open access
АНТИОКСИДАНТ МЕКСИДОЛ Основные нейропсихотропные эффекты и механизм действия
Т. А. ВОРОНИНА
Институт фармакологии РАМН, Москва, Россия
Воронина Т. А. Антмоксидант мексидол. Основные нейропсихотропные эффекты и механизм действия// Психофармакол. Биол. Наркол. 2001. Т. 1. № 1. С. 2-12. НИИ фармакологии РАМН, 125315, Москва, ул. Балтийская, 8, тел: (095)155-4714.
Мексидол (2-этил-6-метил-3-окси-пиридин сукцинат) — новый отечественный нейропсихотропный препарат с оригинальным механизмом действия и спектром фармакологических эффектов, реализуемых, по крайней мере, на двух уровнях — нейрональ-ном и сосудистом. Мексидол оказывает анксиолитическое, антистрессор-ное, антиалкогольное, противосудо-рожное, церебропротекторное, ноотропное, противогипоксическое, противопаркинсоническое, вегетот-ропное действие. Показано, что мексидол (25-200 мг/кг) обладает выраженным анксиолитическим эффектом (методика конфликтной ситуации у крыс), который не сопровождается, в противоположность бензодиазепино-вым транквилизаторам, седативным и миорелаксантным действием и нарушениями памяти. Мексидол (50200 мг/кг) оказывает антиамнести-ческое действие на модели шоковой амнезии условного рефлекса пассивного избегания у крыс и увеличивает продолжительность жизни и число выживших мышей в условиях острой гипобарической гипоксии. При кур-
совом применении мексидол восстанавливает нарушения обучения и памяти и устраняет неврологические дефициты у мышей, подвергшихся длительной пятимесячной алкоголизации, что коррелирует со снижением содержания липофусцина в мозгу этих животных. Механизм действия мексидола определяется его антиок-сидантным и мембранопротектор-ным действием. Мексидол активно ингибирует свободнорадикальное окисление липидов биомембраны, повышает активность антиоксидан-тных ферментов, оказывает липид-регулирующее действие, повышая содержание полярных фракций липидов, уменьшая вязкость мембраны и ее текучесть, вызывает модулирующее действие на мембра-носвязанные рецепторы (ГАМК, бен-зодиазепиновыйи др.) и ферменты (фосфодиэстераза и др.), что способствует сохранению упорядоченной структурно-функциональной организации биомембран. Можно предполагать, что эти эффекты мекси-дола вызывают аллостерическое изменение конформации рецептора и приводят к установлению новых возможностей связывания лигандов с наиболее оптимальными подтипами рецептора, улучшению сопряжения рецепторных комплексов, возможно, через О-белки или другие системы, к изменению движения ионов, функционирования ферментных систем.
Ключевые слова: мексидол, антиоксиданты, модуляция рецепторов, анксиолитики, анти-гипоксанты, ноотропы, антиалкогольное действие.
Voronina T. A. Antioxidant Mexidol. The basic neuropsychotropic effects and mechanism of action// Psychopharmakol. Biol. Narkol. 2001. Vol. 1, N 1. P. 2-12. Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow 125315, Russia.
Mexidol (2-ethyl-6-methyl-3-hy-droxypyridine succinate) is an antioxidant agent, inhibitor of free radicals, membranoprotector, able to reduce the lipid peroxidation. Mexidol rebuilds membrane structure and repairs their functions affected in different pathologies, has a modulatory effect on membrane-bound enzymes and receptor complexes, including GABA-benzodiazepine, exerts a hypo-lipidemic effect by decreasing the li-poproteids of a low density. Mexidol produces anxiolytic, antihypoxic, cerebroprotective, antiamnestic, antialcohol actions. Mexidol is actually without adverse effects and shows the low toxicity.
Key words: mexidol, antioxi-dant, free radical, membrano-protector, anxiolytic, antihypoxic, cerebroprotective, anti-amnestic, antialcohol action.
МЕКСИДОЛ является отечественным оригинальным препаратом нового типа, механизм действия которого определяется антиоксидантны-ми и мембранопротекторными свойствами.
В последние годы выяснению роли свободнорадикаль-ного окисления (СРО) в норме и при патологических состояниях, определению места антиоксидантов для коррекции и регуляции СРО и в лечении различных заболе-
ваний уделяется повышенное внимание, о чем свидетельствует существенный рост публикаций по этой проблеме. Научные основы теории СРО были заложены и развиваются школами российских ученых Н. Н. Семенова, Н. М. Эмануэля, Б. Н. Тарусова, Ю. А. Владимирова, Р. П. Евстигнеевой, Е. Б. Бурлаковой и др. [6-9, 25, 55, 56, 84] и активно развиваются как в России, так и за рубежом [62, 63, 66, 68, 69, 72, 75-78, 83].
Как известно, свободные радикалы (СР) образуются в организме в результате метаболизма растворенного в тканях кислорода и представляют собой молекулы с не-спаренным электроном на молекулярной или внешней атомной орбите и обладающие высокой реакционной способностью. Активные кислородные частицы — супероксид радикал 02-, пероксид водорода Н202, гидроксид радикал ОН- вызывают окисление мембранных липидов, белков, полисахаридов, нуклеиновых кислот. Являясь сильными окислителями, СР могут вызвать необратимые изменения в структуре белков и нуклеиновых кислот, окисляя прежде всего остатки метионина, гистидина, цистеи-на, триптофана. Кислородные частицы инициируют цепную реакцию окисления липидов, с образованием перок-сильных и алкоксильных производных липидов, которые сами по себе активны и участвуют в распространении сво-боднорадикального инициирования. Наиболее интенсивно эти процессы происходят в мозгу, который потребляет, несмотря на свой небольшой вес, около 20% кислорода, имеет в составе мембран ненасыщенные липиды и низкий уровень защитной антиоксидантной системы.
Полагают, что основным процессом, приводящим к модификации нейронов, является активация окисления остатков ненасыщенных жирных кислот в липидах клеточных мембран — перекисное окисление липидов (ПОЛ), что приводит к нарушению структурно-функционального состояния мембраны и в результате, к ее деполяризации, изменению микровязкости липидного бислоя и порога чувствительности нейронов. Искажается четкая упорядоченная бислойная структура мембран и изменяется клеточный метаболизм. Нарушение мембранной организации липидного бислоя обуславливает изменение конформации мембранных белков, баланса их взаимодействия, что отражается на работе ионных каналов, сродстве рецепторов с лигандами, сопряжении рецептор-ных комплексов между собой и с ферментными системами и т. д. Скорость окисления фосфолипидов мембран и обновление их состава составляет основу физико-химической системы регуляции мембранами клеточного метаболизма, которая взаимосвязана с другими регуляторны-ми системами — циклических нуклеотидов, фосфоино-зитидным циклом и др.
Обладая высокой электрофильностью, СР могут оказывать повреждающее действие на клетки, которое развивается по типу некроза или апоптоза. Одной из причин гибели нейронов в результате активации ПОЛ может явиться повышение проницаемости мембран для ионов. В частности, массивный вход кальция активирует внутриклеточные кальций-зависимые протеазы и липазы, что вызывает лизис [28]. Другими мишенями воздействия СР являются ДНК ядер и цитозольных белков нейронов мозга, что нарушает метаболизм клетки и может привести к
изменениям в генетическом коде.
Повреждающему действию СР противостоит эндогенная антиоксидантная система организма, которая осуществляет баланс между СРО и антиокислительными системами, устраняющими их разрушительное действие, и включает ферменты (каталаза, глутатионперок-сидаза, супероксиддисмутаза и др.) и эндогенные анти-оксиданты (а-токоферол, витамин С и др.). Наиболее известным и изученным ферментом является супероксиддисмутаза (СОД), катализирующая переход супероксид анион радикала в кислород и перекись. Выделяют также гидрофильные (аскорбат, глутатион и др.) и ли-пофильные перехватчики СР (токоферолы, флавонои-ды, убихинон и др.).
При интенсивном образовании СР и при недостаточной активности антиоксидантной компенсирующей системы возникает окислительный стресс, который может явиться причиной многочисленных патологий. СРО является базисным механизмом старения клеток, органов и тканей [11, 55, 59, 62, 73, 77, 86] и вовлекается в патогенез практически всех известных болезней. При их участии возникает целый комплекс нарушений функций ЦНС, сопровождающих заболевания и старение: снижение жизненной силы, умственной и физической работоспособности, нарушение психического и эмоционального статуса. Наиболее широко освещается участие СРО в развитии таких заболеваний как атеросклероз [22, 42], раковые образования [56, 60, 80] ишемические болезни сердца и мозга [24, 58, 74, 81], нейродегенеративные заболевания: деменции, болезнь Альцгеймера [24, 61, 64, 82, 90], болезнь Паркинсона [67, 70, 88] и др., дисцир-куляторная энцефалопатия [50], церебральные инсульты и гипертония [49, 75, 83], стресс, невроз [1, 24, 79], болевые синдромы [75], судорожные состояния [24, 40, 83]. Последствиями активности СРО могут быть также остеоартрит, амилоидоз, холецистит, панкреатит, воспалительные процессы, заболевания крови, глаз (катаракта и др.), кожи, сахарный диабет, болезни почек, печени и легких, аллергические и иммунодефицитные сос-тоя-ния и др.
Поскольку механизм, предупреждающий и устраняющий последствия повреждений, наносимых СРО, а именно эндогенная антиоксидантная система, в том числе и антиоксиданты, присутствующие в клетке в малых концентрациях, не справляется с патологическим процессом, требуется поступление антиоксидантов извне. Поиск и разработка средств антиоксидантной фармакотерапии ведется в двух направлениях. Первое базируется на включении эндогенных антиоксидантов, например, витаминов Е и С в так называемые пищевые добавки и витаминные комплексы. Однако, восполнение природных антиоксидантов, например, витамина Е, который обла-
дает мягким действием и быстро теряет свою эффективность при введении в организм, не может обеспечить лечебного эффекта при серьезных заболеваниях и поэтому витамины используются, прежде всего, как профилактические или дополнительные средства в комплексной терапии.
Другое направление заключается в создании синтетических антиоксидантов и является несомненным достижением отечественной науки. В противоположность природным, синтетические антиоксиданты обладают значительно более выраженным и мощным антиокислительным действием и их механизм связан с влиянием на базисные звенья патогенеза различных заболеваний, путем восстанавления нарушенных процессов в биомембранах. Первым синтетическим антиоксидантом, предложенным Н. М. Эмануэлем для медицинского применения, явился фенольный антиоксидант дибунол (ионол). Он показал выраженный эффект при лечении рака мочевого пузыря, ожогов, у него выявлено анксио-литическое и противосудорожное действие. Отмечено положительное действие дибунола в комплексной терапии ишемической болезни сердца. Применение в кардиологии получил и другой фенольный антиоксидант пробу-кол, обладающий выраженным гиполипидемическим действием, защищающий от окисления липопротеиды низкой плотности, увеличивая скорость их катаболизма.
Особое место среди подобных препаратов занимает препарат мексидол, обладающий выраженным антиок-сидантным и мембранопротекторным действием. По химической структуре он представляет собой 2-этил-6-ме-тил-3-оксипиридин сукцинат и, таким образом, имеет сходство с пиридоксином (витамин В6). С другой стороны, в его состав входит сукцинат, который является в организме субстратом для повышения энергетического обмена в клетке. Мексидол синтезирован Л. Д. Смирновым и К. М. Дюмаевым [47] в ИБХФ РАН, изучен и разработан в НИИ фармакологии РАМН [10-14, 24, 26, 27, 32, 33, 46, 85-90] и Всесоюзном научном центре по безопасности биологически активных веществ [24, 34, 48].
Мексидол обладает широким спектром фармакологических эффектов, реализуемых, по крайней мере, на двух уровнях — нейрональном и сосудистом. Он оказывает ан-ксиолитическое, антистрессорное, антиалкогольное, противосудорожное, нейропротекторное/ноотропное, проти-вогипоксическое, противопаркинсоническое, вегетотроп-ное действие [11, 13, 14, 17, 24, 32, 86-90]. С другой стороны, мексидол обладает способностью улучшать мозговое кровообращение, ингибировать агрегацию тромбоцитов, снижать общий уровень холестерина, оказывать кардиопротекторное и антиатеросклеротическое действие [18, 19, 22, 23, 41, 54].
Мексидол повышает резистентность организма к дей-
ствию различных экстремальных факторов, таких как, лишение сна, конфликтные ситуации, электрошок, физические нагрузки, гипоксия, стресс, различные интоксикации, в том числе этанолом. Важной особенностью мек-сидола является его способность потенцировать специфическое действие других психотропных препаратов, что позволяет существенно уменьшить их эффективные дозы и снизить побочные проявления [10, 24].
Существенным преимуществом мексидола является то, что он является малотоксичным препаратом, с большой терапевтической широтой, практически не обладает побочными эффектами традиционных нейропсихотроп-ных препаратов, в частности, не оказывает седативного, мышечнорасслабляющего, стимулирующего, эйфоризи-рующего действия, а также не имеет побочных эффектов, свойственных нейропротекторным препаратам.
В рамках настоящей статьи рассмотрены имеющиеся представления о механизме действия мексидола и с этих позиций проанализированы его основные эффекты — анксиолитический, антиалкогольный, антиамнестический и противогипоксический.
Механизм действия мексидола. Принципиальным отличием мексидола от большинства нейропсихотропных препаратов является отсутствие у него собственных участков узнавания и специфического связывания с известными рецепторами. Механизм действия мексидола определяется его антиоксидантным и мембранопротекторным действием, ключевыми звеньями которого являются следующие.
1. Мексидол эффективно ингибирует СРО липидов биомембран [42, 43, 50, 73], активно реагирует с пере-кисными радикалами липидов [24, 26, 27, 30], первичными и гидроксильными радикалами пептидов [24, 45].
2. Повышает активность антиоксидантных ферментов, в частности супероксиддисмутазы, ответственных за образование и расходование перекисей липидов, а также активных форм кислорода [24].
3. Ингибирует СР стадии синтеза простагландинов, катализируемых циклооксигеназой и липоксигеназой, повышает соотношение простоциклин/тромбоксан А2 и тормозит образование лейкотриенов (ЛТВ4 и др.) [24, 57]. 4
4. Повышает содержание полярных фракций липи-дов (фосфатидилсерина и фосфатидилинозита) и снижает соотношение холестерин/фосфолипиды, что свидетельствует о его липидрегулирующих свойствах [3-5, 24]; вызывает перемещение структурных переходов в область низких температур, т. е. уменьшение вязкости мембраны и увеличение ее текучести, повышает соотношение липид-белок [24, 26, 27].
5. Модулирует активность мембраносвязанных ферментов: фосфодиэстеразы, в частности кальций-незави-
симой фосфодиэстеразы циклических нуклеотидов, аде-нилатциклазы, альдоредуктазы, ацетилхолинэстеразы [37, 43, 48].
6. Модулирует рецепторные комплексы мембран мозга, в частности, бензодиазепиновый, ГАМК, ацетилхо-линовый, усиливая их способность к связыванию [46, 56, 85, 87].
7. Стабилизирует биологические мембраны, в частности мембранные структуры клеток крови — эритроциты и тромбоциты при их гемолизе и механической травме, когда происходит образование свободных радикалов [24, 37].
Кроме того, мексидол обладает выраженным гиполи-пидемическим действием; уменьшает в плазме крови уровень общего холестерина и липопротеинов низкой плотности и увеличивает концентрацию липопротеинов высокой плотности [24]. Препарат улучшает энергетический обмен клетки, активируя энергосинтезирующую функцию митохондрий [32, 33]. Вызывает изменение уровней моноаминов, в частности, повышение содержание в мозгу дофамина [34].
Таким образом, эффекты мексидола определяют два основных механизма — антиоксидантный (влияние как на ферментативные, так и неферментативные процессы ПОЛ) и мембранопротекторный, которые обеспечивают ограничение разрушающего действия продуктов ПОЛ, стабилизацию биомембран клеток, сохранение их упорядоченной структурно-функциональной организации, в частности липидного бислоя, влияющего на мембранос-вязанные рецепторные комплексы, ферменты и ионные каналы. Это может выражаться в аллостерическом изменении конформации рецептора, установлении новых возможностей связывания лигандов с наиболее оптимальными подтипами рецептора, улучшении сопряжения ре-цепторных комплексов, например, через О-белки или другие системы, в изменении движения ионов, функционировании мембраносвязанных ферментных систем -ит. д.
Благодаря своему механизму действия, мексидол обладает широким спектром фармакологических эффектов и оказывает влияние на ключевые базисные звенья патогенеза различных заболеваний, связанных с процессами свободнорадикального окисления. Кроме того, этот механизм объясняет его чрезвычайно малые побочные эффекты и способность потенцировать действие других цент-ральнодействующих веществ, в особенности тех, которые реализуют свое действие как прямые агонисты рецепторов.
Анксиолитическое действие. Мексидол обладает выраженным анксиолитическим действием, способностью устранять тревогу, страх, напряжение, беспокойство в условиях различных экспериментальных моделей (кон-
фликтная ситуация, крестообразный лабиринт, темная-светлая камеры и др.). Наиболее подробный анализ действия мексидола был осуществлен в условиях базисной для оценки транквилизаторов методики конфликтной ситуации по Vogel у крыс. Конфликтная ситуация создавалась путем подавления болевым электрическим раздражителем питьевого рефлекса у крыс с чувством жажды при потреблении ими воды из трубки-поилки и основана, таким образом, на столкновении двух мотиваций — питьевой и оборонительной (страха наказания при попытке удовлетворения питьевой потребности) [15, 36]. Эффект транквилизаторов заключается в устранении чувства тревоги и страха и увеличении числа наказуемых взятий воды за 10 минут нахождения в камере.
Мексидол обладает выраженной анксиолитической активностью, что выражается в существенном и статистически достоверном повышении числа наказуемых взятий воды (табл. 1). Препарат проявляет эффективность при введении в различных дозах (25, 50, 100, 200 мг/кг) и путях введения (внутрибрюшинно, внутримышечно, внутрь). При введении в дозе 50 мг/кг (в/бр) он имеет сходный по глубине эффект с диазепамом в дозе 2 мг/кг и алпразоламом в дозе 0,5 мг/кг. Однако, в отличие от бен-зодиазепиновых транквилизаторов под влиянием мексидола сохраняется адекватность реагирования в экстремальных условиях конфликта при использовании провоцирующих тест стимулов по шкале Броди-Наута.
Мексидол, в противоположность известным транквилизаторам, даже в верхнем диапазоне терапевтических доз (200 мг/кг) не оказывает седативного действия. Он не снижает двигательной активности животных в установке Опто-варимекс и не угнетает ориентировочно-исследовательского поведения в методике открытого поля. Для сравнения, у традиционных транквилизаторов анк-сиолитический эффект сопровождается седативным действием. Так, диазепам в дозе 2 мг/кг, вызывающей анк-сиолитический эффект, уменьшает двигательную активность в открытом поле в 5 раз, а алпразолам (0,5 мг/кг) в 2,8 раза.
Мексидол не обладает миорелаксантным действием даже в дозах, превышающих среднюю терапевтическую анксиолитическую дозу (50 мг/кг) в 4 — 6 раз и не вызывает таких проявлений, как нарушение координации движений в тесте вращающегося стержня, снижение мышечного тонуса и мышечной силы в тестах перевернутой сетчатой платформы и подтягивания на перекладину. В противоположность этому, диазепам (2 мг/кг) вызывает нарушение координации движений у 60%, а алпразолам (2,5 мг/кг) — у 50% животных.
Таким образом, мексидол обладает выраженным анк-сиолитическим действием, сопоставимым с действием диазепама и алпразолама при использовании их в экви-
Таблица 1
Анксиолитическое действие мексидола в условиях методики конфликтной ситуации у крыс
Вещества /кг Путь введения Число наказуемых взятий воды
Контроль - /бр 19,9 ± 2,1
Мексидол 25 /бр 29,5 ± 3,5*
Мексидол 50 /м 45,5 6,7*
Мексидол 100 /бр 62,8 5,7*
Мексидол 200 /бр 76,1 10,8*
Мексидол 200 Внутрь 49,1 ± 7,3*
Диазепам 2 /бр 44,0 ± 9,2*
Алпразолам 0,5 /бр 41,9 11,4*
+ Бикукуллин 100 0,75 /бр Подкожно 18,7 8,5**
+ Пикротоксин 100 2 / / 15,7 11,3**
+ Ро 5-3663 100 10 / Подкожно 28,1 5,7**
+ Ро15-1788 100 15 / / 44,5 ± 11,1**
+ 008-8216 100 3 / / 42,8 7,1**
+ Пентилентетразол 100 25 /бр Подкожно 31,3 8,4**
+ - 100 50 /бр Подкожно 82,7 13,5**
+ Феназепам 100 0,1 / / 98,3 7,5**
Примечание. * — Р < 0,05 по сравнению с контролем; ** — Р< 0,05 по сравнению с мексидолом в дозе 100мг/кг.
эффективных дозах. Существенным преимуществом мексидола перед известными транквилизаторами является отсутствие у него побочных седативного, миорелаксант-ного и амнезирующего эффектов и сохранение адекватности реагирования в условиях экстремальной ситуации. Следовательно, мексидол можно рассматривать как селективный транквилизатор «дневного» действия, у которого анксиолитический эффект осуществляется без наслоения седативного, миорелаксантного и амнезирующего действия.
Анализ механизма анксиолитического действия мек-сидола осуществлялся с использованием анализаторов ГАМК-бензодиазепинового хлор-ионофорного рецептор-ного комплекса. Установлено, что СОБ-8216 и в меньшей степени Но 15-1788 (антагонисты бензодиазепиновых рецепторов), пикротоксин (блокатор хлор-ионофора), Но 5-3663 (блокатор а-дигидропикротоксинового связывания и нарушающий сопряженность ГАМК и бензодиа-зепинового рецепторов), пентилентетразол (ГАМК антагонист), бикукуллин (антагонист ГАМК-А рецептора) существенно и статистически достоверно ослабляли анксиолитический эффект мексидола. Феназепам (агонист
бензодиазепинового рецептора) и в меньшей степени Ь-карболин-3-карбоксиэтиловый эфир (Ь-ККЭЭ, инверсивный агонист бензодиазепинового рецептора) усиливали анксиолитическое действие мексидола в условиях конфликтной ситуации (табл. 1). Полученные данные свидетельствуют о вовлечении ГАМК-бензодиазепинового хлор-ионофорного рецепторного комплекса в реализацию анксиолитического действия мексидола.
С другой стороны установлено, что мексидол не обладает способностью связываться с бензодиазепиновыми и ГАМК рецепторами, однако, он обладает способностью усиливать связывание меченого диазепама с бензодиазе-пиновыми рецепторами [46, 85, 87].
Таким образом, не обладая прямым аффинитетом к бензодиазепиновым и ГАМК рецепторам, мексидол оказывает на них модифицирующее действие, усиливая их способность к связыванию. Эти данные в сочетании с результатами, полученными при анализе анксиолитичес-кого эффекта с использованием анализаторов, позволяют полагать, что механизм анксиолитического действия мексидола определяется его модулирующим влиянием на ГАМК-бензодиазепиновый хлор-ионофорный рецептор-ный комплекс.
В свете современных представлений о веществах нового типа, не относящихся к прямым агонистам рецепторов, механизм действия мексидола можно представить как эффект модулятора, аллостерически потенцирующего рецептор лиганда и активатора ионных каналов. Можно полагать, что под влиянием мексидола происходят конформационные изменения ГАМК-бензодиазепинового рецепторного комплекса и его переход в конфор-мацию открытого канала, что способствует токам хлора. Механизм реализации анксиолитического эффекта мек-сидола возможен также вследствие возникновения новых вариантов связывания эндогенных лигантов с наиболее оптимальными подтипами рецепторов, улучшения сопряжения ГАМК и бензодиазепинового рецепторов, что также оптимизирует функционирование хлорного канала.
Антиалкогольное действие. Мексидол обладает выраженным антиалкогольным действием, оказывая терапевтический эффект на нарушения, вызываемые этанолом при его хроническом применении, абстинентном синдроме и при острой алкогольной интоксикации.
В условиях хронического эксперимента молодые половозрелые мыши (самки), начиная с 3-х месячного возраста, в течение пяти месяцев потребляли 15%-ный раствор этанола вместо питьевой воды. Количество потребляемого спирта в сутки на одну мышь составило 0,56—0,75 мл (в пересчете на абсолютный спирт). Мек-сидол применяли одновременно с этанолом и доза составляла 20—25 мг/кг в сутки. Изучение поведения живот-
ных через две недели после отмены длительного 5-месячного введения этанола выявило значительное и статистически достоверное ухудшение обучения и памяти при выработке рефлекса активного избегания в челночной камере шаттл-бокс. Животные осуществляли большое число ошибочных реакций, число правильных ответов было достоверно ниже, и они осуществлялись с большими латентными периодами, чем в контрольной группе и не достигали критерия обученности даже на 6-й день обучения. Мексидол устранял все нарушения обучения и памяти, наблюдаемые у алкоголизированных животных (табл. 2). Мыши, получавшие мексидол, обучались рефлексу и сохраняли обученное также эффективно и с таким же коэффициентом правильных ответов, как и животные контрольной группы.
Таблица 2
Влияние мексидола на нарушенный процесс обучения после длительного (5 месяцев) потребления этанола
Группы Процент выполнения рефлекса в различные дни обучения
2- 3- 44! 5- 6-
Контроль 4,1 ± ± 1,3 10,5 ± ± 1,6 18,8 ± ± 3,3 31,4 ± ± 7,3 38,2 ± ± 8,4
Этанол (5 мес.) 2,2 ± ± 0,8» 5,8 ± ± 1,1 10,2 ± ± 2,8 20,3 ± ± 5,4 18,5 ± ± 5,1
+ Мексидол 9,1 ± ± 2,3*** 24,7 ± ± 5,3** 31,8 ± ± 7,7 41,6 ± ± 6,5** 56,1 ± ± 8,1**
Примечание. * — Р < 0,05 по сравнению с контролем; ** — Р< 0,05 по сравнению с группой, получавшей этанол.
Как известно, повышенное содержание липофусцина в мозге животных после их длительной алкоголизации связано с активацией процессов ПОЛ [65]. С целью оценки антиоксидантной активности мексидола было исследовано содержание в коре головного мозга мышей после длительной алкоголизации флуоресцирующего пигмента липофусцина по соответствующему методу [71]. Исследование экстрактов из гомогенатов мозга животных, подвергшихся длительной алкоголизации, выявило у них значительно более высокую интенсивность флуоресценции, чем у контрольных животных, что свидетельствует об усиленном образовании липофусцина в тканях головного мозга мышей, потреблявших в течение пяти месяцев этанол. Мексидол снижал накопление липофусцина в мозге, что выражалось в снижении показателя флюоресценции в 2,4 раза по сравнению с показателями алкоголизированных животных (табл. 3). Таким образом, наблюдаемое под влиянием мексидола восстановление процесса обучения, нарушенного в результате длительной алкоголизации, сопровождается снижением содержания липофусцина в мозге этих животных.
Таблица 3 Влияние мексидола на липофусцин (по показателю флуоресценции экстрактов мозга мышей) после длительной алкоголизации
Группы Число мышей (мг) / мозг
Контроль 13 465,0 ± 9,8 34,3 ± 1,5
Этанол 10 470,8 ± 8,3 114,8 ± 7,5
+ Мексидол 11 469,9 ± 11,1 47,5 ± 4, 5
Примечание. * — Р< 0,001 по сравнению с контролем; ** — Р < 0,05 по сравнению с группой этанола.
Мексидол оказывает также отчетливое влияние на нейротоксические проявления интоксикации, вызванные однократным введением животным высоких доз этанола (25% раствор в дозе 2 г/кг, внутрь). Интоксикация этанолом выражается в проявлениях неврологического дефицита (нарушение координации движений, снижение мышечного тонуса и др.), нарушении ориентировочно-исследовательского поведения и осуществления рефлексов. Мексидол в дозе 100 мг/кг (в/бр) устраняет проявления острой алкогольной интоксикации, что выражается в уменьшении нарушений ориентировочно-исследовательского поведения в открытом поле (табл. 4), а также в восстановлении координации движений в тесте вращающего стержня, адекватности поведения животных при осуществлении норкового рефлекса.
Таким образом, мексидол обладает выраженным антиалкогольным действием. Он устраняет нарушения когнитивных функций, процессов обучения и памяти, вызванные длительным (5 месяцев) введением этанола и его отменой и препятствует накоплению липофусцина в мозге алгоколизированных животных. Мексидол устраняет неврологические и нейротоксические проявления острой алкогольной интоксикации.
Как известно, этанол не обладает способностью связываться со специфическими рецепторами и он оказывает свое действие за счет своего присутствия в бислое мембраны, повреждая гидрофобные участки белков или ли-пидный матрикс, а главным образом, вызывая смещения в липидной фазе биомембран, в которой находятся мемб-раносвязанные белки, и повреждение мембраны. Хроническое введение этанола приводит к активации процессов ПОЛ, уменьшению отношения непредельных жирных кислот к насыщенным жирным кислотам, что вызывает уплотнение структуры мембран, уменьшение ее текучести, и влечет за собой нарушение работы рецепторных комплексов, активного и пассивного транспорта ионов.
Можно полагать, что механизм лечебного эффекта мексидола при алкоголизации реализуется на уровне одного из основных патогенетических звеньев деструктивного процесса, вызываемого этанолом, и определяется его мембраностабилизирующим и антиоксидантным дей-
Примечание. * — P < 0,05 по сравнению с контролем; ** — P < 0,05 по сравнению с группой этанола.
Таблица 4
Устранение мексидолом нарушений ориентировочно-исследовательского поведения в открытом поле,
вызванных введением этанола
Группы Дозы Горизонтальная активность Вертикальная активность Исследовательская активность Число актов груминга Число фекальных болюсов
Контроль - 17,9 ± 2,85 11,5 ± 2,72 7,7 ± 2,21 1,1 ± 0,74 3,4 ± 1,26
Этанол 2 / 32,7 ± 8,72 5,2 ± 3,39 2,6 ± 1,71 1 ± 0,82 2,4 ± 1,35
+ Мексидол 2 / + + 100 мг/ 15,9 ± 4,84** 2,5 ± 1,96** 4,6 ± 1,59 2 ± 1,83 2,7 ± 1,42
ствием, способностью препарата предотвращать активацию процессов ПОЛ, восстанавливать нарушенное структурно-функциональное состояние мембран, их текучесть и фосфолипидный состав.
Антиамнестическое действие, способность улучшать память. Мексидол обладает выраженной способностью улучшать процессы обучения и памяти и оказывает отчетливое антиамнестическое действие, устраняя нарушения памяти, вызванные различными воздействиями. В табл. 5 представлены данные о способности мексидола в дозах 50—200 мг/кг (внутрибрюшинно) устранять амнезию условного рефлекса пассивного избегания у крыс, вызванную проведением максимального электрошока непосредственно после обучения и при воспроизведении навыка через 24 часа после обучения согласно методике, описанной ранее [16]. Мексидол значительно и статистически достоверно увеличивает латентное время захода животных в темный опасный отсек и уменьшает время их нахождения в темной камере. По эффективности в дозе 50 мг/кг он не уступает пирацетаму в дозе 350 мг/кг.
Таблица 5
Влияние мексидола на амнезию условного рефлекса пассивного избегания у крыс, вызванную максимальным электрошоком (МЭШ)
Воздействие / (с) ± ± SEM Время (с), ± ± SEM
Обучение - 102,2 ± 14,5 4,7 ± 0,2
(МЭШ) - 37,46 ± 9,1* 44,2 ± 7,3*
Мексидол 50 75,14 ± 12,78** 10,7 ± 1,8**
Мексидол 100 91,3 ± 14,8** 19,3 ± 5,1**
Мексидол 200 97,6 ± 15,7** 21,8 ± 5,3**
Пирацетам 350 78,0 ± 11,7** 13,20 ± 3,1**
Примечание. * — Р < 0,05 в сравнение с контролем (обученные животные без амнезии); ** — Р< 0,05 в сравнение с МЭШ вызванной амнезией.
Выраженный антиамнестический эффект мексидол оказывает и на других моделях амнезий, восстанавливая память, нарушенную введением животным скополамина
или после депривации парадоксальной фазы сна [12, 14, 17, 89]. Так, при использовании скополаминовой модели амнезии время пребывания животных в опасном отсеке под влиянием мексидола (100 мг/кг) уменьшается более чем в 4 раза по сравнению с амнезированными животными, предпочитающими находиться в темном отсеке, забывая о полученном там при обучении болевом раздражении.
Мексидол оказывает антиамнестическое действие как при его введении перед обучением и действием амнезирующего фактора, так и при его инъекции непосредственно после обучения и амнезирующего воздействия, что свидетельствует о способности вещества не только предупреждать развитие амнезии, но и устранять уже развившуюся амнезию. По антиамнестическому действию мексидол не уступает, а в ряде случаев и превосходит по активности и глубине эффекта такие ноотропные препараты, как пира-цетам, пиритинол, меклофеноксат, клерегил, пантогам, пи-камилон, натрия оксибутират. Наряду с антиамнестичес-ким эффектом, мексидол способствует сохранению памятного следа и противодействует процессу угашения обученных навыков и рефлексов.
Позитивное восстанавливающее действие мексидол оказывает на нарушенные когнитивные функции и неврологические дефициты, возникающие при естественном старении и в условиях экспериментальной модели болезни Альцгеймера [11, 14, 86, 89, 90].
Механизм позитивного влияния мексидола на когнитивные функции связан с его мембранопротекторным и антиоксидантным действием. Согласно синапсо-мембран-ной организации памяти решающая роль в закреплении информации в ЦНС принадлежит конформационным смещениям макромолекул белков в области синапса. При этом кратковременная память реализуется через конформаци-онные изменения макромолекул белка синапсов, обусловленные ионными перемещениями, вызванными прохождением импульса через синаптический контакт. При формировании долговременной памяти конформационные изменения захватывают не только область синапса, но и посредством кооперативного эффекта распространяются и на другие мембранные комплексы нейрона, создавая единую систему взаимосвязанных макромолекул белка. В ре-
зультате макромолекулы белка мембранных комплексов сохраняют вновь приобретенные устойчивые конформа-ционные положения и таким образом изменение конфор-мации белков мембраны является одним из важных свойств процесса кодирования, хранения и воспроизведения информации.
Учитывая факт липидзависимости работы мембранных ферментов и рецепторов и значение для их функционирования микровязкости липидного окружения, можно придти к заключению, что мексидол, оказывая выраженное влияние на физико-химические свойства мембраны и вызывая ее структурно-функциональные перестройки, повышает функциональную активность биологической мембраны и, таким образом, способствует образованию устойчивых конформационных изменений белковых макромолекул синаптических мембран, образованию взаимосвязанных систем мембранных комплексов нейронов, вызывая в результате активацию синаптических процессов и улучшение когнитивных функций.
Немаловажным представляется также способность мексидола изменять фосфолипидный состав наружной мембраны синаптосом головного мозга; и для процессов памяти особенно важным представляется увеличение содержания фосфатидилсерина, который влияет на активность калий и кальциевой АТФ-азы, и фосфотидилинози-та, который способствует повышению сродства ацетилхо-линового рецептора к ацетилхолину.
Противогипоксическое действие. Мексидол обладает отчетливым противогипоксическим действием, что выражается в способности препарата увеличивать продолжительность жизни и число выживших животных в условиях различных гипоксических состояний: гипобарической гипоксии, гипоксии с гиперкапнией в гермообъеме и геми-ческой гипоксии. Так, например, в условиях острой гипо-барической гипоксии, при подъеме животных на высоту 11 тыс. метров мексидол после его инъекции в дозе 100 мг/ кг увеличивает продолжительность жизни животных в 2 раза, а число выживших животных в 2,4 раза (табл. 6). По противогипоксической активности мексидол значительно превосходит пиритинол и пирацетам, который в дозе 500 мг/кг обладает слабой антигипоксической активностью в условиях острой гипобарической гипоксии и гипоксии с гиперкапнией.
Механизм противогипоксического действия мексидола связан, прежде всего, с его специфическим влиянием на энергетический обмен [32, 33]. Мексидол является анти-гипоксантом прямого энергизирующего действия, эффект которого связан с влиянием на эндогенное дыхание митохондрий, с активацией энергосинтезирующей функции митохондрий. Антигипоксическое действие мексидола обусловлено не только его собственными антиоксидантными свойствами, а, прежде всего, входящим в его состав сукци-
Таблица 6
Противогипоксическое действие мексидола в условиях гипобарической гипоксии в опытах на мышах
Вещества , мг/ ( ) БЕМ Выжившие , %
Контроль - 8,9 1,8 16,6
Мексидол 100 18,1 4,3* 40,0
Контроль - 8,1 1,1 16,6
Мексидол 200 21,3 4,5* 60,0
Контроль - 10,1 1,1 22,0
Пирацетам 500 1,2 1,2 22,0
Примечание. * — Р< 0,05 в сравнение с контролем
натом, который в условиях гипоксии, поступая во внутриклеточное пространство, способен окисляться дыхательной цепью. Следовательно, действие мексидола связано с активацией компенсаторных метаболических потоков, поставляющих в дыхательную цепь энергетические субстраты, в данном случае сукцинат, и выполняющих роль срочных адаптационных механизмов при гипоксии. Действие мексидола направлено на восстановление в условиях острой кислородной недостаточности нарушений процесса окислительного фосфорилирования, связанных с ограничением НАДН-оксидазного пути окисления.
Таким образом, мексидол является нейропсихотропным препаратом нового типа как по механизму (антиоксидант, мембранопротектор), так и по спектру фармакологических эффектов.
Мексидол разрешен для широкого медицинского применения. Клинические исследования показали высокий терапевтический эффект мексидола при лечении различных неврологических, психических и сердечно-сосудистых заболеваний [19, 24]. В частности, препарат проявил эффективность при лечении невротических и неврозоподоб-ных расстройств [2, 31, 38, 39, 52], различных нарушений при алкоголизме, в том числе абстинентного синдрома [20, 29], при лечении острых и хронических нарушений мозгового кровообращения, в том числе инсульта [18, 41, 51, 49], дисциркуляторной энцефалопатии и вегетососудис-той дистонии [50, 53], при нарушениях функций мозга при старении и атеросклерозе [21, 35, 44], при лечении острой интоксикации нейролептиками. Для клинического применения мексидол используется в капсулах, таблетках и в ампулах (5%-ный раствор, 2 мл).
ЛИТЕРАТУРА
1. Александровский Ю.А. Поюровский М.В., Незнамов Г.Г. Неврозы и перекисное окисление липидов / Под ред. Л. С. -Евсеенко. М.: Наука, 1990.
2. Александровский Ю.А., Аведисова А.С., Серебрякова Т.В. и
др. Применение мексидола при тревожных расстройствах // Новые направления в создании лекарственных средств. Конгресс «Человек и лекарство». М., 1997. С. 242.
3. Бурлакова Е.Б., Кайране Ч.Б., Молочкина Е.М., Хохлов А.П.
Модификация липидов наружной мембраны митохондрий печени мышей и кинетических параметров мембраносвя-занной моноаминоксидазы in vivo и in vitro // Вопр. мед. химии. 1984. Т. 1, № 1. С. 66-72.
4. Бурлакова Е.В., Хохлов А.П. Влияние мембранотропных ве-
ществ на состав, структуру и функциональную активность мембран синаптического комплекса // Биологич. мембраны. 1984. Т. 1, № 2. С. 117-123.
5. Бурлакова Е.В., Хохлов А.П. Изменение структуры и соста-
ва липидной фазы биологических мембран при действии синтетических антиоксидантов. Влияние на передачу информационного сигнала на клеточном уровне // Биологич. мембраны. 1985. Т. 2, № 6. С. 557-561.
6. Бурлакова Е.Б., Крашаков С.А., Храпова Н.Г. Роль токофе-
ролов в пероксидном окислении липидов биомембран // Биологич. мембраны. 1998. Т. 15, № 2. С. 137-168.
7. Бурлакова Е.Б. Биоантиоксиданты вчера, сегодня, завтра /
/ Сборник трудов V Междунар. конф. «Биоантиоксидант». М., 1998.
8. Васильева О.В., Любицкий О.Б., Клебанов Г.И., Владимиров
Ю.А. Действие антиоксидантов на кинетику цепного окисления липидов в липосомах // Биологич. мембраны. 1998. Т. 15, № 2. С. 177-183.
9. Владимиров Ю.А. Биологические мембраны и патология
клетки. М.: Знание, 1979.
10. Воронина Т.А., Смирнов Л.Д., Дюмаев К.М. Влияние мемб-раномодулятора из класса 3-оксипиридина на фармакологическую активность психотропных препаратов // Бюл. эксперим. биол. и мед. 1985. Т. 99, № 5. С. 519-522.
11. Воронина Т.А., Гарибова Т.Л., Смирнов Л.Д., Кутепова О.А., Дюмаев К.М. Геропсихотропные свойства антиоксиданта из класса 3-оксипиридина в эксперименте // Бюл. экспе-рим. биол. и мед. 1986. Т. 102. С. 307-310.
12. Воронина Т.А., Маркина Н.В., Неробкова Л.Н. Влияние веществ из класса ноотропов на поведение крыс в условиях депривации парадоксальной фазы сна // Журн. высш. нервн. деят. 1986. Т.36. С. 963-967.
13. Воронина Т.А., Середенин С.Б. Ноотропные препараты, достижения и новые проблемы (проблемная статья) // Экс-перим. и клин. фармакол. 1998. Т. 61, № 4. С. 3-9.
14. Воронина Т.А.- Новые направления поиска ноотропных препаратов ( проблемная статья) // Вестник РАМН. 1998. № 1. С. 16-21.
15. Воронина Т.А., Середенин С.Б. Методические указания по изучению транквилизирующего (анксиолитического) действия фармакологических веществ // Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ Минздрав РФ. ЗАО ИИА Ремедиум, 2000.
16. Воронина Т.А.,Островская Р.У. Методические указания по изучению ноотропной активности фармакологических веществ // Руководство по экспериментальному ( доклиническому) изучению новых фармакологических веществ Минздрав РФ. ЗАО ИИА Ремедиум, 2000.
17. Воронина Т.А. Гипоксия и память. Особенности эффектов и применения ноотропных препаратов // Вестник РАМН. 2000. № 9. С. 27-34.
18. Гаевый М.Д., Погорелый В.Е., Арльт А.В. Противоишеми-ческая защита головного мозга антиоксидантами группы 3-оксипиридина // Новые направления в создании лекар-
ственных средств. Конгресс «Человек и лекарство». М., 1997. С. 52.
19. Гацура В.В., Смирнов Л.Д. Кардиопротекторные свойства некоторых синтетических антиоксидантов // Хим.-фарм. журн. 1992. Т. 26. С. 10-15.
20. Гофман А.Г., Кожинова Т.А., Крылов Е.Н. и др. Применение антиоксидантов в качестве средств купирования алкогольного абстинентного синдрома // Новые направления в создании лекарственных средств. Конгресс «Человек и лекарство». М., 1997. С. 35.
21. Давыдова И.А., Телешова Е.С., Сюняков С.А. и др. Результаты клинического исследования ноотропного компонента действия мексидола // Материалы симпозиума «Медицина и охрана здоровья. Медтехника и Аптека». Тюмень, 1997. С. 166-167.
22. Девяткина Т.А., Коваленко Э.Г., Смирнов Л.Д. Влияние мексидола на развитие экспериментального перекисного атероартериосклероза // Эксперим. и клин. фармакол. 1993. Т. 56, № 1. С. 33-35.
23. Долгих В.Т. Предупреждение постреанимационных метаболических нарушений антиоксидантом 3-оксипиридином // Вопр. мед. хим. 1991. Т. 37, № 5. С. 12-16.
24. Дюмаев К.М., Воронина Т.А., Смирнов Л.Д. Антиоксиданты в профилактике и терапии патологий ЦНС. М., 1995.
25. Евстигнеева Р.П., Волков И.М., Чудинова В.В. Витамин Е как универсальный антиоксидант и стабилизатор биологических мембран // Биологич. мембраны. 1998. Т. 15, № 2. С. 119— 136.
26. Еременко А.В. Роль мембранотропных свойств производных 3-оксипиридина в фармакологическом эффекте: Ав-тореф. дис. ... канд. биол. наук. М., 1986.
27. Еременко А.В., Авдулов Н.А., Ганкина Е.М., Смирнов Л.Д., Дюмаев К.М., Вальдман А.В. Влияние субхронического введения феназепама и синтетических антиоксидантов на функциональное состояние синаптических мембран коры головного мозга крыс, подвергнутых длительному стресс-воздействию // Бюл. эксперим. биол. и мед. 1988. № 1. С. 38-40.
28. Ерин А.Н., Гуляева Н.В., Никушкин Е.В. Свободноради-кальные механизмы в церебральных патологиях // Бюл. эксперим. биол. и мед. 1994. № 10. С. 343-348.
29. Игонин А.А., Кривенков А.Н. Опыт применения мексидола при лечении больных алкоголизмом // Новые направления в создании лекарственных средств. Конгресс «Человек и лекарство».М., 1997. С. 263.
30. Комаров П.Г., Биленко М.В., Шведова А.А., Каган В.Е. Оценка эффективности действия химических соединений на ферментативное перекисное окисление липидов // Вопр. мед. хим. 1985. Т. 31, № 2. С. 40-45.
31. Кошелев В.В., Краснов В.Н., Телешова Е.С. и др. Применение мексидола для лечения психических расстройств у ликвидаторов катастрофы на Чернобыльской АЭС // Новые направления в создании лекарственных средств. Конгресс «Человек и лекарство». М., 1997. С. 67.
32. Лукьянова Л.Д., Атабаева Р.Е., Шепелева С.Ю. Биоэнергетические механизмы антигипоксического действия сук-цинатсодержащего производного 3-оксипиридина // Бюл. эксперим. биол. и мед. 1993. № 3. С. 259-260.
33. Лукьянова Л.Д. Современные проблемы гипоксии // Вестник РАМН. 2000. № 9. С. 3-12.
34. Мирошниченко И.И., Смирнов Л.Д., Воронин А.Е. и др. Влияние мексидола на содержание медиаторных моноаминов и аминокислот в структурах головного мозга крыс // Бюл. эксперим. биол. и мед. 1996. № 2. С. 170-173.
35. Михайлова Н.М., Жариков П.А., Гаврилова С.И. и др. Применение мексидола в амбулаторной геронтологической прак-
тике// Новые направления в создании лекарственных средств. Конгресс «Человек и лекарство». М., 1997. С. 276.
36. Молодавкин Г.М., Воронина Т.А. Многоканальная установка для поиска транквилизаторов и изучения механизма их действия по методу конфликтная ситуация // Экспе-рим. и клин. фармакол. 1995. Т. 58, № 2. С. 54-56.
37. Муранов К.О., Полянский Н.Б., Шведова А.А. Изменение уровня циклических нуклеотидов и торможение агрегации тромбоцитов человека при действии 3-оксипиридинов // Бюл. эксперим. биол. и мед. 1986. Т. 101, № 10. С. 430434.
38. Незнамов Г.Г., Лыгалов С.И. Сравнительная клинико-фар-макологическая характеристика гидазепама и мексидо-ла — новых препаратов с транквилизирующими свойствами // Организационные и клинические вопросы пограничной психиатрии. М., 1990. С. 119-128.
39. Незнамов Г.Г., Телешова Е.С., Сюняков С.А., Сафарова Т.П. Клинико-фармакологическое исследование анксио-литических свойств антиоксиданта мексидола // Материалы симпозиума «Медицина и охрана здоровья. Медтехни-ка и Аптека». Тюмень, 1997. С. 85-87.
40. Никушкин Е.В., Бордюков М.М. Антиокислительная активность препаратов, применяемых в противосудорожной терапии // Бюл. эксперим. биол. и мед. 1993. Т. 103, № 3. С. 254-256.
41. Погорелый В.Е. Цереброваскулярные реакции как показатели антиоксидантной защиты головного мозга при его ишемии производными 3-оксипиридина // Материалы симпозиума «Медицина и охрана здоровья. Медтехника и Аптека». Тюмень, 1997. С. 180-181.
42. Поздняков О.М., Клименко Е.Д., Кобозева Л.П. и др. Коррекция синтетическими антиоксидантами нарушений в ре-гуляторной и микроциркуляторной системах на ранних стадиях экспериментального атеросклероза // Бюл. экс-перим. биол. и мед. 1993. № 3. С. 242-244.
43. Полянский Н.Б., Смирнов Л.Д., Шведова А.А. и др. Ингиби-рование фосфодиэстеразы циклических нуклеотидов из сердца кролика оксипиридинами // Вопр. мед. хим. 1983. Т. 28, № 1. С. 123-127.
44. Пятницкий А.Н.,Телешова Е.С., Яковлева О.Б. Использование мексидола в лечении осложнений психофармакотерапии у больных позднего возраста // Бюл. Всес. Центра по безопасн. Активн. В-в. Медико-биологические аспекты применения антиоксидантов эмоксипина и мексидола. М., 1992. С. 58-60.
45. Сапежинский И.И., Гудкова Н.А., Донцова Е.Г. и др. О влиянии различных веществ на рентгенохемилюсценцию растворов сывороточного альбумина и глицинтриптофана // Биофизика. 1980. Т. 25, № 1. С. 30-35.
46. Середенин С.Б., Бледнов Ю.А., Гордей М.Л. и др. Влияние мембраномодулятора 3-оксипиридина на эмоционально-стрессовую реакцию и связывание Н3-диазепама в мозге инбредных мышей // Хим.-фарм. журн. 1987. № 2. С. 134137.
47. Смирнов Л.Д., Дюмаев К.М. ?-оксипроизводные шести-членных гетероциклов. Синтез, ингибирующая активность и биологические свойства // Хим.-фарм. журн. 1982. Т. 16, № 4. С. 28-44.
48. Смирнов Л.Д., Малыхина Л.С., Лазаревич В.Г. Влияние антиоксидантов из класса 3-оксипиридина на активность фосфодиэстеразы циклического 3,5-аденозинфосфата // Бюл. эксперим. биол. и мед. 1983. Т. 96, № 9. С. 40-42.
49. Спасенников Б.А. Применение мексидола в интенсивной терапии инсульта // Бюл. Всес. Центра по безопасн. ак-тивн. в-в. Медико-биологические аспекты применения
антиоксидантов эмоксипина и мексидола. М., 1992. С. 7374.
50. Спасенников Б.А. Дисциркуляторная энцефалопатия. Патогенетические, клинические и фармакотерапевтические аспекты. Petah-Tikva, Израиль, 1996.
51. Суслина З.А., Федорова Т.Н. Антиоксиданты в терапии больных с цереброваскулярными заболеваниями // Новые направления в создании лекарственных средств. Конгресс «Человек и лекарство». М., 1997. С. 296.
52. Сюняков С.А., Телешова Е.С., Давыдова И.А. Применение мексидола при лечении больных с тревожными расстройствами. // Новые направления в создании лекарственных средств. Конгресс «Человек и лекарство». М., 1997. С. 297.
53. Федорова Н.В. Сравнительное изучение эффективности мексидола при лечении больных дисциркуляторной энцефалопатией // Бюл. Всес. Центра по безопасн. Активн. В-в. Медико-биологические аспекты применения антиоксидантов эмоксипина и мексидола. М., 1992. С. 66-72.
54. Цыпин А.В., Смирнов Л.Д., Кургинян Р.И. Влияние про-зводных 3-оксипиридина на резистентность клеток крови к механической травме // Патол. физиол. и эксперим. тер. 1978. Т 5. С. 22-24.
55. Эмануэль Н.М. Фенольные соединения и их биологические функции. М., 1967.
56. Эмануэль Н.М. Кинетика экспериментальных опухолевых процессов. М., 1977.
57. Эфендиев А.М., Помойнецкий В.Д., Смирнов Л.Д., Кубатиев А.М. Влияние антиоксидантов на синтез простогландинов, простоциклина и тромбоксана в разных слоях почек старых крыс // Фармакол. и токсикол. 1986. Т. 49, № 3. С. 6063.
58. Agardh C.D., Zhang H., Smith M.L. et al. Free radical production and ischemic brain damage: influence of postischemic oxygen tention // Intern.J. Develop. Neurosci. 1991. Vol. 20, N 2. P. 127138.
59. Agarwal S., Sohal R.S. Aging and protein oxidative damage // Mechan. Ageing Develop.1994. Vol. 75. P. 11-19.
60. Ames B.N., Gold L.S., Willett P.T. The causes and prevention of cancer // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92. P. 52585265.
61. Beal M.F. Aging, energy, and oxidative stress in neurodegenerative diseases // Ann. Neurol. 1995. Vol. 38. P. 357-366.
62. Beckman K.B., Ames B.N. Oxidative decay of DNA // J. Biol. Chem. 1997. Vol. 272. P. 19633-19636.
63. Beckman K.B., Bruce N.A. The free radical theory of aging matures // Physiol. Rev. 1998. Vol. 78. P. 547-581.
64. Benzi G., Moretti N. Are reactive oxygen species involved in Alzheimer's disease? // Neurobiol. Aging. 1995. Vol. 16. P. 661-674.
65. Brunk U.T., Jones C.B., Sohal R.S. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis // Mutat. Res. 1992. Vol. 275. P. 395-403.
66. Choi J.H., Yu B.P. Brain synaptosomal aging: free radicals and membrane fluidity // Free Radical Biol. Med. 1995. Vol. 18. P. 193200.
67. Cohen G.R., Farooqui R., Kesler N. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow // Proc. Natl. Acad. Sci USA. 1997. Vol. 94. P. 4890-4894.
68. Croteau D.L., Bohr V.A. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells // J. Biol. Chem. 1997. Vol. 7. P. 576-579.
69. Epe B. DNA damage profiles indused by oxidizing agents // Rev. Physiol. Biochem. Pharmacol. 1996. Vol. 127. P. 223-249.
70. Fahn S., Cohen G. The oxidant stress hypothesus in Parkinson's disease: evidance supporting it // Ann. Neurol. 1992. Vol. 32. P. 804-812.
71. Fletcher B.L., Dillard C.J., Tappel A.L. Measurements of fluorescent lipid peroxidation products in biological systems and tissues // Analyt. Biochem. 1973. Vol. 52. P. 1-9.
72. Fridovich I. Superoxide radical and superoxide dismutases // Ann. Rev. Biochem. 1995. Vol. 64. P. 97-112.
73. Goto S., Nakamura H. Age-assotiated, oxidatively modified proteins: a critical evaluation // Age. 1997. Vol. 20. P. 81-89.
74. Hall E.D., Braughler J.M., Pazara K.E. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain // J. Neurisci. Res. 1993. Vol. 34, N 1. P. 107-112.
75. Halliwell B.H. Gutteridge J.M. Free radicals in biology and medicine. Oxford: Oxford Univ. Press, 1989.
76. Hardmeier R., Hoeger H., Fang-Kircher S., Khoschsorur A., Lubec G. Transcription and activity of antioxidant enzymes after ionizing irradiation in radiation-resistant and radiationsensitive mice // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 7572-7576.
77. Harman D. Free radical involment in aging: pathophysiology and therapeutic implications // Drugs and Aging. 1993. Vol. 11. P. 60-80.
78. Johnson T.M., Yu Z.X., Ferrans V.J. et al. Reactive oxygen species are downstream mediators of p53-dependent apoptosis // Proc. Natl. Acad. Sci. USA. 1996. Vol. 93. P. 11848-11852.
79. Kenichi Isobe. Stress and aging // Current Genov. 2000. Vol. 1. P. 1-10.
80. Lu R., Nash H.M., Verdine G.L. A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer // Curr. Biol. 1997. Vol. 7. P. 397-407.
81. Lucas D.T., Szweda L.I. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. P. 510-514.
82. Markesbery W.R. Oxidative stress hypothesis in Alzheimer's disease // Free Radicals Biol. Med 1997. Vol. 23. P. 134-147.
83. Parker L. Free radical scavengers and antioxidants in prophylaxy and treatment of brain diseases // Free radicals in the brain. Berlin: Springer, 1992. P. 1-20.
84. Pobedimskij D.G., Burlakova E.B. Mechanisms of antioxidant action in living organisms // Atmospheric oxidation and antioxidants. Amsterdam-London-N.Y.-Tokyo, 1993. Vol. 3. P. 223-246.
85. Seredenin S.B., Blednov Y..A. A pharmacogenetic approach to the design of new selective, anxiolytic drugs // Biological basis of individual sensitivity to psychotropic drugs. Edinburgh, 1995. P. 25-38.
86. Voronina T.A., Kutepova O.A. Experimentally established geropsychotropic properties of 3-hydroxypyridine antioxidant / / Drug Dev. Res. 1988. Vol. 14. P. 353-358.
87. Voronina T.A., Seredenin S.B. Analysis of the mechanism of psychotropic action of 3-hydroxypyridine derivative // Ann. Ist. Super. Sanita. 1988. Vol. 24. P. 461-466.
88. Voronina T.A., Nerobkova L.N., Kutepova O.A., Gugutcidse D.A. Pharmacological correction of CNS functional disorders and parkinsonian syndrome in old animals // Ann. 1st. Super. Sanita. 1990. Vol. 26. P. 55-60.
89. Voronina T.A. Present-day problems in experimental psychopharmacology of nootropic drugs // Neuropharmacology. 1992. Vol. 2. P. 51-108.
90. Voronina T.A. Nootropic drugs in Alzheimer disease treatment. New Pharmacological Strategies // Alzheimer disease: therapeutic strategies. Boston: Birkhauser, 1994. P. 265-269.