("smart") lighting, with the color temperatures T varying in the range of 1,700—10,000 K, on the human brain.
The goal of our study has consisted in creating a hardware and software system for assessing the psychophysiological state of a person, based on a controlled smart lighting source with an optical system generating a luminous field of uniform brightness and color.
Color components for the LED module
The first problem in developing multichip polychrome emitters is selecting the synthesized colors using the CIE 1931 XYZ color space, and the second one regarding white light is selecting the range of color temperatures and achievable color rendering indices. More detailed analysis involves assessing the discrete color reproduction (in other words, the number of synthesized colors) and maintaining stable color characteristics upon changes in brightness and environmental conditions. The latter problem is complicated because semiconductor LEDs are characterized by a strong (usually nonlinear) dependence of power and emission spectra on the supply current and, accordingly, on the temperature of the p-n junction. An additional issue in maintaining stable color characteristics is that the emission spectra and efficiencies of emitters of different colors have different temperature dependences.
Preserving stable color coordinates in a wide dynamic range is one of the key requirements for a controlled light source. It was found in [6] by comparing three types of full-color LEDs with four chips, namely, RGBA, RGBWc and RGBWn, where R, G, B, A are red, green, blue and yellow chips, and Wc and Wn are phosphor-coated chips as cold and neutral white light sources, respectively, with Tc ~ 6,500 and 4,000 K, that total color rendering index R for the RGBA system
changes only slightly as white light changes from cold (T ~ 6,500 K) to warm (Tc ~ 2,700 K) and averages 80.
R for the RGBW and RGBW systems is
a c n J
90 for white light in the region of cold and neutral shades of white light and drops to 58 in the region of warm shades.
Thus, the RGBA system provides a more uniform distribution of Ra in the entire range of white light temperatures, compared to RGBW.
OSRAM OSTAR Medical
LEACWUWVS2W LEDs that appeared recently [7] contain four chips: amber (617 nm), green (505 nm), warm white with color coordinates x = 0.460, y = 0.410 (CIE 1931 XYZ color space) and cold white with x = 0.305, y = 0.325 (same color space). White light with a set of correlated color temperatures (CTC) (2,700, 4,000, 5,000, 6,500, 10,000 K) and general and special color rendering indices R—R14 was synthesized in experimental studies of emission spectra of LED sources from this series, with varied spectral power fractions of different LEDs.
It was established that LEDs of this series can help achieve higher Ra (about 90), compared with the RGBA system, as well as higher special (R:—R14) color rendering indices for different color temperatures and obtain a smooth spectrum (Fig. 1). Thus, this LED system is the one that best meets the requirements for synthesizing white light.
Wavelength, nm Colour rendering Index
Fig. 1. Main characteristics of OSRAM OSTAR Medical LEACWUWVS2W LED system: spectra of synthesized white light for different Tc (a); general Ra and special (R1—R14) color rendering indices for different Tc (b). Color temperatures T, K: 2700 (1), 4000 (2), 5000 (3), 6500 (4), 10 000 (5)
Dynamically controlled semiconductor light source
The experimental setup is based on a modified version of a powerful controlled RGB luminaire with OSRAM OSTAR Medical LEACWUWVS2W LEDs. A general diagram of the luminaire is shown in Fig. 2.
A dynamically controlled semiconductor light source incorporates a power supply (PS) and a cooling system (CS); an emitting matrix (LED-M) consisting of four-color LEDs 1—4; an optical system; peripheral electronics including a microcontroller (MC), drivers of pump currents for LED sources (Ds), a radio channel for data exchange; a controlling computer (CC). Feedback loops for controlling the color temperature and the corresponding software for managing the power drivers are introduced into the system.
To assemble the smart light source as part of the hardware and software system, the emitting module was made as a separate unit, similar in appearance to a computer monitor.
The LED's housing is made of plastic molding, the main bearing component is an aluminum radiator board with a matrix of powerful multi-color LEDs mounted on it, control driver boards and forced cooling fans.
Optical system
The hardware and software system for assessing the psychophysiological state of a person needed a powerful controllable semiconductor light source with a large radiation area. The optical system, made by an
original design, generates a luminous field that is uniform in brightness and color of the light source [9].
Calculations and optimization of the optical scheme were carried out in accordance with the theory of architecture of optimal optical systems. A similar approach was also used with the ZEMAX 13Release 2 SP1 Premium program (64-bit, Radiant ZEMAX LLC, USA).
The reflector consists of two rectangular boxes, each with its own diffusing screen, one of the sides of which has an inhomogeneity providing a given scattering angle (Fig. 3,a). The diffuser is separated into primary and secondary parts, which yields the best ratio between the transmission of the system and uniform illumination of the screen: the two diffusers installed one after another provide a high degree of uniformity in color and radiation angle. One of the scatterers maintains uniform color parameters, and the next scattering screen largely provides a uniform radiation angle.
The overall picture of color and illumination depends on the positions of the color components of polychrome LEDs in the luminaire. Even if a diffuser is used, the overall picture obtained with the same spatial arrangement of multiple LEDs is fairly nonuniform in color and field of illumination, which distorts the color scheme. To eliminate this drawback and to minimize the aberrations generated by the diffuser, we carried out corrected calculations ensuring more uniform light colors. We found the optimal arrangement of LEDs with alternating orientations on the
Fig. 2. Functional diagram of dynamically controlled semiconductor light source (the radio channel is controlled at 2.4 GHz and 868 MHz):
emitting module EM, power supply PS, microcontroller MC, drivers Ds, emitting module EM, LED array LED-M, cooling system CS, photosensor for light control PhS LC, temperature sensor TS, controlling computer CC; LEDs at 1 = 617 nm (1), 505 nm (2), warm white (3) and cold white (4)
Fig. 3. Optimized optical system of LED module (schematic image): system with two diffusers and a reflector (a), LEDs alternating on board to generate uniform color
at module output (calculation result) (b)
board, which is necessary to compensate for the non-uniform angular spectrum (Fig. 3, b).
Because the LED chips are arranged this way, the radiation output becomes almost uni,-form in color, and the energy heterogeneity is no more than 20%.
Calculations and experiments (Fig. 4) indicate that color non-uniformity is no more than 7% and the energy heterogeneity is no more than 20% for the given optical system.
Circuit design for a radio channel in a dynamically controlled semiconductor light source
The dynamically controlled semiconductor light source designed for a hardware and software system for assessing and adjusting a person's functional state is very versatile. This means that the device can be used to illuminate
diverse educational and industrial premises (for example, operating rooms, classrooms, gyms, stadiums, supermarkets, etc.), which are typically large in all three dimensions: length, width, height. In this case, it should be taken into account that the ground reflects incident radio waves in the direction of the illuminated object, producing associated interference effects (Ground reflection (2-ray) model). Model [10], including reflections from the ground during propagation of radio waves in free space, is commonly used to numerically calculate the range of a radio channel. This model was updated in [11] with the specifics of controlling LED sources.
We used LabView software to develop and implement a program for modeling a personal radio link capable of controlling light sources, taking into account their specific practical
Fig. 4. Calculated (a) and experimental (b) distributions of light emission characteristics: color (a, left) and emittance (a, right) at module output; luminous intensity and color temperature depending on angle (b)
applications and technical characteristics of the equipment to be installed.
Frequency range and technologies of the control system are critical for safety of operations (in surgery), environmental and psychophysical environment in the operating room, energy efficiency and stable optical and electrical characteristics of the luminaire. Developing a dynamically controlled semiconductor light source, we have analyzed in detail the main technologies used for constructing short-range devices (SRDs), such as wireless personal radio networks: ISM (Industrial, Scientific, Medical) with frequencies of 868 and 2400 MHz, Bluetooth (IEEE 802.15.1), Wi-Fi (IEEE 802.11), ZigBee (IEEE 802.15.7) [12-16].
A wireless personal radio link includes, besides hardware components, the software controlling the radio protocol. Standard stacks (Bluetooth, Wi-Fi, ZigBee) require larger microcontroller flash memory for different protocol stacks, from tens of kilobytes for ZigBee to one megabyte for Wi-Fi (32-70 KB ZigBee 2.4 GHz, 250 KB Bluetooth 2.4 GHz, 1 MB 2.4 GHz WLAN). Aside from larger memory, standard protocols involve more powerful microcontrollers. Since standard protocols are redundant and complex, developers of wireless personal radio networks in the sub-gigahertz band of 868 MHz use the so-called proprietary protocols (unpublished and not available to other users), which may be less expensive. We chose this option for data exchange and interaction between the light source's systems. It does not matter in this case whether standard technologies are compatible with equipment from other manufacturers [17].
A surgical lamp take a long time to connect to the Bluetooth network (about 3 s), so using this technology in medicine is problematic. Bluetooth devices are typically used in medicine to debug and configure medical equipment in the preoperative period. Simulation and experimental data indicate that the ISM 868 MHz radio link has significant advantages in energy efficiency (the link margin), range and environmental factors compared to the 2400 MHz radio link using ZigBee technology.
The link margin of a radio link is estimated (in dBm) by the expression
LM = TX power - RX sensitivity + Ant gain - P r ,
where TX power is the transmitter power, RX sensitivity is the receiver sensitivity, Ant gain is the total gain of the transmitting and receiving antennas, Ptr is the total energy received.
Stable operation of a radio link requires an
LM value of at least 10-20 dBm. Allocating the frequency band of 863-870 MHz (the frequency is 865.564 MHz (in the EU) for medical devices with an effective radiated power not exceeding -10 dBm, and a total gain of the receiving and transmitting antennas not exceeding -10 dBm makes it possible to obtain a +22 dBm budget of an LM transceiver, even with the radiated power of -20 dBm. Semtech (USA) developed and fabricated the SX123X family of transceivers [18]. The transceiver a sensitivity of -124 dBm at 1.2 kbps, its adjustable power lies in the range from -20 to +20 dBm. In practice, these transceivers are mainly used in remote controls. The link budget of the SX128 transceiver is (in dBm):
LM = -20 + 124 - 10 - 71.9 = +22.1,
ensuring successful transmission of packets via the radio link at a distance found for the idealized Friis model.
In this regard, the 868.7 MHz ISM band is better (from an environmental standpoint) than the 2.4 GHz ISM band where the standard power of an electronic transmitter typically lies in the range from 0 to 3 dBm. This was used for developing a network version of the LED source, since maintenance personnel and patients should have minimal exposure to RF signal.
Programmable control of hardware and software system
The light parameters of the source are controlled from a remote computer using the software developed.
At the same time, the module for controlling the smart light source operates in the 2.4 MHz frequency range and has the following characteristics: autonomous operation; user can change and control operation modes through a personal computer (PC);
luminaire can be controlled from mobile devices using Android OS.
Communication between the luminaires and the PC is established via Bluetooth. There are interfaces for Windows and Android.
The module can generate a library of spectra that can be adjusted with individual settings. However, the main operation mode is automatic, according to the given lighting scheme. Lighting algorithms are set in the
programming environment depending on the specific tasks of the light exposure. The time and light parameters can also be adjusted in these programs.
Effect of light exposure
on psychophysiological state of a person
The hardware and software system for assessing the psychophysiological state of a person includes a powerful controlled smart light source with a large radiation area, taking into account the effect of direct illumination on the test subject and the Telepath-104D electroencephalograph (St. Petersburg). Monopolar EEG was recorded using indifferent electrodes placed on the subject's earlobes. The Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, T3, T4, T5, T6, O1, O2 montages were used for the recordings (the 10-20 system). The sampling frequency of the signals was 250 Hz, the high frequency pass filter 35 Hz, and the time constant 0.3 s.
The experimental goal was to study the effects of dynamically controlled light from a semiconductor source with CCT, varying in the range from 1700 to 10,000 K, on the functional state of the human brain. The luminous flux of the light source was 1,0004,000 lm depending on the CCT.
The EEG readings were first taken in a darkened room for two minutes, generating the conditions for the initial control state. The subjects were then exposed to two-minute illumination (in a series with two-minute breaks) with five different color temperatures pre-programmed in the LED source.
The data obtained were processed using spectral analysis with the WinEEG (Version 1.3) software. The spectral powers of the standard EEG ranges (delta, theta, alpha, and beta rhythms) were found, the epoch length was 4 s. The averaged spectral parameters were calculated for all recorded EEG fragments under background conditions and under light exposure.
Analysis of the data revealed two characteristic types of changes in the EEG, in the dynamics of alpha and theta rhythms with the subjects exposed to the given illuminations. Additional changes in the spectral characteristics of the delta rhythm were observed in some cases but the effect of the light exposure used on the power of the beta rhythm was found to be inconsiderable. Thus, it can be assumed that an increase or decrease in the spectral power of alpha and theta rhythms provides the most data for assessing the effect of light.
The variation in the spectral powers of alpha
and theta rhythms exceeded 25% of the initial level upon exposure to light with a CCT of 10,000 K. This lighting mode apparently has a pronounced effect on the functional state of the human brain; such light exposure can be considered physiologically active.
The variation in the spectral power of theta rhythms did not exceed 25% upon exposure to light with a CCT of 3800 K. However, the spectral powers of alpha rhythms in the right mid-temporal, posterior temporal and occipital regions of the brain decreased by more than 25%. This means that light exposure with a color temperature of 3800 K can also be considered physiologically active. Lateralization with a more conspicuous effect on the right hemisphere was observed in this case.
The spectral powers of alpha and theta rhythms increased by more than 25% in most of the recorded regions (with the exception of the P4 and T6 electrodes) upon exposure to light with a CCT of 1700 K. Thus, light exposure with a CCT of 1700 K is also physiologically active.
The variation in the spectral power of alpha and theta rhythms did not exceed 25% in any of the electrodes upon exposure to light with a CCT of 7000 K; this light exposure can be characterized as physiologically neutral.
Based on the data obtained, we can conclude that the spectral powers of theta and alpha rhythms reflect the resulting effect of light exposures with color temperatures in the range of 1,700-10,000 K. The threshold value of 25% relative to the initial level of spectral power can be used to distinguish between physiologically neutral and physiologically active light exposures. The spectral powers of alpha and theta rhythms decreasing by more than 25% of the background values may be due to increasing levels of activation of the cerebral cortex (the activating effect of light exposure), while the spectral power of the alpha rhythm increasing by more than 25% and the theta rhythm by 25% may be associated with the decreasing levels of activation of the cerebral cortex (the relaxing effect of light exposure).
The ratio of the alpha and beta rhythms can be regarded as an indicator of the balance of excitation and inhibition in the brain cortex [19-21]; the alpha rhythm is mainly associated with inhibitory processes. Therefore, increasing spectral power of the alpha rhythm can be treated as the relaxation effect due to increased inhibition in the central nervous system, and
decreasing spectral power of the alpha rhythm as an activating effect due to attenuated inhibitory processes [22-24].
The role of theta rhythm shifts may be more complex, since this rhythm participates in such phenomena as fatigue, emotional processing, attention, memory, error handling [25, 26]. Importantly, however, alpha and theta rhythm shifts seem to follow a single pattern in this case: variation in the power of the alpha rhythm is not accompanied by compensatory variation in slow rhythms. Similar combined shifts of alpha and theta rhythms may indicate a change in the level of wakefulness, activating or relaxing effects in the cerebral cortex [27, 28].
Conclusion
We have proposed a fundamentally new design for a hardware and software system aimed at assessing the psychophysiological state of a person, including a powerful controllable smart light source and an optical system generating a light field that is uniform in brightness and color. Using this system as a tool for generating to white light with a variable color temperature, we have found that white light with the color temperatures closest to daylight (3,800, 4,800 and 7,000 K) does not significantly affect the spectral characteristics of the main EEG rhythms. Such light exposure can be characterized as physiologically neutral, and LED sources with similar color temperatures can be recommended for continuous artificial lighting of residential and public buildings, if there are no specific requirements for lighting parameters. On the contrary, white light with color temperatures of 1,700 and 10,000 K is physiologically active, considerably affecting theta and alpha rhythms of the brain. This is particularly pronounced for light with a color temperature of 10,000 K.
To summarize, white light predominantly composed of mid-wavelength radiation is physiologically neutral, while warmer and colder shades composed of radiation from the edges of the visible spectrum are physiologically active.
Since such lighting affects the EEG parameters, it can be used to adjust the psychological and functional components of human physiology.
We have detected two main types of light exposure: activating and relaxing. The effect is individual and can differ for different people even in the same lighting mode. This means that lighting modes that can be used to adjust a person's functional state should be selected individually in view of personal reactions and the initial functional state. The type of reaction itself can apparently be detected by the EEG response to standardized LED lighting with a certain color temperature, and the magnitude of this response during the procedure can serve as a characteristic of the functional state of a person.
The techniques developed make it possible to select specific lighting modes to adjust the functional state of a person; this was proved in tests using the hardware and software system at the Center for Aerospace Medicine (Moscow) [29] and the State Research Institute of Military Medicine of the Ministry of Defense of the Russian Federation (Moscow) [30].
The system was used for biomedical collaborations with research institutions such as the Center for Aerospace Medicine (Moscow, Russian Federation), the First Pavlov State Medical University (St. Petersburg, Russian Federation), the Bekhterev Psychoneurological Research Institute (St. Petersburg, Russian Federation) [31-33].
Measurements oflight parameters were made at the Collective Use Center "Hardware components of radiophotonics and nanoelectronics: technology, diagnostics, metrology".
The studies were partially supported by the Subsidy Agreement with the Ministry of Education and Science of the Russian Federation (Agreement no. EB 075-02-2018-929, Internal agreement no. 14.604.21.0187, Project ID RFMEFI60417X0187).
references
1. Schubert, E.F., Kim J.K., Solid-state light sources getting smart, Science. 308 (572) (2005) 1274-1278.
2. Katsuura T., Jin X., Baba Y., et al.,
Effects of color temperature of illumination on physiological functions, J. Physiol. Anthropol. Appl. Human Sci. 2005. Vol. 24
(4) 321-325.
3. Zenkov L.R., Klinicheskaya elektroentsefalografiya (s elementami epileptologii) [Kinetic electroencephalography (with epileptological elements)], Medpress-Inform, Moscow, 2004.
4. Gumenyuk V., Batova N., Melnikova T., et
al., Sistemnyy analiz korrigiruyushchego deystviya tsvetomuzyki [System analysis of corrective function of color music], Annals of the Russian Academy of Medical Sciences. (2) (1998) 18-25.
5. Korsakova E.A., Slezin V.B., Shults E.V., et al., The effects of white light with variable color temperature on human encephalogram, Vestnik Novykh Meditsinskikh Tekhnologiy. 19(4) (2012) 30-33.
6. Aladov A.V., Biryuchiskiy S.B., Dubina M.V., et al., Tsvetodinamicheski upravlyayemyy operatsionnyy svetilnik s polnotsvetnym svetodiodom [Color-dynamically controlled operating lamp with a full-color LED], Svetotekhnika. (2) (2012) 13-18.
7. https://html.alldatasheet.com/html-pdf/1023757/ÜSRAM/ LEACWUWVS2W/178/1/ LEACWUWVS2W.html.
8. Aladov A.V., Vasilyeva E.D., Zakgeym A.L., et al., Ü sovremennykh moshchnykh svetodiodakh i ikh svetotekhnicheskom primenenii [Ün modern powerful LEDs and their lighting engineering application], Light and Engineering. (3) (2010) 8-16.
9. Aladov A.V., Biryuchinskiy S.B., Zakgeym A.L., Mizerov M.N., Üsvetitelnoye ustroystvo na osnove mnogokristalnykh polikhromnykh svetodiodov [A lighting unit based on multichip polychromic LEDs], Pat. No. 99589, Russian Federation, MPK F21S 2/00.; Submicron Heterostructures for Microelectronics Research and Engineering Center of the RAS is a declarant and patentee. No.2010123719/07, declar. 03.06.2010; publ. 20.11.2010, Bull. No. 32.
10. Kvaksrud T.I., Range measurements in an open field environment, Design Note DN018, Texas Instruments, SWRA 169A, 1-14. https:// www.ti.com/lit/an/swra169a/swra169a.pdf.
11. Aladov A.V., Valyukhov V.P., Kuptsov V.D., et al., Special features of radio control link for energy efficient LED light, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 10 (2) (2017) 16-27.
12. Aladov A.V., Valyukhov V.P., Kuptsov V.D., et al., Wireless networks of energy efficient dynamically controlled LED sources, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 10 (2) (2017) 28-36.
13. Aladov A.V., Valyukhov V.P., Zakgeym
A.L., et al., Type LED dynamically controlled light sources for novel lighting technology, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. (4 (206)) (2014) 3847.
14. Aladov A.V., Valyukhov V.P., Demin S.V.,
et al., The wireless network of controlled energy effective LED lighting sources, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. (1 (213)) (2015) 50-60.
15. Aladov A. V., Aladov V.N., Valyukhov V.P., et al., Svetoekologiya i novyye tekhnologii osveshcheniya [Light ergonomics and new lighting technologies], Arkhitektura i stroitelnyye nauki. (1, 2 (18, 19)) (2014). 2-5.
16. Aladov A.V., Biryuchinskiy S.B., Valyukhov V.P., et al., Dinamicheski upravlyayemaya sistema osveshcheniya svetodiodami s shirokim diapazonom tsvetovykh temperatur (2800 - 10 000 K) i vysokim kachestvom tsvetoperedachi (RA > 90) [A dynamically-controlled lighting system with (2800 - 10 000 K) LEDs providing a high-quality color transfer], Light and Engineering. (6) (2016) 19-25.
17. Pushkarev O., Ispolzovaniye diapazonov 433 i 868 MGts v sistemakh promyshlennoy telemetrii [The use of433 and 868 MHz ranges in the industrial telemetric systems], Electronic Components. (2) (2012) 42-48.
18. SX1238 - Fully integrated transceiver with +27 dBm Tx power. Datasheet, rev.2 2014 y. http:// www.semtech.com/wireless-rf/rf-transceivers/sx 1238 //.
19. Pavlova L.P., Dominanty deyatelnogo mozga cheloveka. Sistemnyy psikhofiziologicheskiy podkhod k analizu EEG [Dominants of an active human cerebrum. Systematic psychophysiological approach to an analysis of EEG], Inform-Navigator, St. Petersburg, 2017.
20. Abdou A.M., Higashiguchi S., Horie K., et al., Relaxation and immunity enhancement effects of y-aminobutyric acid (GABA) administration in humans, Biofactors. 26 (3) (2006) 201-208.
21. Klimesch W., Alpha-band oscillations, attention, and controlled access to stored information, Trends in Cognitive Sciences. 16 (12) (2012) 606-617.
22. Kiroy V.N., Ermakov P.N., Elektroentsefalogramma i funktsionalnyye sostoyaniya cheloveka [Electroencephalogram and a human functional status], Rostov Institute Publishing, Rostov-on-Don, 1998.
23. Bazanova O.M., Sovremennaya interpretatsiya alfa-aktivnosti elektroentsefalogrammy [Modern interpretation of alpha-activity from electroencephalogram], Uspekhi fiziologicheskikh nauk. 40 (3) (2009) 32-53.
24. Bazanova O.M., Vernon D., Interpreting EEG alpha activity, Neuroscience & Biobehavioral Reviews. 44 (1) (2014) 94-110.
25. Aftanas L.I., Golocheikine S.A., Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized
attention: high-resolution EEG investigation of meditation, Neuroscience Letters. 310 (1) (2001) 57-60.
26. van Driel J., Ridderinkhof K.R., Cohen M.X.,
Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics, Journal of Neuroscience. 32 (47) (2012) 16795-16806.
27. Cajochen C., Brunner D.P., Krauchi K., et al., Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness, Sleep. 18 (10) (1995) 890-894.
28. Lagopoulos J., Xu J., Rasmussen I., et al., Increased theta and alpha EEG activity during nondirective meditation, The Journal of Alternative and Complementary Medicine. 15 (11) (2009) 1187-1192.
29. Aladov A.V., Zakgeym A.L., Klishin G.Yu., et al.,
Razrabotka apparatno-programmnogo kompleksa dlya opredeleniya i korrektsii psikhofiziologicheskogo i funktsionalnogo sostoyaniya cheloveka-operatora metodom audiovizualnogo vozdeystviya s primeneniyem dinamicheski upravlyayemogo poluprovodnikovogo istochnika sveta [Hardwaresoftware design for characterization and correction of a person-operator's functional status using technique of audiovisual impact with dynamically-controlled semiconductor light source], Summarizing conference devoted to the progress in implementation of the measures for the year 2010 in the context of the preferred direction 'Living Systems' for Federal Targe Program "Research and Design in the Preferred Directions of Development of the Science and Technology Complex of Russia for 2007-2012", Collection of abstracts, November 25-27, 2010, Moscow, P. 141.
30. Aladov A.V., Korsakova Ye.A., Slezin V.B., et al., Dinamika alfa-ritma EEG cheloveka pri
Received 22.05.2019, accepted 08.07.2019.
vozdeystvii belogo sveta s razlichnoy tsvetovoy temperaturoy [Alpha-rythm dynamics of a human EEG on exposure by white light with various color temperature], Scientific Transactions of the 3D Congress for Physiologists of CIS, Ed. by A.I. Grigoryeva et al., Yalta, Ukraine, October 1-6, 2011, "Meditsina - Zdorovye", Moscow, Yalta, 2011, P. 105.
31. Slezin V.B., Korsakova E.A., Mizerov M.N., et al., Sposob okazaniya relaksiruyushchego vozdeystviya na funktsionalnoye sostoyaniye cheloveka svetovym izlucheniyem ot svetodiodnogo istochnika [Method of relaxation influence of LED light emission on a human functional status], Pat. No. 2517367 Russian Federation, MPK A61N 5/06, A61B 5/0476; The patent authors are declarants and patentees, No. 2012133348/14, declar. 27.07.2012; publ. 27.05.2014 Bull. No. 15.
32. Slezin V.B., Korsakova E.A., Mizerov M.N., et al., Sposob otsenki vozdeystviya na funktsionalnoye sostoyaniye golovnogo mozga cheloveka svetovogo izlucheniya [The light impact on the functional status of a human brain: an assessment method], Pat. No. 2515150, Russian Federation, MPK A61B 5/0476, The patent authors are declarants and patentees, No. 2012133343/14, declar. 27.07.2012; publ. 10.05.2014 Bull. No. 13.
33. Slezin V.B., Korsakova E.A., Mizerov M.N., et al., Sposob okazaniya relaksiruyushchego vozdeystviya na funktsionalnoye sostoyaniye cheloveka svetovym izlucheniyem ot svetodiodnogo istochnika [Method of relaxation influence of LED light emission on a human functional status], Pat. № 2514727, Russian Federation, MPK A61N 5/06, A61B 5/0476; The patent authors are declarants and patentees, No. 20121333435/14, declar. 27.07.2012; publ. 10.02.2014, Bull. No. 4.
the authors
ALADOV Andrey V.
Submicron Heterostructures for Microelectronics, Research & Engineering Center, RAS 26 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation aaladov@mail.ioffe.ru
BERLOV Dmitriy N.
Herzen State Pedagogical University of Russia
48 Moika Emb., St. Petersburg, 191186, Russian Federation
ZAKGEIM Alexader L.
Submicron Heterostructures for Microelectronics, Research & Engineering Center, RAS 26 Politekhnicheskaya St., St. Petersburg, 194021, Russian Federation zakgeim@mail.ioffe.ru
CHERNYAKOV Anton E.
Submicron Heterostructures for Microelectronics, Research & Engineering Center, RAS 26 Politekhnicheskaya St., St. Petersburg, 194021, Russian Federation chernyakov.anton@yandex.ru
FOTIADI Alexander E.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation
fotiadi@rphf.spbstu.ru
VALYUKHOV Vladimir P.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation
Valyukhov@yandex.ru
список литературы
1. Schubert, E.F., Kim J.K. Solid-state light sources getting smart // Science. 2005. Vol. 308. No. 5726. Pp. 1274-1278.
2. Katsuura T., Jin X., Baba Y., Shimomura Y., Iwanaga K. Effects of color temperature of illumination on physiological functions // J. Physiol. Anthropol. Appl. Human Sci. 2005. Vol. 24. No. 4. Pp. 321-325.
3. Зенков Л.Р. Клиническая электроэнцефалография (с элементами эпилептологии). М.: Медпресс-информ, .2004 368 с.
4. Гуменюк В., Батова Н., Мельникова Т., Глазачёв О., Голубева Н., Климина Н., Хюбнер
П. Системный анализ корригирующего действия цветомузыки // Вестник РАМН. 2 № .1998. С. 25-18.
5. Корсакова Е.А., Слезин В.Б., Шульц Е.В., Аладов А.В., Закгейм А.Л., Мизеров М.Н. Воздействие белого света с варьируемой цветовой температурой на электроэнцефалограмму человека // Вестник новых медицинских технологий. 2012. Т. .19 2012 .4 №. C. 30-33.
6. Аладов А.В., Бирючиский С.Б., Дубина М.В., Закгейм А.Л., Мизеров М.Н. Цветодинамически управляемый операционный светильник с полноцветным светодиодом // Светотехника. 2 № .2012. С. 18-13.
7. https://html.alldatasheet.com/html-pdf/1023757/0SRAM/ LEACWUWVS2W/178/1/ LEACWUWVS2W.html
8. Аладов А.В., Васильева Е.Д., Закгейм А.Л., Иткинсон Г.В., Лундин В.В., Мизеров М.Н., Устинов В.М., Цацульников А.Ф. О современных мощных светодиодах и их светотехническом применении //
Светотехника. 3 № .2010. С. 16-8.
9. Аладов А.В., Бирючинский С.Б., Закгейм АЛ., Мизеров М.Н. Осветительное устройство на основе многокристальных полихромных светодиодов. Пат. № 99589, Российская Федерация. МПК F21S 2/00.; заявитель и патентообладатель НТЦ микроэлектроники РАН. № 2010123719/07, заявл. 03.06.2010; опубл. 20.11.2010. Бюлл. № 32. 7 с., с илл.
10. Kvaksrud T.I. Range measurements in an open field environment // Design Note DN018. Texas Instruments, SWRA 169A, 1-14. Рeжим доступа: https://www.ti.com/lit/an/swra169a/ swra169a.pdf.
11. Aladov A.V., Valyukhov V.P., Kuptsov V.D., Demin S.V., Valyukhova A.V. Special features of radio control link for energy efficient LED light sources // St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 2017. Vol. 10. No. 2. Pp. 16-27.
12. Aladov A.V., Valyukhov V.P., Kuptsov V.D., Zakgeim A.L., Mizerov M.N., Demin S.V., Valyukhova A.V. Wireless networks of energy efficient dynamically controlled LED sources // St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 2017. Vol. 10. No. 2. Pp. 28-37.
13. Аладов А.В., Валюхов В.П., Закгейм А.Л., Черняков А.Е., Цацульников А.Ф.
Динамически управляемые светодиодные источники света для новых технологий освещения // Научно-технические ведомости СПбПУ. Физико-математические науки. 206) 4 № .2014). С. 47-38.
14. Аладов А.В., Валюхов В.П., Демин С.В., Закгейм А.Л., Черняков А.Е., Цацульников А.Ф. Беспроводные сети управляемых энергоэффективных светодиодных источников освещения // Научно-технические
ведомости СПбПУ. Физико-математические науки. 213) 1 № .2015). С. 60-50.
15. Аладов А.В., Аладов В.Н., Валюхов В.П., Закгейм А.Л., Цацульников А.Ф. Светоэкология и новые технологии освещения // Архитектура и строительные науки. 2014. Вып. 1, 2 (18, 19). С. 2-5.
16. Аладов А.В., Бирючинский С.Б., Валюхов В.П., Закгейм А.Л., Тальнишних Н.А., Черняков А.Е. Динамически управляемая система освещения светодиодами с широким диапазоном цветовых температур (10- 2800 000 K) и высоким качеством цветопередачи (Ra > 90) // Светотехника. 2016. № 6. С. 19-25.
17. Пушкарев О. Использование диапазонов 433 и 868 МГц в системах промышленной телеметрии // Электронные компоненты. 2012. № 2. С. 42-48.
18. SX1238 - Fully integrated transceiver with +27 dBm Tx power. Datasheet, rev.2 2014 y. Режим доступа: http://www.semtech.com/wire-less-rf/rf-transceivers/sx1238 //
19. Павлова Л.П. Доминанты деятельного мозга человека. Системный психофизиологический подход к анализу ЭЭГ. СПб.: Информ-навигатор, 2017. 432 с.
20. Abdou A.M., Higashiguchi S., Horie K., Kim M., Hatta H., Yokogoshi H. Relaxation and immunity enhancement effects of y-aminobutyric acid (GABA) administration in humans // Bio-factors. 2006. Vol. 26. No. 3. Pp. 201-208.
21. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information //Trends in Cognitive Sciences. 2012. Vol. 16. No. 12. Pp. 606-617.
22. Кирой В.Н., Ермаков П.Н. Электроэнцефалограмма и функциональные состояния человека. Ростов-на-Дону: Изд-во Ростовского ун-та, 264 .1998 с.
23. Базанова О.М. Современная интерпретация альфа-активности электроэнцефалограммы // Успехи физиологических наук. 2009. Т. 40. № 3. С. 32-53.
24. Bazanova O.M., Vernon D. Interpreting EEG alpha activity // Neuroscience & Biobehav-ioral Reviews. 2014. Vol. 44. No. 1. Pp. 94-110.
25. Aftanas L.I., Golocheikine S.A. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation // Neuroscience Letters. 2001. Vol. 310. No. 1. Pp. 57-60.
26. van Driel J., Ridderinkhof K.R., Cohen M.X. Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-pro-
cessing dynamics // Journal of Neuroscience. 2012. Vol. 32. No. 47. Pp. 16795-16806.
27. Cajochen C., Brunner D.P., Krauchi K., Graw P., Wirz-Justice A. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness // Sleep. 1995. Vol. 18. No. 10. Pp. 890-894.
28. Lagopoulos J., Xu J., Rasmussen I., Vik
A., Malhi G.S., Eliassen C.F., Arntsen I.E., Sa-ether J.G., Hollup S., Holen A., Davanger S., Ellingsen O. Increased theta and alpha EEG activity during nondirective meditation // The Journal of Alternative and Complementary Medicine. 2009. Vol. 15. No. 11. Pp. 1187-1192.
29. Аладов А.В., Закгейм А.Л., Клишин Г.Ю., Костромин В.Н., Мизеров М.Н., Потапов М.Г., Стелинговкий К. В. Разработка аппаратно-программного комплекса для определения и коррекции психофизиологического и функционального состояния человека-оператора методом аудиовизуального воздействия с применением динамически управляемого полупроводникового источника света // Итоговая конференция по результатам выполнения мероприятий за 2010 год в рамках приоритетного направления «Живые системы» ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2012-2007 годы». Сб. тез. 27-25 ноября 2010 г., Москва. С. 141.
30. Аладов А.В., Корсакова Е.А., Слезин
B.Б., Шульц Е.В., Закгейм А.Л., Мизеров М.Н. Динамика альфа-ритма ЭЭГ человека при воздействии белого света с различной цветовой температурой // Научные труды III съезда физиологов СНГ. Под ред. А.И. Григорьева и др. г. Ялта, Украина. 6-1 октября 2011. Москва, Ялта: Медицина -Здоровье, 2011. С. 105.
31. Слезин В.Б., Корсакова Е.А., Мизеров М.Н., Закгейм А.Л., Аладов А.В., Мошко М.В. Способ оказания релаксирующего воздействия на функциональное состояние человека световым излучением от светодиодного источника. Пат. № 2517367. Российская Федерация. МПК A61N 5/06, A61B 5/0476; заявитель и патентообладатель - авторы патента. № 14/2012133348, заявл. 27.07.2012; опубл. 27.05.2014. Бюлл. № 15.
32. Слезин В.Б., Корсакова Е.А., Мизеров М.Н., Закгейм А.Л., Аладов А.В., Мошко М.В. Способ оценки воздействия на функциональное состояние головного мозга человека светового излучения. Пат. № 2515150.
Российская Федерация. МПК A61B 5/0476, A61N 5/06; заявитель и патентообладатель — авторы патента. № 14/2012133343, заявл. 27.07.2012; опубл. 10.05.2014. Бюлл. № 13.
33. Слезин В.Б., Корсакова Е.А., Мизеров М.Н., Закгейм А. Л., Аладов А. В., Мошко М.В. Способ оказания релаксии
рующего воздействия на функциональное состояние человека световым излучением от светодиодного источника. Пат. № 2514727. Российская Федерация. МПК А6Ш 5/06, А61В 5/0476; заявитель и патентообладатель — авторы патента. № 14/20121333435, заявл. 27.07.2012; опубл. 10.02.2014 Бюлл. № 4.
Статья поступила в редакцию 22.05.2019, принята к публикации 08.07.2019.
сведения об авторах
АЛАДОВ Андрей Вальменович — старший научный сотрудник Научно-технологического ценн тра микроэлектроники и субмикронных гетероструктур Российской академии наук. 194021, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 26. aaladov@mail.ioffe.ru
БЕРЛОВ Дмитрий Николаевич — старший преподаватель кафедры анатомии и физиологии человека и животных Российского государственного педагогического университета им. А.И. Герцена.
191186, Российская Федерация, г. Санкт-Петербург, наб. реки Мойки, 48 dberlov@yandex.ru
ЗАКГЕЙМ Александр Львович — кандидат технических наук, заведующий сектором Научно-технологического центра микроэлектроники и субмикронных гетероструктур Российской академии
194021, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 26. zakgeim@mail.ioffe.ru
ЧЕРНЯКОВ Антон Евгеньевич — кандидат физико-математических наук, старший научный сотрудник Научно-технологического центра микроэлектроники и субмикронных гетероструктур Российской академии наук.
194021, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 26. chernyakov.anton@yandex.ru
ФОТИАДИ Александр Эпаминондович — доктор физико-математических наук, профессор кафедры физической электроники Санкт-Петербургского политехнического университета Петра Великого.
195251, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 29 fotiadi@rphf.spbstu.ru
ВАЛЮХОВ Владимир Петрович — доктор технических наук, профессор Высшей школы прикладной физики и космических технологий Санкт-Петербургского политехнического университета Петра Великого.
195251, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 29 Valyukhov@yandex.ru
© Peter the Great St. Petersburg Polytechnic University, 2019